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Abstract

A method and a program (tcq) in FORTRAN 90 based on Gaussian quadrature are developed to compute the

terrain correction (TC). TCs were determined on 1010 benchmarks using the Gaussian quadrature, prism and FFT

methods using a 300 � 300 elevation grid for the inner zone and a 3000 � 3000 elevation grid for the outer zone. In order to
achieve a 0:1 mgal accuracy in TC while reducing the computing time, the best inner and outer radii for TC computation
are 20 and 200 km; respectively. The Gaussian quadrature is a highly accurate numerical integrator and yields results
that outperform those from the prism method and the FFT method. The singular problem of the kernel function in TC is

treated by considering the innermost zone effect, which can be expressed as a complete elliptic integral of the first kind.

The innermost zone effect must be taken into account if the required accuracy of TC is at a 1-mgal level.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Terrain corrections (TC) are needed in various

applications, e.g., geoid computation (Nahavandchi,

2000), interpretation of crustal structure (Camacho

et al., 2001) and orthometric correction (Hwang and

Hsiao, 2003). Methods for TC computations are

abundant in the literature, e.g., Forsberg (1984), Li

and Sideris (1994), Nahavandchi and Sj .oberg (1998) and

Tsoulis (2001). For all these methods, one algorithm is

based on the Fast Fourier Transform (FFT) and is

suitable for grid-wise computation. The other algorithm

is based on the direct integrations of the TC integrals

(see later) and is ideal for point-wise computation. In

general, the grid-wise algorithm requires less computa-

tion time than the point-wise algorithm.

In this paper, a rigorous point-wise method that is

based on Gaussian quadrature (e.g., Evans, 1993) will be
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developed. In TC computation, the singularity in the

kernel of integration has been a problem in the past

(Forsberg, 1984; Tsoulis, 2001). To account for this

singular problem, a method to compute the innermost

zone effect (IZE) will be presented. The Gaussian

quadrature method will be used to compute TCs on

the first-order benchmarks in Taiwan using a high-

resolution digital terrain model (DTM), on a 300 � 300

grid (about 80 m in horizontal resolution).
2. Terrain correction methods

2.1. Direct integration using Gaussian quadrature

In planar approximation, the potential due to the

topographic mass above and below a point at ðxP; yP; sÞ
is (Fig. 1)

V ¼Gr
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Fig. 1. Geometry of terrain correction.

C. Hwang et al. / Computers & Geosciences 29 (2003) 1259–12681260
where G is the gravitational constant and r is the

density, which is assumed to be a constant. The vertical

component of the attraction, resulting from the poten-

tial (Eq. (1)), is called TC expressed at point P as

TC ¼
qV

qs

� �����
s¼hP

¼ Gr
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�
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For a given area bounded by the Cartesian coordinates

X1 (west), X2 (east), Y1 (south) and Y2 (north), Eq. (2)

can be evaluated numerically by

TC ¼Gr
Z X2

X1

Z Y2

Y1

f ðx; yÞ dx dy

EGr
XM
j¼1

w
y
j cðyjÞ; ð3Þ

where

cðyÞ ¼
Z X2

X1

f ðx; yÞ dxE
XN

i¼1

wx
i f ðxi; yÞ; ð4Þ

where wx
i and w

y
j are weighting coefficients, xi and yj are

nodal coordinates, M and N are the numbers of

weighting coefficients and nodes along the x and y axes

over the domains ½X1;X2	 and ½Y1;Y2	: To achieve the
highest possible precision, M and N should be the

numbers of the given grids along x and y: Since the
DTM in this paper is given on a regular geographic grid,

the function values cðyÞ and f ðx; yÞ at the nodes xi and yj

were interpolated using the Newton–Gregory forward

polynomial (Gerald and Wheatley, 1994) from the

evenly spaced function values on a given grid. In the

situation of equally spaced data, interpolations based on

the Newton–Gregory forward polynomial can be easily

programmed and a high interpolation can be achieved,

e.g., Hwang and Lin (1998). For the interpolations

needed in Eqs. (3) and (4), we have experimented with

various polynomial degrees and found that the use of

degrees higher than six yields no further improvement in

the interpolation accuracy. In our TC program, the

subroutine GAULEG from Press et al. (1989), which is

designed for the one-dimensional situation, was used

successively for the two-dimensional Gaussian quad-

rature required in Eqs. (3) and (4). The weighting

coefficients in the Gaussian quadrature are of the

Gauss–Legendre type, as described in standard text

books of numerical analysis such as Gerald and

Wheatley (1994). With the Gauss–Legendre quadrature,

a simple method discussed by Press et al. (1989, p. 125),

can be used to compute the weighting coefficients.

Consider the complete elliptic integral of the first kind

(Lebedev, 1972)

KðaÞ ¼
Z p=2

0

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2 sin2 f

q : ð5Þ

This function will be used in computing the innermost

zone effect of TC, as will be shown later. Fig. 2 shows

the relative error using different number of nodes and

different values of a: The relative error is defined as the
ratio between the absolute error (the absolute difference
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Fig. 2. Relative error (in log10 scale) in using Gaussian

quadrature for integrating complete elliptic function, with

different a values (see Eq. (5)). (Solid line: a ¼ 0:1; dotted line:
a ¼ 0:5; dashed line: a ¼ 0:9).
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between the exact value and the approximated value)

and the exact value, the latter being computed using the

FORTRAN subroutine ‘‘CEL’’ (Press et al., 1989). The

relative error increases with a when the number of nodes

is below 15, beyond which the relative error is about

10�12 irrespective of the number of nodes. This example

shows that the Gaussian quadrature method can achieve

high accuracy in numerically integrating functions even

with a small number of nodes.

2.2. The prism and FFT methods

For comparison, the prism method and the Fourier

Transform (FT) method were also used for TC

computations. In the prism method, the terrain effect

at P (also the origin) due to a rectangular prism

bounded by ½x1; x2	; ½y1; y2	; ½z1; z2	 is given by (Forsberg,
1984):

CP ¼Gr x lnðy þ rÞ þ y lnðx � rÞ
�������
�����

� z tan�1
xy

zr

� ����x2
x1

����
y2

y1

�����
z2

z1

; ð6Þ

where x and y are the horizontal coordinate compo-

nents, z is the vertical coordinate (also elevation in this

case), and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
: The total terrain effect, or

TC, is obtained by summing the contributions from all

such prisms. In this paper, the program ‘‘tc’’ authored

by Forsberg (1984) was used to compute TCs using the

prism method. For the FFT method used in this paper,
a truncated Taylor’s expansion of the kernel function in

Eq. (2) is used by Forsberg (1984) and leads to the TC at

point P as

CP ¼ 1
2

Gr½l�h2 � hPðl�hÞ þ h2Pg	

¼ 1
2

GrF�1½FðlÞFðh2Þ	 � 2hPF
�1½FðlÞFðhÞ	

þ h2PF
�1½Lð0; 0Þ	; ð7Þ

where

lðx; yÞ ¼
1

ðx2 þ y2Þ3=2
; g ¼

Z Z
l dx dy: ð8Þ

F and F�1 are the direct and inverse FT operators,

respectively, and Lð0; 0Þ is the FT of l at frequency zero.

The convolutions in Eq. (7) can be carried out using

FFT to achieve high computational efficiency. In this

paper, Eq. (7) is implemented by program ‘‘tcfour’’, also

developed by Forsberg (1984). Note that Eq. (7) is only

one approximation of the rigorous FFT methods for TC

computations. TC computations by FFT with more

rigorous formulae are given by Li and Sideris (1994) and

Tsoulis (2001).
3. The innermost zone effect

The kernel function f ðx; yÞ in Eq. (2) is singular at the
computational point p; i.e., x ¼ xp; y ¼ yp: This singular
problem has been discussed by Schwarz et al. (1990),

Bian and Sun (1994), and Tsoulis (2001). Here we

present a solution using a method similar to the method

for evaluating the innermost zone effect in Stokes’

integral (Heiskanen and Moritz, 1967). In Eq. (2), the

elevation near P can be expanded in a Taylor series

h ¼ hP þ xhx þ yhy þ 1
2
ðx2hxx þ xyhxy þ y2hyyÞ þ?;

ð9Þ

where

hx ¼
qh

qx
; hy ¼

qh

qy
; hxx ¼

q2h
qx2

;

hxy ¼
q2h
qxqy

; hyy ¼
q2h
qy2

: ð10Þ

Restricting the Taylor series to the linear term only and

using polar coordinates, the contribution from the

topographic mass within the innermost zone, which is

defined as a circle of radius s0 around P; is (see Eq. (2))

Ci ¼Gr
Z s0

s¼0

Z 2p

a¼0

1

r
r ds da

� Gr
Z s0

s¼0

Z 2p

a¼0

1

½r2 þ ðrhx sin aþ rhy cos aÞ
2	1=2

� r ds da ¼ A � B: ð11Þ

Evaluating the integrals, the A term is

A ¼ 2pGrs0; ð12Þ
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Fig. 3. Shaded relief map of terrain in Taiwan and 1010
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and the B term is

B ¼Grs0

Z 2p

0

1

½1þ ðhx sin aþ hy cos aÞ2	1=2
da

¼Grs0

Z 2p

0
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1ffiffiffiffiffiffiffiffiffiffiffiffiffi
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p Z p=2

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1ffiffiffiffiffiffiffiffiffiffiffiffiffi
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p K
affiffiffiffiffiffiffiffiffiffiffiffiffi
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p
 !
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where K is the complete elliptic integral of the first

kind defined in Eq. (5), and a is the gradient of terrain

defined as

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2x þ h2y

q
: ð14Þ

If the elevation data are given on a regular geo-

graphic grid with intervals Df and Dl in latitude and
longitude, the radius of the innermost zone can be

approximated by

s0ER

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos f Df Dl

p

r
; ð15Þ

where R is the mean Earth radius ðE6371 kmÞ and f is
latitude.
benchmarks (black dots) where terrain corrections are to be

computed.

b 
a 

inner zone 

outer zone 

Fig. 4. Division of computation for terrain correction. Black

circle is innermost zone, a and b are radii of inner and outer

zones, respectively.
4. Results

4.1. Result from tcq: a program based on Gaussian

quadrature

The gravity values were collected on 1010 first-order

benchmarks, where TCs are to be applied. For TC

computations on these benchmarks, two elevation data

sets were used: one data set is on a 300 � 300 grid and the
other is on a 3000 � 3000 grid. These grids were generated
by Hwang and Hsiao (2003) using a total of 6 421 075

point elevation data in Taiwan, covering the area over

21:5
–25:5
N and 119:5
–122:5
E. Fig. 3 shows a

shaded relief map of the terrain and the distribution of

the 1010 benchmarks. The terrain over Taiwan is

complex and contains plains, foothills and alpine

mountains. The highest point is in the Central Range,

reaching 3952 m: In Eastern Taiwan, mountains can be
as high as 2000 m only several km from the coast,

creating large terrain effects for benchmarks situated on

coastal highways.

Because computation by the Gaussian quadrature

method for TC is relatively time consuming as compared

to the FFT method, the best computational strategy is

to split the TC into two parts: the inner zone with a fine

elevation grid and the outer zone with a coarse elevation

grid, (see Fig. 4). Such a strategy was recommended by
Forsberg (1984). Based on this strategy, a program

‘‘tcq’’ in FORTRAN 90 was developed. Program

tcq also computes the innermost zone effect using
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Eq. (11) with the radius given by Eq. (15). In this paper,

the 300 � 300 grid was used for the effect of the inner zone,
and the 3000 � 3000 grid was used for the effect of the
outer zone. The gradients of the terrain needed in the

innermost zone effect are obtained by first fitting

polynomials to a window of 20� 20 gridded elevations
surrounding the computation point, and then evaluating

the gradients using the fitted polynomials. The IMSL

subroutine DQD2DR was used for polynomial fitting

and gradient evaluation.

To save computing time, it is necessary to find the

smallest radii of the inner and outer zones (hereafter
Fig. 5. Difference in terrain correction using two different radii (in km

15, (e) 30 and 20, (f) 40 and 30, (g) 50 and 40, (h) 60 and 50. A radi
called inner radius and outer radius) that will still meet

the accuracy requirement of TC. (Note that the choice of

radii will also depend on the roughness of the terrain

under study). To see how the inner radius affects the TC,

differences between the TCs from using two different

inner radii were determined and are shown in Fig. 5.

From Fig. 5, the maximum difference in TC decreases as

the inner radius increases. The maximum differences in

TC for the inner radii of 2–5, 5–10, 10–15, 15–20, 20–30,

30–40, 40–50, and 50–60 km are 1.7, 1.02, 0.46, 0.18,

0.09, 0.07, 0.12, and 0:04 mgal; respectively. Based on
these statistics and Fig. 5, it is concluded that, if the
) of inner zone: (a) 5 and 2, (b) 10 and 5, (c) 15 and 10, (d) 20 and

us of 400 km for outer zone is used.
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required accuracy of TC is 0:1 mgal; an inner radius of
20 km is sufficient.

It is also important to determine the smallest outer

radius beyond which the terrain effect can be neglected.

Fig. 6 shows the differences in TC from using two

different outer radii. The maximum differences in TC for

the outer radii of 100–400, 150–400, 200–400, and 300–

400 km are 2.31, 0.62, 0.17, and 0:10 mgal; respectively.
In the cases of 100–400 and 150–400 km; the difference
increases with elevation. Thus, to meet a 0.1-mgal

accuracy in TC, an outer radius of 200 km will be

sufficient. Also, at elevations less than 1000 m; the
Fig. 7. Terrain corrections using Gaussian quadrature method on 1010

of 200 km:

Fig. 6. Difference in terrain correction using two different radii (in km

(d) 400 and 300. A radius of 20 km for inner zone is used.
differences in TC from using a radius of 100 km and a

radius of 400 km are less than 0:1 mgal; and this shows
that an outer radius of 100 km is sufficient for TCs at

elevations below 1000 m:
Using an inner radius of 20 km and an outer radius of

200 km; the TCs at the 1010 benchmarks (Fig. 3) were
computed and the result is given in Fig. 7. The

maximum, minimum, mean and standard deviation of

the TCs are 85.53, 0.36, 10.08, and 13:74 mgal;
respectively. The largest TC ð85:53 mgalÞ occurs at a
benchmark where the elevation is 3500 m: In general,
the TC value increases with elevation. However, large
benchmarks using an inner radius of 20 km and an outer radius

) of outer zone: (a) 400 and 100, (b) 400 and 150, (c) 400 and 200,
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TC values also exist near the coastal highway in

northeastern Taiwan, where the elevations are low.

These large TCs are caused by the high mountains (over

2000 m) on the western flank of this highway. In

addition, Fig. 8 shows the computing times using

different inner and outer radii on a Pentium 4 machine

with a clock rate of 2 GHz: The computing time is
mainly governed by the inner radius and it increases

nonlinearly with the inner radius. The outer radius also

affects the computing time. The computing time for a

400-km outer radius is 250 CPU seconds more than that

for a 100-km outer radius.

Fig. 9 shows the innermost zone effects at the 1010

benchmarks. The maximum, minimum, mean and

standard deviation of the innermost zone effect are

1.71, 0.00, 0.10 and 0:24 mgal; respectively. Thus, in
order to achieve a 1-mgal accuracy in TC, the innermost

zone effect must be taken into account. Furthermore, it

can be shown that the B term in Eq. (13) decreases with

an increasing gradient of terrain. As a result, the

innermost zone effect (Eq. (11) increases with gradient.

In general, the gradient increases with the elevation
0

500

3000

3500

2000
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1000

1500

2 5 10 15 20 30 40 50 60
innerzone radius (km)

tim
e 

(s
ec

)

outerzone radius 100km

outerzone radius 400km

Fig. 8. Computing times using different inner and outer radii.

Fig. 9. Innermost zone effec
(Fig. 3), thus the innermost zone effect also increases

with elevation (the correlation coefficient between the

two is 0.6). However, large innermost zone effects also

exist at some benchmarks with low elevations along the

coastal highway in northeastern Taiwan. This is, again,

due to the special condition of the terrain here as already

mentioned.

4.2. Comparison among TCs from Gaussian quadrature,

prism and FFT methods

TCs using the prism and the FFT methods were also

determined on the 1010 benchmarks. These two

methods are implemented by programs ‘‘tc’’ and

‘‘tcfour’’ provided by Forsberg (1984). Programs tc

and tcfour, like tcq, also divide the TC computation into

an inner zone and an outer zone, but they do not take

into account the innermost zone effect. In fact, for these

two methods, TCs were first determined on the same

300 � 300 grid as the elevation grid, and the TCs on the
benchmarks were then obtained by interpolations using

the Newton–Gregory polynomial. Fig. 10a shows the

TCs from the prism method (Eq. (6)) and Fig. 10b

the TCs from the FFT method (Eq. (7)). Table 1

shows the statistics of the TCs from these three methods.

Table 2 shows the statistics of the differences in TC from

the three methods. As shown in Fig. 10 and Table 1, the

Gaussian quadrature method picks up more high-

frequency variations in TC than do the other two

methods. The FFT method delivers TCs with the lowest

magnitude and resolution. For example, along the

coastal highways in western and eastern Taiwan,

the FFT method cannot correctly compute the effect

of the terrain, whereas the other two methods success-

fully recover the terrain signals. The 2.31-mgal differ-

ence (in standard deviation) between the Gaussian
t on 1010 benchmarks.
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Fig. 10. Terrain corrections from (a) prism method and (b) FFT method.

Table 1

Statistics of terrain corrections (in mgal) on 1010 benchmarks

from different methods

Maximum Minimum Mean Std. dev.

Gauss quadrature 85.44 0.25 9.95 13.58

Prism 79.16 0.10 8.30 12.47

FFT 61.86 0.22 6.39 9.21

Table 2

Statistics of differences (in mgal) in terrain corrections from

different methods

Maximum Minimum Mean Std. dev.

Gauss–prism 14.78 �3:94 1.65 2.31

Gauss–FFT 48.89 �25:39 3.56 7.28

Prism–FFT 45.39 �25:19 1.91 6.18
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quadrature and the prism methods does not entirely

come from the innermost zone effect, and it shows that

the prism method may still have room for improvement.

Furthermore, Fig. 11 shows the differences among the

three methods with respect to elevation. As expected,

large differences occur at high elevations, and at low

elevations where the terrain is complex (e.g. along the

coastal highways).

To compare computing time, TCs on a 10 � 10 grid
over the domain 119:5
–122:5
E and 21:5
–25:5
N
(total 43 621 points) are determined using the three

methods. The required computing times are 30 281
(Gauss quadrature), 6569 (prism) and 3 (FFT) CPU

seconds, respectively, on a Pentium 4, 2-GHz clock

rate machine. Thus the Gaussian quadrature method

is 4.6 times slower than the prism method. However,

the Gaussian quadrature method is intended for a

point-by-point computation and it would be a waste of

computing time to use Gaussian quadrature for a

grid-wise computation. In fact, it takes only 701 CPU

seconds (on the same machine) to compute the TCs

on the 1010 benchmarks by Gaussian quadrature, and

the achieved accuracy in TC is worth such a com-

puting time.
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Fig. 11. Differences in terrain correction from using two different methods: (a) Gaussian quadrature and prism (b) Gaussian

quadrature and FFT (c) prism and FFT.
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5. Conclusions

In this paper, the Gaussian quadrature method is used

to compute the TCs on 1010 benchmarks. This method

yields improved TCs over the prism method and the

approximated FFT method. The Gaussian quadrature

method required more computer time than the other two

methods, but this does not pose any problem given

today’s computing environment. Based on a Taylor

series expansion, the innermost zone effect was derived;

it is approximated by an elliptic integral and a function

of the radius of the innermost zone and the gradient of

the neighboring terrain. The innermost zone effect over

Taiwan must be taken into account if the required

accuracy of TC is at a 1-mgal level. The program tcq

that computes TCs using the Gaussian quadrature

method is available from the authors, or may be

downloaded from the IAMG server.
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