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Abstract—The structure classification of proteins plays a very I. INTRODUCTION
important role in bioinformatics, since the relationships and char-
acteristics among those known proteins can be exploited to predict ARGE-SCALE sequencing projects produce a massive
the structure of new proteins. The success of a classification system number of putative protein sequences. However, the

depends heavily on two things: the tools being used and the fea- ; -di i - -
tures considered. For the bioinformatics applications, the role of growing of the number of known three-dimensional (3-D) pro

appropriate features has not been paid adequate importance. In telr_1 st_ructl_Jres is much slower than the sequence _determlr_1ed.
this investigation we use three novel ideas for multiclass protein This situation makes the need to extract structural information
fold classification. First, we use thegating neural network where from the sequence database more imperative. Since the 3-D co-
each input node is associated with a gate. This network can selectordinate structures provide insight into the function, mechanism
important features in an online manner when the learning goes on. g evolution of protein, there are several famous classification
At the beginning of the training, all gates are almost closed, i.e., e )
no feature is allowed to enter the network. Through the training, databases S_UCh as Structure Classification of Protein (SCC_)P)'
gates corresponding to good features are completely opened whileClass, Architecture, Topology, and Homologous superfamily
gates corresponding to bad features are closed more tightly, and (CATH), DIAL-derived domain database (DDBASE), Entrez,
some gates may be partially open. The second novel idea is to use &ind 3Dee, which imbue the structures with context and analysis.

hierarchical learning architecture(HLA). The classifier in the first These different classification databases of proteins focus on
level of HLA classifies the protein features into four major classes:

all alpha, all beta, alpha+ beta, and alpha/beta. And in the next their an F:haracterlstlcs. For example, comp'rehens,lve' pr'oteln
level we have another set of classifiers, which further classifies the classification, such as SCOP, provides a detailed description of
protein features into 27 folds. The third novel idea is to induce the the structural and evolutionary relationships of the proteins of
indirect coding featuregrom the amino-acid composition sequence known structure. A more recent scheme, CATH is also a hierar-

of proteins based on the N-gram concept. This provides us with o;cq| c|assification of protein domain structure, which reveals
more representative and discriminative new local features of pro-

tein sequences for multiclass protein fold classification. The pro- (€ Prominent features of protein structure space [1]-[5].

posed HLA with new indirect coding features increases the protein T classify databases of proteins which imbue the structures
fold classification accuracy by about 12%. Moreover, the gating with context and analysis is very important for understanding

neural network is found to reduce the number of features drasti- the functions of proteins, and also essential for the discovery

cally. Using only half of the original features selected by the gating of new medication and therapies. In early days, such databases
neural network can reach comparable test accuracy as that using ’ !

all the original features. The gating mechanism also helps us to get Were made by factitious or semiautomatic procedure, such as
a better insight into the folding process of proteins. For example, SCOP or CATH. But recently, protein classification and pro-
tracking the evolution of different gates we can find which charac- tein fold prediction have been solved by the aid of computer
teristics (features) of the _data are more important for_the _folding with the strong ability of computation [6]-[8]. Computational
process. And, of course, it also reduces the computation time. methods have been developed for the assignment of a protein
Index Terms—Feature extraction, gating network, N-gram sequence to a folding class in the SCOP, where 83 folds are dis-
coding, protein sequence, radial basis function network (RBFN), tinguished in 3D_ALI database and 128 folds are distinguished
Structure Classification of Protein (SCOP), support vector in the SCOP database [9]-[12]. In [9] and [11], the researchers
machine (SVM). have used primary global protein sequence in terms of three
descriptors as physical, chemical, and structural properties of
Manuscript received June 3, 2003; revised August 19, 2003. This work wide constituent amino acids to code the sequences. Machine
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multiclass protein folds recognition in order to get higher clasdies the data into 27 folds. The proposed architecture can house
fication accuracy [9], [11]. In particular, there have been sevemlset of either NNs or SVMs as basic building blocks, with
attempts to use NNs for prediction of protein folds. Dubchtk each being a multiclass classifier inherently. This is in con-
al. [9] point out that when we want a broad structural classificdrast to the original approaches in [9] and [11], where a series
tion of protein—say, into four classes, all alphg, all beta(3), of two-class classifiers and a voting scheme must be used to
alpha+ beta(a + (), and alpha/betén/3)—it is easy to get solve the same problem and avoided the derivative problem,
more than 70% prediction accuracy using simpler feature vecta., the “false positive” problem. The third novel idea is to in-
for representing a protein sequence [7], [8], [10]. However, tltkice the indirect coding features from the amino-acid compo-
problem becomes more and more difficult as we demand maiéion sequence of proteins based on the N-gram concept. In
refined classification into more classes. Dubchtdl.[9]useda addition to the aforementioned traditional global features, we
multilayer perceptron network for predicting protein folds usinderive new local features describing the chain of amino acids
global description of the chain of amino acids representing pn@presenting proteins using the bigram and new spaced-bigram
teins. They used various combinations of the global features deding methods. These kinds of features can well describe the
scribing the physical, chemical, and structural properties of thgeractions among neighboring amino acids locally in a 3-D
constituent amino acids, and trained networks to find a good s#tucture of the amino-acid composition sequence of proteins.
of features. In[9], Dubchaét al.proposed an NN-based schem@&his provides us with more representative and discriminative
for protein fold classification into 27 classes. This method likeew features of protein sequences for the problems of multi-
the onein[9],[11] also uses global descriptors of the primary sglass protein fold classification.
guence. They used proteins from the Protein Data Bank (PDB),The proposed HLA with new N-gram coded features in-
where two proteins have no more than 35% sequence identiseases the protein fold classification accuracy by about 12%
For each fold an NN is trained. This procedure was repeatéthn the conventional methods. Moreover, the gating network
seven times for each fold, and each time only one set of featuiegound to reduce the number of features drastically. Using
computed from a particular attribute was used. Then a votingly half of the original features selected by the gating network
mechanism was used to decide on the fold of a given protegan reach comparable test accuracy as that using all the original
All these investigations clearly suggest that the choice of tifeatures. The process also helps us to get a better insight into
right features is very important for a better classification of prahe folding process. For example, tracking the evolution of
tein folds. different gates we can find which characteristics (features) of
Although the bioinformatics researchers acknowledged tliee data are more important for the folding process. And, of
importance of feature analysis, no systematic efforts to find tkkeurse, it reduces the computation time. The experiments on
best set of features have been done—mostly authors have ubedsame datasets and protein characteristics also show that the
enumeration techniques. Feature analysis is more importantfooposed HLA can achieve higher classification accuracy with
bioinformatics applications for two reasons: the class structuismaller number of classifiers and lower computation overhead.
is highly complex and the data are usually in very large dimeRurthermore, due to the removal of the voting mechanism, the
sion. Most of the feature analysis techniques available in the patimerical output value of the classifiers in the proposed HLA
tern recognition literature are offline in nature. It is known thatan indicate the reliability and confidence of the prediction.
all features that characterize a data point may not have the seé®imece each protein is classified with different reliability, such a
impact with regard to its classification, i.e., some features magiiability score is necessary for practical prediction systems.
be redundant and also some may have derogatory influence ofihe rest of this paper is organized as follows. Section Il in-
the classification task. Thus, selection of a proper subset of fégduces the protein datasets used in the target problem of this
tures from the available set of features is important for designm@search. Section Ill introduces the conventional global features
efficient classifiers. There are methods for selecting good feas well as the proposed local features describing the chain of
tures on the basis of feature ranking, etc. [13]-[17]. amino acids representing proteins. The proposed HLA housing
In this investigation we use three novel ideas. First, we ubitNs or SVMs is described in Section IV. The online feature
NNs where each input node is associated with a gate. At the Belection scheme through gating NNs is proposed in Section V.
ginning of the training all gates are almost closed, i.e., no fe@he accuracy measurement indices of protein fold classification
ture is allowed to enter the network. During the training, dexre discussed in Section VI. The experimental results and dis-
pending on the requirements, gates are either opened or closedsions are given in Section VII, and conclusions are made in
At the end of the training, gates corresponding to good featurgsction VIII.
are completely opened while gates corresponding to bad fea-
tures are closed more tightly. And of course, some gates may
be partially open. Hence, the network can not only select fea-
tures in an online manner when the learning goes on, but itThe SCOP is a famous protein databank, which uses the evo-
also does some feature extraction. The second novel idedutson and similarity of proteins to classify the structure of pro-
to propose a new hierarchical learning architecture (HLA) teins. The data structure of SCOP is found according to the hi-
cope with the multiclass protein fold classification problenerarchical structure of proteins, where the hierarchical classifi-
At the first level of HLA, the network classifies the data intacation scheme is widely used in bioinformatics such as SCOP
four major classesy, 3, a + 3, anda/B. And in the second and CATH. In the SCOP database, the main classes are divided
level we have another set of networks, which further classito several classes. The main classes, with most numbers of

Il. PROTEIN DATASETS
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TABLE | TABLE 1l
PATTERN NUMBERS OFEACH CLASSES INSCOP WHICH WAS PICKED UP TO FoOLD NUMBERS OFEACH CLASS AND PATTERN NUMBERS OF EACH
BE TRAINING AND TESTING PATTERNS IN THIS STUDY FoLD IN SCOP WiICH WAS PICKED UP TO BE TRAINING AND TESTING
PATTERNS IN THIS STUDY
Classes Pattern Number Pattern Number
(Training Data) (Testing Data) Classes Fold number per class Fold number per class
All Alpha 55 61 (Training pattern per fold) (Testing pattern per fold)
All Beta 109 17 All Alpha | 6 |13,7,12,7,9,7 6 | 6,9,20,8,9,9
Alpha/Beta 115 145
Alpha+Beta 34 62 All Beta 9 | 30,9,16,7,8,13,8,9,9 9 ;4,12,13,6,8,19,4,4,
Total Number 313 385 Alpha/Beta | 9 | 29,11,11,13,10,9,10,11, | 9 | 48,12,13,27,12,8,14
11 7,4
. . Alpha+Beta | 3 | 7,13,14 3 |8,27,27
protein, arex, 3, o/, anda + (. The other classes in SCOP Ty 27 27
such as multidomain proteins, membrane and cell surface praNumber

teins, and small proteins are less than the four main classes in

amount. These four classes are named by the structure of pro- ) o _ )

teins [2]-[5]. The protein classification in SCOP was performe@ethOd is position independent, length invariant, and a vector
manually or semiautomatically, which takes a great amount Bf" S€quence.

time for such a complex task. It has been a pushing research

topic to classify and predict the multiclasses of proteins by m4: CGlobal Features—Physical/Chemical Characteristics

chine learning methods [2], [3], [9], [11]. Inthe previous studies [9] and [11], several features have been
considered for predicting protein folds using global descrip-
A. Training Dataset tion of the chain of amino acids representing proteins. These

This training dataset built for th dicti £128 descriptors were computed from the physical, chemical, and
This training dataset was bullt for the prediction o P'%tryctural properties of the constituent amino acids. Different
tein folds based on the PDB selected sets. The data set

X - oo erties of the amino acids were used as features such as the
selected by their characteristics so that all proteins in the d &’ilp

. . i tive hydrophobicity of amino acids. The information about
0,
set have less than 35% of the sequence |dent|Fy for the .ahgr}ﬁgapredicted secondary structure and predicted solvent accessi-
subsequences longer than 80 residues. Following the prior p

lished papers [3], [9], [11], the training data number is 313 aH ity was also used. They divided the amino acids into three

- . . . groups based on hydrophobicity, three groups based on sec-
they s.hould be divided into fpur classe_s with 27 folds accordi dary structure, and four groups based on solvent accessibility.
to their structures representing all major structural classes.

A protein sequence was then described based on three global de-
, scriptors: composition (C), transition (T), and distribution (D)
B. Testing Dataset [9], [11]. These descriptors essentially describe the frequencies
An independent dataset was also taken for testing the eff@adth which the properties change along the sequence and their
of prediction. The testing dataset was based on PDB-40D ggstribution on the chain. In addition to the three amino-acid
developed by the authors of the SCOP database [2]-[5]. A togdiributes described above, three more attributes were usually
number of 385 proteins with identity less 40%, same as thogeed: normalized Van Der Walls volume, polarity, and polariz-
used by Dubchak and Ding, were selected for testing in oability. They also used the percent composition of amino acids
study. Table | shows the numbers of proteins in the training aad feature vectors. Let there bgfolds in the data set. For each
testing datasets for different protein classes used in our expi@ld, the data set were divided into two groups, one containing
iments. Table 1l shows the numbers of proteins in the trainimpints from the fold and the other containing the rest. So there
and testing datasets for different folds of each protein class us#eé M such partitions.
in our experiments, where there are 27 folds for the four classedn this study, we also adopt the aforementioned six kinds of
in total. physical or chemical characteristics (attributes) of proteins for
fold classification. There are composition (C), predicted sec-
ondary structure (S), hydrophobicity (H), normalized Van Der
Waals volume (V), polarity (P), and polarizability (Z). The six
kinds of protein sequence information (PSI) are extracted from
Before applying the machine learning methods to handilee provided open protein database. Except for the first PSI, C,
the bioinformatics problems, the features extraction of thibe same set of descriptors is used for all the other PSls resulting
analyzed data is a very important task, since different extractiech feature parameter vector in 21 dimensions for each of S, H,
features may cause different classification results, better \drP, and Z. The first kind of PSI, C, is the sequence composi-
worse. Two major approaches, the direct coding method atioh of amino acids. It is known that there are totally 20 types of
the indirect coding method, are used in bioinformatics t@mino acids; therefore, these 20 kinds of amino acids are cor-
extract features from experimental data. The direct codimgsponding to a 20-dimensional feature vector. Table 11l shows
method contains position-depend, sequence-length-depethd,symbols, descriptors, and dimensions of these six PSls used
and a vector per residue. On the other hand, the indirect codingour experiments.

I1l. GLOBAL AND LOCAL FEATURES DESCRIBING THE
AMINO-ACID SEQUENCES
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TABLE Il amino acids of the sequence. Since a protein sequence is com-
THE DESCRIPTORS ANDFEATURE DIMENSION SIZES OF EACH OF THE posed of 20 kinds of general amino acids represented by 20
SIX PROTEIN ATTRIBUTES . . .
alphabets, respectively, and other types of amino acids repre-
Characteristics Descriptors Feature sented by a common alphabet B or Z, it is a sequence composed
Size of 21 alphabets. Hence, after the bigram coding, we obtain a fea-
Composition (C) | 20 kinds of amino acids 20 ture vector with 411 dimensions for a protein sequence. Similar
Predicted Alpha | Beta Loop 21 to the bigram coding, the newly proposed spaced bigram coding
gfrcz?draeri’s) is to detect the appearance frequency of any two-alphabet pair
uctu . . . . . . .
TI———— Noural | Neaad Py in every other (interleaving) neighboring amino acids of a pro-
H rophobictly ) Fostiive | Teural | Tegative tein sequence. Hence, the spaced bigram coding on a protein se-
Volume (V) Large | Middie | Small o1 guence al_so prr?duce zt)featL;re vector with 4f41 d|mer}_3|0ns_, ef_ich
Polarity (P) Positive | Neural | Negative 21 repre_sent_lng the number o app_earance ora speci K.: palrvylse
———— i Woak py combination of the 21 alphabets in the every other neighboring
olarizabllity () | Strong | Middle | Wea two amino acids of the sequence.
Total Number 125 . : .
Consider a segment of the amino-acid sequence of the pro-

tein with ID number 1pga: MTYKLILNG as an example. In the

We feed these features to our classifiers from single PSI E}?ram coding, we count the numbers of the pairs (MT), (TY),
>

multiple PSls progressively. In the experimental reports of th
study, the symbol 4" denotes the combination of feature in-
formation. It means that we feed more than one PSI into t

K), (KL), etc., respectively. In the spaced bigram coding, we
unt the numbers of the pairs (MY), (TK), (YL), (KI), etc.,
espectively. It is believed that the mutual interactions between
ery two neighboring amino acids, and also the mutual inter-

combinations of PSls as input features to each classifier. Hen&ﬁ()nger than the former type of interaction
while we used the physical or chemical characteristics, the tWOFrom both the direct and indirect codiﬁg schemes in the

extreme cases are: 1) the use of the composition of amino acé%%ve two subsections, we have now obtained eight types of
only and 2) the use of all six PSils. In the first case, the feat '

. o . _ U5S|. The first six types belonging to global features represent
phmensmn Is 20, and in the second case, the feature d|mens[wg physical-chemical characteristics of a protein sequence,
IS up to 125 (20+21+21+21+21+21). and the other two types belonging to local features represent
the mutual interactions between neighboring amino acids. If
B. Local Features—N-Gram Coding we use all of these features at once, the feature space will be of
1007 (20+21+21+21+21+21+441+441) dimensions, which is
The six types of PSI introduced above are kinds of globallarge number. This motivates the study of automatic feature
features extracted by the direct encoding method. They es®lection for protein fold classification in this research.
phasize more on the global properties and structures of the
amino-acid sequences, and less on the local interactions among
neighboring amino acids. In this section, we shall induce the IV. HIERARCHICAL L EARNING ARCHITECTURE
indirect coding features from the amino-acid composition
sequence of proteins based on the N-gram concept. We shalh Section Il and from Tables | and 1l, we find that the fold
develop new local features describing the chain of amino acidsaracteristics of the proteins are separated into four mainly typ-
representing proteins using the bigram and new spaced-bigrigal classes named as al| all 8, « and3 (a/3), and« plus
coding methods. These kinds of features can well descriBg¢a+3), respectively. Within each class, it contains several dif-
the interactions among neighboring amino acids locally #fierent numbers of folds in it, with a total number of 27 folds. The
a 3-D structure of the amino-acid composition sequence wiirpose of this work, multiclass protein fold classification, is to
proteins. In extracting such local features, in addition to thgassify each of the proteins into one of the 27 folds. According
traditional bigram coding scheme, we also propose the newthe classification characteristics of the protein data, a novel
spaced bigram coding scheme, which can better descrideA including two-level of classifiers is proposed, as shown in
the 3-D protein structure caused by the mutual interactioRy. 1. In the first level, a multiclass classifier for recognizing
among interleaving (every other) neighboring amino acids the four protein classes is used. In the second level, we perform
a protein sequence. This provides us with more representatieailed classification on each class. There are four independent
and discriminative new features of protein sequences for thailticlass classifiers used in the second level for finer protein
problems of multiclass protein fold classification. fold recognition, from four classes to 27 folds (see Table Il). The
For a sequence composed/df alphabets, a bigram codingproposed HLA is an effective learning structure, in the sense of
scheme applied on it will produce a new sequence (i.e., feaducing the numbers of classifiers, avoiding the voting scheme,
ture vector) with)M? dimensions. Each element in the featurand increasing the accuracy of protein fold recognition.
vector represents the number of appearance of a specific pairn Fig. 1, we illustrate how the proposed HLA is used in ac-
wise combination of theél/ alphabets in the neighboring twotual experimental data to handle input features. In the first level,
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constituents of the HLAs are all independent networks. It likes a
? A ? ? # ? *? ? A f Output sieve to sieve the data out of the input training data to several dif-
P I [N A M%M N%M ferent groups. In fact, this HLA is suitable for data sets that can
Level 2 be grouped into a smaller number of classes, where each class
/ /‘ﬁ / m can further be divided into a set of clusters. The problem we
{ \ handle, multiclass and multifold classification of protein struc-

— C | Data for Level 2 tures, has this kind of characteristic. Also, since the proposed

Data Data HLA houses a set of multiclass classifiers as the basic building
- iy blocks, it dose not need a stochastic voting mechanism after a
Soft Switch long sv_aries of two-class classifications normally used in bioin-
formatics.
Level 1 (Network #1) In our experiments, we shall use NN and SVM, all belonging
Level 1 to the machine learning family, as the basic building blocks
TT of our HLA. We shall introduce these classifiers and the ex-
perimental results in Sections IV-A and IV-B. No matter what
kind of classifiers we choose, the overall classification results
are better than those of the one-versus-others method (OvO)
method with NN, and are even better than those of the existing
modified OvO method [9]. Such higher classification accuracy
is obtained by using fewer classifiers with smaller network size.
The extra decision mechanism such as voting scheme is also
a multiclass classifier (labeled as Classifier #1) is used to divoided.
tinguish input proteins data into four classes, denoted as |, I,
l,and IV ( «, 8, /8, anda + 3, correspondingly). Here we A. Neural Networks

sh_aII adop’F proper PSI introduced in Section Il as tr_le inputs of \\nis have been developed for many years and been used well
this classifier in our experiments. The second level in the HL{} \ 1ioys applications. Many researchers continue to apply dif-
consists of four smaller independent multiclass classifiers (Iggent aigorithms and develop different structures to enhance the
beled as Classifiers #2 to #5), each for the fold recognition %ility of NNs. Here we use NN models as the multiclass clas-

different class of protein data classified by the Level 1 clasSijiers in the HLA. Some brief introductions about two popular
fier. In other words, Classifier #2 is to classify the protein datg N models are given below.

which are classified as Class | by Classifier #1, into one of six
fold types. Similarly, Classifier #3 is to classify the Class Il pro-

tein data into one of nine fold types, Classifier #4 is to classify
the Class Il protein data into one of nine fold types, and Clas-
sifier #5 is to classify the Class IV protein data into one of three
fold types. So, totally 27 (6+9+9+3) folds are recognized by the
Level 2 classifiers.

In general, aj-dimensional data set is used to train the HLA
represented by Level 1 and Level 2 in Fig. 1. Let the training data
beXr, = XU XU X3U X4, whereX; is the training data cor-
responding to class First we train the Level 1 classifiers using
X.The Level 1 classifier divides the data into four classes. Note
that the division ofX made by the Level 1 classifier may not
exactly correspond t& 1, = XU XoU X3U X,4. The Level 2
classifiers are independently trained; itleLevel 2 classifier is
trained with.X;. Once the training of the second level classifiers
is over, the system is ready to be tested;-dimensional data .
point is now fed into the Level 1 classifier which will classifyB- SuPport Vector Machines
the point to one of the four classes; say, itis classified to Class 3An SVM is a new-generation learning algorithm based on re-
Then the training data point is fed to the third classifier (Clagent advances in statistical learning theory. In the early 1990s,
sifier #4) in the second level. It should be noted here that, ftreir introduction leads to a recent explosion of applications and
such architecture, if the Level 1 classifier makes any mistak#gepening theoretical analysis. Basically, the SVM is a typical
then Level 2 classifiers cannot recover the same. The propos$&d-class classifier and a kind of universal feedforward network
HLA is quite general in nature and, hence, for both Level 1 awthich was developed by Vapnik and his colleagues at Bell Labo-
Level 2, we can use any classification network; in fact, we caatories, and has been improved by other researchers. Itis a kind
use any nonneural classifier, too. of machine learning algorithm, while in operation, the SVM will

The concept of the proposed HLA is neither the same as tbenstruct a hyperplane in a high-dimensional features space as
cascade network nor as the divide-and-conquer network. Tthe decision surface between positive and negative patterns. The

Data  (for training)
Data  (for testin

Data for Level 1

Fig. 1. Proposed HLA for protein folds classification.

1) Multilayer perceptron (MLP) is a classic and widely used
NN model. Such a network can solve nonlinear regres-
sion, and construct global approximation to the nonlinear
input—output mapping [18], [19].

2) The radial basis function network (RBFN) is a three-layer
network. The hidden layer nodes use a basis function, the
Gaussian function, as the activation function. Unlike the
MLP network, the output nodes are linear. The RBFN,
suggested by Moody [20], is very suitable to be used as
classifier. The RBFN used here can grow its hidden nodes
automatically. When data are fed into the network, the
sum square error (SSE) will be calculated with the cost
function, and the backpropagation (BP) learning rule is
used to minimize the SSE until the restrict number of
nodes or the preset value of SSE arrived [21], [22].
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structural risk minimization ability makes the SVM a very ef-
ficient classifier in various applications including biosequence T Folds T TFOldS T T Folds T T Folds T

analysis, etc. [23]-[26].
With the further improvements by other researchers recentl
the SVM has the ability to do multiclass classification directly f

[27], which is the model adopted here in our HLA as the con  Giied "ata  Gated Bita Galdd Data d Dhta
stituent multiclass classifiers. In practice, the SVM algorithm i< A A P

used in three types of learning machine: 1) polynomial learnin:
machines; 2) RBFNs; and 3) two-layer perceptrons (MLPs). Il| Gate'#2 a a y Gate'#5
this study, we choose the RBFNs for the SVM algorithm and ac

as the kernels (building blocks) of the proposed HLA.

Classifier #2| |Classifier #3| |[Classifier #4| |Classifier #5

Classified Origjnal Data Classified Original Mg JUMssified Original Data Classified Origjnal Data

V. ONLINE FEATURE SELECTION THROUGH GATING

Due to the large number of input dimensions in the multi- Classifier #1
fold classification of protein structures, especially for the com:
bined global and local features, it is essential to perform impot

tant feature selection automatically. In general, feature selectic Ga}ed ]:Ta/m’
methods could be classified into two major categories. One |
based on statistical information of features; the other is base Gate #1

on classifiers. These two major methods have their difference
in concepts. The former is based on statistics criteria to find ot ‘ ‘
the optimal subset, and the latter is based on the learned weig|
to find out the useless features or point out the most importanc
features by the preset criteria. The latter methods commonly u:
NNs to complete the feature selection work [14]-[17].

In a standard MLP network, the effect of some features (in-
puts) can be eliminated by not allowing them into the networkig 2. proposed HLA with gating network for online feature selection. The
i.e., by equipping each input node (hence, each feature) witlarews on gates represent the variable online feature selection function.
gate and closing the gate. For good features the associated gates

can be completely opened. On the other hand, if a featurecigpt forw?;, the update rules for all weights remain the same as
partially important, then the corresponding gate should be paat for an ordinary MLP. Assuming that the first hidden layer

tially opened. Pal and Chintalapudi suggested a mechanismf@i, nodes, the update rules fm? andw; are
realizing such a gate so that “partially useful” features be iden-

tified and attenuated according to their relative usefulness [13], W; wew = Wi o1a — VTi0; F(w;) 1)
[16], [17]. In order to model the gates, we consider an attenu-

ation function for each feature such that for a good feature the
function produces a value of one or nearly one; while for a bad
feature, it should be nearly zero. For a partially effective feature,
it should have a value that is intermediate to these extremes. Télthough for the gate function, several choices are possible,
model the gate, we multiply the input feature value by its gatee use here the sigmoidal functidi(w) = 1.0/(1 + e™").
function value and the modulated feature value is passed into e ¢ gate parameters are so initialized that when the training
network. The gate functions attenuate the features before thstgrts,F'(w) is practically zero for all gates; i.e., no feature is
propagate through the network, so we may call these gate fuatlewed to enter the network. As the backpropagation learning
tions attenuation functions. A simple way of identifying usefybroceeds, gates for the features that can reduce the error faster
gate functions is to use sigmoidal functions with a tunable pare opened. Note that the learning of the gate function con-
rameter, which can be learned using training data. To compléiteues along with other weights of the network. At the end of
the description of the method, we define the followings in corthe training, important features can be picked up based on the
nection with a MLP network. values of the attenuation function [13], [16], [17].

LetF; : R — [0, 1] be the gate or attenuation function associ- This feature selection mechanism is putin front of every mul-
ated with theth input featureF; have an argument;, F/(w;) ticlass classifier in the HLA such that each classifier can se-
be the value of derivative of the attenuation functiomat,, be lect the most important features for its respective classification
the learning rate of the attenuation parametdre the learning problem as shown in Fig. 2. In other words, before a set of
rate of the connection weights; be theith input of an input training data are sent into a classifier in the HLA for training,
vector,z’ be the attenuated value efi.e.,z’ = zF(w), w,?j be they are passed into the feature selection mechanism (i.e., the
the weight connecting thgth node of the first hidden layer to gating network) first. According to the results of feature selec-
theith node of the input layer, anij be the error term for the tion, only the training data corresponding to the selected impor-
jth node of the first hidden layer. It can be easily shown that etant features are used for the training of the classifier, which is

Original Data

Wi new = Wi old — UT4 Z ’wﬂ Jl F’(wz) (2)
7=1
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RBFN or SVM in our HLA. Also, in the testing phase, only the TABLE IV

same selected important features are fed into the classifiers. I'@OTE'N FOLD CLASSIFICATION ACCURACY OF VARIOUS SINGLE-L EVEL
. . g . . . LASSIFICATION APPROACHES WHERE THE INPUT PSIS FED INTO THE
is noted that since every classifier in the HLA aims at different CLASSIFIERAREC + S+ H+P +V + Z
classification job, the important features selected for each clas-

sifier might not be the same, although every classifier faces the Classifier | MLP | GRNN | RBFN | SVM
same original input training data before feature selection. Accuracy

Q(C+S+H+P+V+Z) (%)| 48.8 | 44.2 494 | 51.4

VI. M EASUREMENT INDICES OFCLASSIFICATION ACCURACY

In bioinformatics, because the two-way classifiers are usf- Experiments on HLA

ally used, several different accuracy measurement methods werg, the experiments of this subsection, we shall perform ex-
proposed to account for the confusing situations of “true posknsive tests on the effectiveness of the proposed HLA with dif-
tive” or “false positive” [7]. In our HLA classification approach, ferent constituent classifiers fed with different combinations of
such confusing conditions will not happen. Therefore, the acctbnventional global PSI features. In the experiments, we use
racy measurement in our experiments is quite clear and simgl§yr different multiclass classifiers as the basic building blocks
Let us use a functior (accuracy) to indicate the classificationn the proposed HLA, respectively. They are MLP, RBFN, Gen-
correctness of a protein pattern fed into the HLA. Then the totgla| Regression Neural Network (GRNN) [18]-[22], and SVM,
number of correctly classified proteins can be expressed as introduced in Section IV. The used MLP has three hidden layers
with 40, 80, and 40 sigmoid nodes, respectively. The used RBFN
C = A(level 2llevel 1) has only one hidden layer, where various numbers of hidden
_ A(level 2 A(level 1 level 2 3) node; are tested as stated below. The used GIRNN also has only
one hidden layer. The used SVM is the multiclass SVM pro-

. . . . osed in [27]. In each case, the whole HLA is trained com-
whereA is a conditional function whose value is one only wheEpw

a protein pattern is correctly classified by the classifiers in bo
Level 1 and Level 2 of the HLA, and is zero otherwise. 0
Based on the above concepts, the accuracy measuremerﬁ 2
the proposed approach is defined as follows. If the number&ﬁ"d
testing proteins belonging to theéth fold is n;, but the tested
classifier only recognizes proteins as thé;th fold, then the

letely. Especially, the nodes and training epochs of NNs are
osen carefully during the experiments to avoid the overfitting
lem.

our experiments, the proposed HLA with different basic

ing blocks (classifiers) is used to recognize the protein
folds given in the SCOP database. Six different combinations

; - of features were used as the input vectors to the classifiers,
accuracy rate of this tested classifier is set;d#v; for the F;th respectively. They are C, C+S, C+S+H, C+S+H +P,

fold. In addition to the calculation of individual accuracy, th% +S+H+P+V and C+S+H+P+V+7Z where each
total classification accuracy can be briefly calculated as fonowgharacter represénts a kind of PSI defined ir’1 Table Ill. and

“+" means combination. For performance comparisons, we

N=ni+ny+n3+---+mn; also use each of MLP, RBFN, GRNN, and SVM to classify the
— Z n; (in this case, i = 27, N = 385) @) proteins into 27 folds directly without using the proposed HLA,
P where 27 output nodes are used in each NN model. We call
C=ci+cotes+-+c this the single-level approach. Table IV lists the classification
_ Z ¢i (in this case, § = 27) ) rates of various si_ngle-level approgches, where the full set of
~ ’ PSls are used as input features. It is observed that the average
C classification accuracg is only about 50%. The classification
Q= N (6) accuracies of the proposed HLA with various NN or SVM

classifiers with respect to different combinations of PSlIs are
where N is the total number of testing proteins dafajs the listed in Table V. It is observed that the HLA can increase the
total number of correctly classified proteins in (3), apds the classification accurac§) by about 7%. Also, more PSIs result
classification (prediction) accuracy. in higher@ values.

The results obtained by the proposed HLA are also better
than those by the OvO method, unique OvO method (UOvVO),
and all-versus-all method (AvA) methods proposed in [9]. These

To test and demonstrate the proposed techniques for mmlethods require a series of SVMs or NNs and a voting mech-
ticlass protein fold classification, several experiments are denism. The comparison results are given in Table VI. Table VI
signed and performed and the results are reported and discus$emlvs that the overall classification results of the proposed ap-
in this section. These experiments are based on the protein dataach are normally better than those of the compared coun-
base, SCOP, introduced in Section Il. To demonstrate the thtegparts. Especially, the proposed HLA with the RBFN classi-
novelties of the proposed techniques, our experiments are fikrs achieves the best classification accuracy, 56.4%, which is
vided into three parts focusing on the proposed HLA, new lochigher than the best result (53.9%) achieved by the AvA method
features of protein sequences, and automatic feature selectidth the two-class SVM classifiers [AVA(SVM)] proposed in
mechanism, respectively, in Sections VII-A-C. [9]. The higher classification accuracy of the proposed approach

VII. EXPERIMENTAL RESULTS
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TABLE V TABLE VII
PROTEIN FOLD CLASSIFICATION ACCURACY OF THEPROPOSEDHLA W ITH NuUMBER OF NODESUSED IN THE RBFNs OF THEPROPOSEDRBFN-BASED
VARIOUS NN OR SVM SUBCLASSIFIERS WHERE DIFFERENT COMBINATIONS HLA
OF PS5 ARE TESTED. THE CORRESPONDINGCLASSIFICATION ACCURACIES
OF VARIOUS SINGLE-LEVEL CLASSIFICATION APPROACHESARE ALSO Level in Level 1 Level 2
SHOWN FOR COMPARISONS
HLA RBFN#1 [RgFN |RBFN | RBFN | RBFN | O
- - X #2 # #4 #
Accuracy(%) Single-level Hierarchical 3 5
Learning Learning g:ggg:r of 14 101 13 3
Classifiers & PSIs Architecture Architecture Nodes 5 38 0 69 66
C 48.6 449 Number of
Output
s 50.7 53.8 Nodes 4 6 o 9 8
C+S+H 52.0 53.3
RBFN
C+S+H+P 50.7 543 TABLE VI
C+S+H+P+V 49.1 553 COMPARISONS OF THEPROTEIN FOLD CLASSIFICATION ACCURACY OF THE
PrROPOSEDRBFN-BASED HLA AND THE SINGLE-LEVEL RBFN WITH
CHS+H+P+V+Z 48.4 56.4 TRAINING DATA AND TESTING DATA EXCHANGED, WHERE THE FULL
GRNN(C+S+H+P+V+Z) 442 452 SET OF PSIs ARE USED
SVM (C+S+H+P+V+Z) 514 53.8 Method | Single-level RBFN | RBFN-Based
Classificai HLA
Total Number 174/313 183/313
TABLE VI Accuracy(%) 55.6 58.5

PROTEIN FOLD CLASSIFICATION ACCURACY COMPARISONS OF
THE PROPOSEDHLA AND THE EXISTING APPROACHES WHERE “OVvO”
STANDS FOR THE ONE-VERSUSOTHERS METHOD, “UOVO” FOR THE

“ » TABLE IX
UNIQUE ONE-VERSUSOTHERS METHOD, AND “AVA” FOR THE
N ALL-VERSUSALL METHOD REQUIRED TRAINING TIME OF THE SINGLE-LEVEL RBFN AND EACH RBFNIN

THE PROPOSEDHLA, WHERE THETOTAL SIX PSIs ARE USED ASNETWORK

INPUTS AND THE TRAINING |S PERFORMED IN A PERSONAL COMPUTERWITH
Fedwes(Accuracy) C | C+S | C+5 | C+S+H | C+S+H | C+S+H+ INTEL PENTIUM IV CPU UNDER 1-GHz CLOCKS
(%) | (%) +H +P +P+V P+V+Z
(%) (%) (%) (%) Classifier CPU Time (sec.)
Classifiers
Single-level 95.6
OvO (NN)* 20.5 | 36.8 | 40.6 411 41.2 41.8 RBFN-Based Level 1
OvO (SVM)* | 435 | 432 | 452 | 432 448 44.9 HLA RBFN # 1 126.9
uOvO(SVM)* 49.4 | 48.6 | 51.1 49.4 50.9 49.6 RBFN #2 1.1
AVA (SVM)* 449 | 52.1 | 56.0 56.5 55.5 53.9 Level 2 RBFN #3 15.3
RBFN 40.3 | 486 | 50.1 | 52.0 49.1 49.4 RBFN #4 8.4
(Single-level)** RBFN #5 0.3
HLA (MLP) 32.7 | 48.6 | 475 43.2 43.6 447 Total CPU Time 152.0
HLA (RBFN) | 449 | 53.8 | 53.3 54.3 55.3 56.4
HLA (GRNN) | ----- 45.2 o .
classification accuracy, a total of 351 two-way SVM classifiers
HLA (SVM) | - 53.2

were used. In another experiment, we further compare the clas-
D i R B e o o e e s i, il vl ) sification accuracy of the RBFN-based HLA with those of the
single-level RBFN. In this experiment, we switched the roles of
training data and testing data used in the previous experiments.
is obtained by using fewer classifiers with smaller size. Als@he results are listed in Table VIII indicating the superiority of
the extra decision mechanism such as the voting scheme is @lsproposed approach again.
avoided. In Table IX, we also show the training time required by
In Table VI, the architecture of the used RBFN-based HL#e single-level RBFN, and the training time required by each
consists of five RBFN classifiers as shown in Fig. 1, with a tot&BFN in the HLA, where the training was performed in a
of 366 hidden nodes. The RBFN can find the proper number pérsonal computer with Intel Pentium IV CPU under 1-GHz
hidden nodes by itself during the training process. In our HLAJocks. The results indicate that although Level 1 RBFN
the largest RBFN is Classifier #1 in Level 1, which contains 146 the HLA consumed longer training time, the training of
hidden nodes. The smallest RBFN is Classifier # 5 in Level 2ach Level 2 RBFN converged very quickly. This reflects the
which contains only 13 hidden nodes. More detailed informanderlined “divide-and-conquer” philosophy of the proposed
tion about the node numbers are given in Table VII. For compatiLA. Although the total training time of the RBFN-based HLA
isons, the total number of hidden nodes used in the single-leisslonger than that of the single-level one, this is the expense
RBFN is 125, which achieves 49.4% classification accuraqyaid for higher classification accuracy. It is worthy to mention
and cannot be better even with more hidden nodes. Also,that the single-level RBFN could not perform better even more
the AVA(SVM) method proposed in [9], which achieved 53.9%raining time were taken in our experiments.
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TABLE X TABLE XI
CLASSIFICATION ACCURACIES OF THERBFN-BASED HLA WITH VARIOUS CLASSIFICATION ACCURACIES OF THESVM-BASED HLA WITH VARIOUS
COMBINATIONS OF GLOBAL FEATURES(C +H + S+ P +V + 2 AND COMBINATIONS OF GLOBAL FEATURES(C +H + S+ P +V + 2 AND
LoCAL FEATURES [BIGRAM-CODED FEATURE (B) AND SPACED LocAL FEATURES [BIGRAM-CODED FEATURE (B) AND SPACED
BIGRAM-CODED FEATURE (SB)] BIGRAM-CODED FEATURE (SB)]
RBFN-Based HLA SVM-Based HLA
Global Local | PSIs+B | PSls+B+ Global Local PSis+B | PSls+B+
Features features | feature SB Features features | feature SB
(6PSIs) | B (6 PSls) B
No. of Features 125 441 | 1254441 | 125+441 No. of Features 125 441 | 125+441 | 125+441
+441 +441
Accuracy of 816 | 79.2 | 831 63.6 Accuracy of 813 | 779 | 834 84.4
Level 1 Level 1
chfuratlzy Group 1 67.2 59.0 77.0 73.8 Accuracy | Group 1 60.7 57.4 73.8 73.8
ove . . . .
. f Level
2(%) |[Group2 | 521 | 564 | 624 63.2 2cy |Group2 | 496 | 538 | 590 60.7
zroup 3 58.6 60.0 62.8 69.0 Group 3 56.6 60.0 648 65.5
roup 4 48.4 56.5 54.8 53.2
P Group4 | 452 | 597 | 526 58.1
Overall Accuracy (%) 56.4 58.2 63.7 65.5
Overall Accuracy(%) 53.2 57.7 62.3 64.2

As compared to the popular OvO method, and the modified
TABLE XII

UOVO I:nethOd and AVA m_ethOdS propqsed In [9]’ the pr.c.)posegLASSIFICATION ACCURACIES OF THERBFN-BASED HLA WITH DIFFERENT
HLA with embedded multiclass classifiers has another impor-  GLoeaL FEATURES SETS (C+H +S + P +V + 2 SELECTED BY

tant advantage. Due to the removal of the voting mechanism THE GATING NETWORK

required by the OvO, uOvO, and AvA methods, the numerical

output value of the classifiers in the proposed HLA can indicate RBFN-Based HLA Number of Feature Selected

the reliability or confidence of the prediction. Since each pro- 50 67 80 125

tein is predicted with different reliability, such a reliability score Accuracy of Level 1 79.2 80.3 80.8 81.6

is necessary for practical classification/prediction systems. Fo (%)

example, a low reliability score for a new protein may indicate Accura | Class 1 47.5 50.8 73.8 67.2

that it does not belong to any fold in the system. ‘1\:' 5 Class 2 47.9 51.3 56.4 52.1
(%) Class 3 51.0 53.1 54.5 58.6

B. Experiments on New Protein Features Class 4 48.4 54.8 87.1 48.4
Overall Accuracy (%)| 49.1 52.5 53.0 56.4

In Section VII-A, we find that the HLA housing RBFNs
or SVMs achieved the best results among the compared

counterparts. In this subsection, we shall focus on the HLA . 0 I .
with these two building blocks fed with the combination of th nd achieves 65.5% classification rate in total. Table XI shows

conventional global features and the new local features of t g experimental resglts of SVM-based HLA corresponding to
amino-acid sequences of proteins proposed in Section Ill. In a ose on Table X. This tabl_e also ShOWS the _advantages of the
ditional to the six types of PSI describing the physical/chemicgfeWIy proposed local protein features in Section lil.
characteristics of proteins used in Section VII-A, two new sets . . _

of local features obtained by the bigram coding and spaced bi- EXPeriments on Automatic Feature Selection Scheme

gram coding schemes are considered to add to the input vecf§t@ting Network)

of the HLA. Table X shows the classification accuracies of the Sections VII-A and VII-B clearly indicate that the protein
RBFN-based HLA with these combined features. Four differefadld recognition problems always contain large feature dimen-
combinations of input features are tested: 1) the conventiosabns, from 125 to 125 + 441 + 441. In this subsection, we shall
six types of PSI (i.e., C+S+H+P+V+2Z) (125 dimentest the automatic feature selection scheme proposed in Sec-
sions); 2) the bigram-coded feature vector (441 dimensionsfin V to reduce the feature dimensions for HLA. We shall
3) the combination of 1) and 2) (125 + 441 dimensions); arfilst consider the HLA fed with the conventional six types of
4) the combination of 3) and the spaced bigram-coded feat@8l (i.e., C+S+H + P +V + Z) (125 dimensions). Table XII
vector (125 + 441 + 441 dimensions). Table X shows that tipeesents classification performance of the RBFN-based HLA
new local features did improve the accuracies of protein foldith different feature sets. The performance of Level 1 HLA
classification, obviously. It is observed that the addition of thisee Fig. 1) shows that with 67 features (50% reduction), the
bigram-coded feature to the original six PSI features increadecrease in performance is only 1.26% while with 65% features
the accuracy by 7.3%, which is even 9.8% higher than the resthlé test accuracy is reduced by only 0.76%. This clearly suggests
reported in [9]. Especially the full set of features includinghat the gating network can do an excellent job of selecting im-
the global and local features improves the accuracy by 11.f%rtant features. Let us now consider the overall classification
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TABLE Xl TABLE XIV
VALUES OF THE GATING FUNCTIONS FOR THEMOST IMPORTANT 15 PERFORMANCE OFORDINARY MLP ON DIFFERENT SUBSETS OFFEATURES AT
FEATURES AFTER DIFFERENT ITERATIONS LEVEL 1 OF HLA TO SHOW THE IMPORTANCE OFEACH PSI
Feature Gating Feature | Gating function | Feature | Gating function MLP C | C+S| C+S+ | C+S+ | C+S+H | C+S+H+
Number function Number | Vvalues after | Number | Values after H H+P +P+V | P+V+Z
values after 1000 iterations 1000 iterations —
1000 Correct Classified
iterations Number 243 | 308 | 305 301 302 309
30 0.002657 82 0.002903 103 1.0 Accuracy (%) 63.1/80.0| 79.2 | 78.2 78.4 80.3
81 0.002677 98 0.002995 22 1.0
41 0.002774 79 0.003050 26 1.0
TABLE XV
40 0.002952 83 0.003197 28 1.0 CLASSIFICATION ACCURACIES OF THERBFN-BASED HLA WITH VARIOUS
COMBINATIONS OF GLOBAL FEATURES(C +H + S+ P +V + 2 AND LOCAL
77 0.002964 92 0.003634 29 1.0 FEATURES[BIGRAM-CODED FEATURE (B) AND SPACED BIGRAM-CODED
FEATURE (SB)] SELECTED BY THE GATING NETWORK
103 0.002970 40 0.003697 30 1.0
RBFN-Based HLA (Gated)
82 0.003042 81 0.004338 81 10 Features Global features PSls + PSls +B +
92 0.003211 41 0.004585 33 1.0 (6 PSls) B Se
No. of Features 50 67 80 | 67+242 | 67+242+205
98 0.003256 103 0.007582 35 1.0
Accuracy of 79.2 | 80.3 | 80.8 80.3 82.1
27 0.003500 22 1.0 38 1.0 Level 1 (%)
Accuracy | Class 1 475 | 50.8 | 60.7 73.8 82.1
31 0.0041.6 26 1.0 41 1.0 of Level 2
(%) Class2 | 479 | 51.3 | 46.2 56.4 58.1
22 0.008275 29 1.0 59 1.0 Class3 | 51.0 | 53.1 | 53.1 | 66.2 67.6
26 1.0 30 1.0 75 1.0 Class4 | 48.8 | 54.8 | 58.4 41.9 48.4
29 1.0 31 1.0 81 1.0 Overall Accuracy (%) | 49.1 | 52.5 | 53.0 | 60.5 62.6
35 1.0 35 1.0 83 1.0

features. Table XIII reveals the fact that use of more features
] ) is not necessarily good. It also says that the distribution of pre-
performance (with 27 folds). For this case we get 53% test ageted secondary structure and composition constitutes a good
curacy with 67% features, which is just 3% less than what W@+ of features. This is also consistent with the results obtained
can achieve taking into account all 125 features. from the gating network.

We have made several runs of the gating networks and resultgve shall now apply the gating network scheme to the enlarged
reported corresponding to some typical output. We emphasijggut vectors combining the global and local features. The re-
the fact that depending on the initialization, two different sets glilting classification accuracies of the RBFN-based HLA are
features may be picked up by the gating network in two differeptesented in Table XV. With the same preset threshold value,
runs. This is absolutely fine, since if there are two correlated fege gating network reduces the dimension of the six types of
tures, aand b, the net may pick up feature ain run 1 and featured to 67 from 125, the dimension of the bigram-coded feature
inrun 2. Moreover, depending on the choice of the threshold, the242 from 441, and the dimension of the spaced bigram-coded
number of selected features may be different. Table XIIl shovisature to 205 from 441. The dimension reduction reduces the
15 of the most important features of a typical run of the gatingassification accuracy of the RBFN-based HLA by 2.9% using
network after 1000, 1500, and 4000 iterations. Itis interesting ély about half of the original features.
note that after 1000 iterations, eight of the top most 15 important|n the above experiments, we used the same threshold value
features come from the predicted secondary structure. Of th@séhe gating networks for all the basic classifier units of HLA,
eight, one of the features, number 27, disappears from the {igiich will produce different input vector sizes for different clas-
of important features with iterations. Probably the gate correifiers at different levels of HLA. In another experiment, we
sponding to some other correlated feature opened faster. Afi§to use the same size of feature vector for each classifier of
4000 iterations, of the important 15 features, nine come froe HLA though the gating networks. The results and compar-
the predicted secondary structure. This clearly tells that the loggdns with different combinations of protein features are given
secondary structure, as expected, has a strong impact on the fifndtable XVI. It is observed that the classification accuracy is
folds. In this list of 15 important features, we have representirther improved. Table XVII shows the required number of
tion from polarity, polarizability, volume, and hydrophobicity.nodes in each RBFN classifier of the RBFN-based HLA with
In this investigation, we initialized the gating function with gespect to different gated features. The total number of the re-
value of 0.000 124. quired nodes is found to be quite small. This demonstrates the

Table XIV depicts the classification performance at level éfficiency the proposed HLA with automatic feature selection
(into four classes) by the MLP network with different sets afmechanism (gating network).
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PERFORMANCE COMPARISON OF THERBFN-BASED AND SVM-BASED HLA

TABLE XVI

WITH GATING NETWORK USING FIXED THRESHOLD ORFIXED SIZE
OF FEATURE DIMENSION

231

The experimental results also showed that the online feature
selection mechanism in HLA was quite effective in reducing the
dimensionality of the input data features. Such online feature
selection capability can give a better insight into the folding
process. So far the bioinformatics researchers did not have any
tools for such online feature selection and, consequently, they
are used to consider different intuitive combination of features.
Since consideration of all possible subset is computationally not
feasible, itis often impossible to find the best set of features. The
proposed system opens up the possibility of computing many
more features from the amino-acid sequence and then allowing
the system to pickup the desirable ones. Its application domain

Learning RBFN-Based HLA SVM-Based HLA
) Overall Accuracy (%) | Overall Accuracy (%)
Architecture Fixed Fixed Fixed Fixed
Threshold | Dimensio | Threshold | Dimension
Features n
Global features 56.4 55.6 47.3 51.7
(PSls)
PSls + Bi-gram 56.9 60.5 58.2 58.4
coded features
PSls + Bi-gram
coded features + 61.3 62.6 61.0 62.6
Spaced Bi-gram
coded features
[1
TABLE XVII
REQUIRED NODE NUMBERS IN EACH RBFN oF THE RBFN-BASED HLA
FOR DIFFERENT GATED GLOBAL FEATURES (2]
Feature 3]
Size (PSls)| 50 67 80 125
HLA 4
Level 1 Classifier #1 136 124 112 145 [4]
Level 2 Classifier #2 22 49 42 38
5
Classifier #3 68 56 71 101 [5]
Classifier #4 77 92 88 69
Classifier #5 12 6 2 13 (6]
Total Number 315 327 315 366 [7]
[8l
VIIl. CONCLUSION
[l

In this paper, we proposed a new HLA with online feature
selection mechanism to solve the multiclass protein fold classi[e_LO
fication problem. We also derived new local features from the
protein sequences to enhance the classification rate. The prd]
posed HLA is a general learning concept, which can integrate a
set of baseline classifiers (such as NN or SVM) in an efficienf12]
way to attack highly complex classification problems. Further-
more, the proposed modified bigram coding scheme for proteiH3]
sequences are based on a concept of entropy, which can welh)
describe the cubic structures of proteins in space. Such kinds
of information were usually missing in the conventional global[15]
features of protein sequences.

The extensive experimental results based on the SCOP data¥!
base demonstrated the superiority of the proposed protein follqn
classification scheme, in both learning mechanism and new pro-
tein features. The classification accuracy of the novel scheme is
also higher than that of the popular OvO method, the modifie(ﬁw]
uOvO method and AvA method. In addition, due to the use of
the multiclass classifiers as the basic building blocks, the prol]
posed HLA does not need a large number of two-class classifiers
and a voting scheme. As a result, the computation time for g0]
prediction can be reduced and each prediction can be associat‘gd
with a numerical value to assess the reliability or confidence o
the prediction.

is extended to all other areas of bioinformatics also.
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