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Abstract—The structure classification of proteins plays a very
important role in bioinformatics, since the relationships and char-
acteristics among those known proteins can be exploited to predict
the structure of new proteins. The success of a classification system
depends heavily on two things: the tools being used and the fea-
tures considered. For the bioinformatics applications, the role of
appropriate features has not been paid adequate importance. In
this investigation we use three novel ideas for multiclass protein
fold classification. First, we use thegating neural network, where
each input node is associated with a gate. This network can select
important features in an online manner when the learning goes on.
At the beginning of the training, all gates are almost closed, i.e.,
no feature is allowed to enter the network. Through the training,
gates corresponding to good features are completely opened while
gates corresponding to bad features are closed more tightly, and
some gates may be partially open. The second novel idea is to use a
hierarchical learning architecture(HLA). The classifier in the first
level of HLA classifies the protein features into four major classes:
all alpha, all beta, alpha+ beta, and alpha/beta. And in the next
level we have another set of classifiers, which further classifies the
protein features into 27 folds. The third novel idea is to induce the
indirect coding featuresfrom the amino-acid composition sequence
of proteins based on the N-gram concept. This provides us with
more representative and discriminative new local features of pro-
tein sequences for multiclass protein fold classification. The pro-
posed HLA with new indirect coding features increases the protein
fold classification accuracy by about 12%. Moreover, the gating
neural network is found to reduce the number of features drasti-
cally. Using only half of the original features selected by the gating
neural network can reach comparable test accuracy as that using
all the original features. The gating mechanism also helps us to get
a better insight into the folding process of proteins. For example,
tracking the evolution of different gates we can find which charac-
teristics (features) of the data are more important for the folding
process. And, of course, it also reduces the computation time.

Index Terms—Feature extraction, gating network, N-gram
coding, protein sequence, radial basis function network (RBFN),
Structure Classification of Protein (SCOP), support vector
machine (SVM).
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I. INTRODUCTION

L ARGE-SCALE sequencing projects produce a massive
number of putative protein sequences. However, the

growing of the number of known three-dimensional (3-D) pro-
tein structures is much slower than the sequence determined.
This situation makes the need to extract structural information
from the sequence database more imperative. Since the 3-D co-
ordinate structures provide insight into the function, mechanism
and evolution of protein, there are several famous classification
databases such as Structure Classification of Protein (SCOP),
Class, Architecture, Topology, and Homologous superfamily
(CATH), DIAL-derived domain database (DDBASE), Entrez,
and 3Dee, which imbue the structures with context and analysis.
These different classification databases of proteins focus on
their own characteristics. For example, comprehensive protein
classification, such as SCOP, provides a detailed description of
the structural and evolutionary relationships of the proteins of
known structure. A more recent scheme, CATH is also a hierar-
chical classification of protein domain structure, which reveals
the prominent features of protein structure space [1]–[5].

To classify databases of proteins which imbue the structures
with context and analysis is very important for understanding
the functions of proteins, and also essential for the discovery
of new medication and therapies. In early days, such databases
were made by factitious or semiautomatic procedure, such as
SCOP or CATH. But recently, protein classification and pro-
tein fold prediction have been solved by the aid of computer
with the strong ability of computation [6]–[8]. Computational
methods have been developed for the assignment of a protein
sequence to a folding class in the SCOP, where 83 folds are dis-
tinguished in 3D_ALI database and 128 folds are distinguished
in the SCOP database [9]–[12]. In [9] and [11], the researchers
have used primary global protein sequence in terms of three
descriptors as physical, chemical, and structural properties of
the constituent amino acids to code the sequences. Machine
learning methods have been further induced into this complex
classification problem.

Neural networks (NNs) and support vector machines (SVMs)
are very widely used tools in machine learning strategy; these
two algorithms should be very useful for such the complex prob-
lems of bioinformatics [6], [7]. The NN method, which has been
widely used for decade, was a powerful tool for nonlinear and
chaotic data. The SVM method, which has the advantage of fast
convergence, was combined with the decision tree algorithm for
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multiclass protein folds recognition in order to get higher classi-
fication accuracy [9], [11]. In particular, there have been several
attempts to use NNs for prediction of protein folds. Dubchaket
al. [9] point out that when we want a broad structural classifica-
tion of protein—say, into four classes, all alpha, all beta ,
alpha beta , and alpha/beta —it is easy to get
more than 70% prediction accuracy using simpler feature vector
for representing a protein sequence [7], [8], [10]. However, the
problem becomes more and more difficult as we demand more
refined classification into more classes. Dubchaket al.[9] used a
multilayer perceptron network for predicting protein folds using
global description of the chain of amino acids representing pro-
teins. They used various combinations of the global features de-
scribing the physical, chemical, and structural properties of the
constituent amino acids, and trained networks to find a good set
of features. In [9], Dubchaket al.proposed an NN-based scheme
for protein fold classification into 27 classes. This method like
the one in [9], [11] also uses global descriptors of the primary se-
quence. They used proteins from the Protein Data Bank (PDB),
where two proteins have no more than 35% sequence identity.
For each fold an NN is trained. This procedure was repeated
seven times for each fold, and each time only one set of features
computed from a particular attribute was used. Then a voting
mechanism was used to decide on the fold of a given protein.
All these investigations clearly suggest that the choice of the
right features is very important for a better classification of pro-
tein folds.

Although the bioinformatics researchers acknowledged the
importance of feature analysis, no systematic efforts to find the
best set of features have been done—mostly authors have used
enumeration techniques. Feature analysis is more important for
bioinformatics applications for two reasons: the class structure
is highly complex and the data are usually in very large dimen-
sion. Most of the feature analysis techniques available in the pat-
tern recognition literature are offline in nature. It is known that
all features that characterize a data point may not have the same
impact with regard to its classification, i.e., some features may
be redundant and also some may have derogatory influence on
the classification task. Thus, selection of a proper subset of fea-
tures from the available set of features is important for design of
efficient classifiers. There are methods for selecting good fea-
tures on the basis of feature ranking, etc. [13]–[17].

In this investigation we use three novel ideas. First, we use
NNs where each input node is associated with a gate. At the be-
ginning of the training all gates are almost closed, i.e., no fea-
ture is allowed to enter the network. During the training, de-
pending on the requirements, gates are either opened or closed.
At the end of the training, gates corresponding to good features
are completely opened while gates corresponding to bad fea-
tures are closed more tightly. And of course, some gates may
be partially open. Hence, the network can not only select fea-
tures in an online manner when the learning goes on, but it
also does some feature extraction. The second novel idea is
to propose a new hierarchical learning architecture (HLA) to
cope with the multiclass protein fold classification problem.
At the first level of HLA, the network classifies the data into
four major classes: , , , and . And in the second
level we have another set of networks, which further classi-

fies the data into 27 folds. The proposed architecture can house
a set of either NNs or SVMs as basic building blocks, with
each being a multiclass classifier inherently. This is in con-
trast to the original approaches in [9] and [11], where a series
of two-class classifiers and a voting scheme must be used to
solve the same problem and avoided the derivative problem,
i.e., the “false positive” problem. The third novel idea is to in-
duce the indirect coding features from the amino-acid compo-
sition sequence of proteins based on the N-gram concept. In
addition to the aforementioned traditional global features, we
derive new local features describing the chain of amino acids
representing proteins using the bigram and new spaced-bigram
coding methods. These kinds of features can well describe the
interactions among neighboring amino acids locally in a 3-D
structure of the amino-acid composition sequence of proteins.
This provides us with more representative and discriminative
new features of protein sequences for the problems of multi-
class protein fold classification.

The proposed HLA with new N-gram coded features in-
creases the protein fold classification accuracy by about 12%
than the conventional methods. Moreover, the gating network
is found to reduce the number of features drastically. Using
only half of the original features selected by the gating network
can reach comparable test accuracy as that using all the original
features. The process also helps us to get a better insight into
the folding process. For example, tracking the evolution of
different gates we can find which characteristics (features) of
the data are more important for the folding process. And, of
course, it reduces the computation time. The experiments on
the same datasets and protein characteristics also show that the
proposed HLA can achieve higher classification accuracy with
smaller number of classifiers and lower computation overhead.
Furthermore, due to the removal of the voting mechanism, the
numerical output value of the classifiers in the proposed HLA
can indicate the reliability and confidence of the prediction.
Since each protein is classified with different reliability, such a
reliability score is necessary for practical prediction systems.

The rest of this paper is organized as follows. Section II in-
troduces the protein datasets used in the target problem of this
research. Section III introduces the conventional global features
as well as the proposed local features describing the chain of
amino acids representing proteins. The proposed HLA housing
NNs or SVMs is described in Section IV. The online feature
selection scheme through gating NNs is proposed in Section V.
The accuracy measurement indices of protein fold classification
are discussed in Section VI. The experimental results and dis-
cussions are given in Section VII, and conclusions are made in
Section VIII.

II. PROTEIN DATASETS

The SCOP is a famous protein databank, which uses the evo-
lution and similarity of proteins to classify the structure of pro-
teins. The data structure of SCOP is found according to the hi-
erarchical structure of proteins, where the hierarchical classifi-
cation scheme is widely used in bioinformatics such as SCOP
and CATH. In the SCOP database, the main classes are divided
into several classes. The main classes, with most numbers of
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TABLE I
PATTERN NUMBERS OFEACH CLASSES INSCOP WHICH WAS PICKED UP TO

BE TRAINING AND TESTING PATTERNS IN THIS STUDY

protein, are , , , and . The other classes in SCOP
such as multidomain proteins, membrane and cell surface pro-
teins, and small proteins are less than the four main classes in
amount. These four classes are named by the structure of pro-
teins [2]–[5]. The protein classification in SCOP was performed
manually or semiautomatically, which takes a great amount of
time for such a complex task. It has been a pushing research
topic to classify and predict the multiclasses of proteins by ma-
chine learning methods [2], [3], [9], [11].

A. Training Dataset

This training dataset was built for the prediction of 128 pro-
tein folds based on the PDB selected sets. The data set was
selected by their characteristics so that all proteins in the data
set have less than 35% of the sequence identity for the aligned
subsequences longer than 80 residues. Following the prior pub-
lished papers [3], [9], [11], the training data number is 313 and
they should be divided into four classes with 27 folds according
to their structures representing all major structural classes.

B. Testing Dataset

An independent dataset was also taken for testing the effect
of prediction. The testing dataset was based on PDB-40D set
developed by the authors of the SCOP database [2]–[5]. A total
number of 385 proteins with identity less 40%, same as those
used by Dubchak and Ding, were selected for testing in our
study. Table I shows the numbers of proteins in the training and
testing datasets for different protein classes used in our exper-
iments. Table II shows the numbers of proteins in the training
and testing datasets for different folds of each protein class used
in our experiments, where there are 27 folds for the four classes
in total.

III. GLOBAL AND LOCAL FEATURES DESCRIBING THE

AMINO-ACID SEQUENCES

Before applying the machine learning methods to handle
the bioinformatics problems, the features extraction of the
analyzed data is a very important task, since different extracted
features may cause different classification results, better or
worse. Two major approaches, the direct coding method and
the indirect coding method, are used in bioinformatics to
extract features from experimental data. The direct coding
method contains position-depend, sequence-length-depend,
and a vector per residue. On the other hand, the indirect coding

TABLE II
FOLD NUMBERS OFEACH CLASS AND PATTERN NUMBERS OFEACH

FOLD IN SCOP WHICH WAS PICKED UP TO BE TRAINING AND TESTING

PATTERNS IN THIS STUDY

method is position independent, length invariant, and a vector
per sequence.

A. Global Features—Physical/Chemical Characteristics

In the previous studies [9] and [11], several features have been
considered for predicting protein folds using global descrip-
tion of the chain of amino acids representing proteins. These
descriptors were computed from the physical, chemical, and
structural properties of the constituent amino acids. Different
properties of the amino acids were used as features such as the
relative hydrophobicity of amino acids. The information about
the predicted secondary structure and predicted solvent accessi-
bility was also used. They divided the amino acids into three
groups based on hydrophobicity, three groups based on sec-
ondary structure, and four groups based on solvent accessibility.
A protein sequence was then described based on three global de-
scriptors: composition (C), transition (T), and distribution (D)
[9], [11]. These descriptors essentially describe the frequencies
with which the properties change along the sequence and their
distribution on the chain. In addition to the three amino-acid
attributes described above, three more attributes were usually
used: normalized Van Der Walls volume, polarity, and polariz-
ability. They also used the percent composition of amino acids
as feature vectors. Let there befolds in the data set. For each
fold, the data set were divided into two groups, one containing
points from the fold and the other containing the rest. So there
are such partitions.

In this study, we also adopt the aforementioned six kinds of
physical or chemical characteristics (attributes) of proteins for
fold classification. There are composition (C), predicted sec-
ondary structure (S), hydrophobicity (H), normalized Van Der
Waals volume (V), polarity (P), and polarizability (Z). The six
kinds of protein sequence information (PSI) are extracted from
the provided open protein database. Except for the first PSI, C,
the same set of descriptors is used for all the other PSIs resulting
in a feature parameter vector in 21 dimensions for each of S, H,
V, P, and Z. The first kind of PSI, C, is the sequence composi-
tion of amino acids. It is known that there are totally 20 types of
amino acids; therefore, these 20 kinds of amino acids are cor-
responding to a 20-dimensional feature vector. Table III shows
the symbols, descriptors, and dimensions of these six PSIs used
in our experiments.
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TABLE III
THE DESCRIPTORS ANDFEATURE DIMENSION SIZES OF EACH OF THE

SIX PROTEIN ATTRIBUTES

We feed these features to our classifiers from single PSI to
multiple PSIs progressively. In the experimental reports of this
study, the symbol “ ” denotes the combination of feature in-
formation. It means that we feed more than one PSI into the
classifiers once. The summed dimensions of the PSIs are corre-
sponding to the input nodes of the NN classifiers or the input
variables of the SVM. In our experiments, we used different
combinations of PSIs as input features to each classifier. Hence,
while we used the physical or chemical characteristics, the two
extreme cases are: 1) the use of the composition of amino acids
only and 2) the use of all six PSIs. In the first case, the feature
dimension is 20, and in the second case, the feature dimension
is up to 125 (20+21+21+21+21+21).

B. Local Features—N-Gram Coding

The six types of PSI introduced above are kinds of global
features extracted by the direct encoding method. They em-
phasize more on the global properties and structures of the
amino-acid sequences, and less on the local interactions among
neighboring amino acids. In this section, we shall induce the
indirect coding features from the amino-acid composition
sequence of proteins based on the N-gram concept. We shall
develop new local features describing the chain of amino acids
representing proteins using the bigram and new spaced-bigram
coding methods. These kinds of features can well describe
the interactions among neighboring amino acids locally in
a 3-D structure of the amino-acid composition sequence of
proteins. In extracting such local features, in addition to the
traditional bigram coding scheme, we also propose the new
spaced bigram coding scheme, which can better describe
the 3-D protein structure caused by the mutual interactions
among interleaving (every other) neighboring amino acids in
a protein sequence. This provides us with more representative
and discriminative new features of protein sequences for the
problems of multiclass protein fold classification.

For a sequence composed of alphabets, a bigram coding
scheme applied on it will produce a new sequence (i.e., fea-
ture vector) with dimensions. Each element in the feature
vector represents the number of appearance of a specific pair-
wise combination of the alphabets in the neighboring two

amino acids of the sequence. Since a protein sequence is com-
posed of 20 kinds of general amino acids represented by 20
alphabets, respectively, and other types of amino acids repre-
sented by a common alphabet B or Z, it is a sequence composed
of 21 alphabets. Hence, after the bigram coding, we obtain a fea-
ture vector with 411 dimensions for a protein sequence. Similar
to the bigram coding, the newly proposed spaced bigram coding
is to detect the appearance frequency of any two-alphabet pair
in every other (interleaving) neighboring amino acids of a pro-
tein sequence. Hence, the spaced bigram coding on a protein se-
quence also produce a feature vector with 441 dimensions, each
representing the number of appearance of a specific pairwise
combination of the 21 alphabets in the every other neighboring
two amino acids of the sequence.

Consider a segment of the amino-acid sequence of the pro-
tein with ID number 1pga: MTYKLILNG as an example. In the
bigram coding, we count the numbers of the pairs (MT), (TY),
(YK), (KL), etc., respectively. In the spaced bigram coding, we
count the numbers of the pairs (MY), (TK), (YL), (KI), etc.,
respectively. It is believed that the mutual interactions between
every two neighboring amino acids, and also the mutual inter-
actions between every other two neighboring amino acids play
the key roles in the 3-D structure of a protein sequence. It was
even claimed that the effect of the latter type of interactions is
stronger than the former type of interaction.

From both the direct and indirect coding schemes in the
above two subsections, we have now obtained eight types of
PSI. The first six types belonging to global features represent
the physical–chemical characteristics of a protein sequence,
and the other two types belonging to local features represent
the mutual interactions between neighboring amino acids. If
we use all of these features at once, the feature space will be of
1007 (20+21+21+21+21+21+441+441) dimensions, which is
a large number. This motivates the study of automatic feature
selection for protein fold classification in this research.

IV. HIERARCHICAL LEARNING ARCHITECTURE

In Section II and from Tables I and II, we find that the fold
characteristics of the proteins are separated into four mainly typ-
ical classes named as all, all , and , and plus

, respectively. Within each class, it contains several dif-
ferent numbers of folds in it, with a total number of 27 folds. The
purpose of this work, multiclass protein fold classification, is to
classify each of the proteins into one of the 27 folds. According
to the classification characteristics of the protein data, a novel
HLA including two-level of classifiers is proposed, as shown in
Fig. 1. In the first level, a multiclass classifier for recognizing
the four protein classes is used. In the second level, we perform
detailed classification on each class. There are four independent
multiclass classifiers used in the second level for finer protein
fold recognition, from four classes to 27 folds (see Table II). The
proposed HLA is an effective learning structure, in the sense of
reducing the numbers of classifiers, avoiding the voting scheme,
and increasing the accuracy of protein fold recognition.

In Fig. 1, we illustrate how the proposed HLA is used in ac-
tual experimental data to handle input features. In the first level,
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Fig. 1. Proposed HLA for protein folds classification.

a multiclass classifier (labeled as Classifier #1) is used to dis-
tinguish input proteins data into four classes, denoted as I, II,
III, and IV ( , , , and , correspondingly). Here we
shall adopt proper PSI introduced in Section III as the inputs of
this classifier in our experiments. The second level in the HLA
consists of four smaller independent multiclass classifiers (la-
beled as Classifiers #2 to #5), each for the fold recognition of
different class of protein data classified by the Level 1 classi-
fier. In other words, Classifier #2 is to classify the protein data,
which are classified as Class I by Classifier #1, into one of six
fold types. Similarly, Classifier #3 is to classify the Class II pro-
tein data into one of nine fold types, Classifier #4 is to classify
the Class III protein data into one of nine fold types, and Clas-
sifier #5 is to classify the Class IV protein data into one of three
fold types. So, totally 27 (6+9+9+3) folds are recognized by the
Level 2 classifiers.

In general, a -dimensional data set is used to train the HLA
represented by Level 1 and Level 2 in Fig. 1. Let the training data
be , where is the training data cor-
responding to class. First we train the Level 1 classifiers using

. The Level 1 classifier divides the data into four classes. Note
that the division of made by the Level 1 classifier may not
exactly correspond to . The Level 2
classifiers are independently trained; theth Level 2 classifier is
trained with . Once the training of the second level classifiers
is over, the system is ready to be tested. A-dimensional data
point is now fed into the Level 1 classifier which will classify
the point to one of the four classes; say, it is classified to Class 3.
Then the training data point is fed to the third classifier (Clas-
sifier #4) in the second level. It should be noted here that, for
such architecture, if the Level 1 classifier makes any mistake,
then Level 2 classifiers cannot recover the same. The proposed
HLA is quite general in nature and, hence, for both Level 1 and
Level 2, we can use any classification network; in fact, we can
use any nonneural classifier, too.

The concept of the proposed HLA is neither the same as the
cascade network nor as the divide-and-conquer network. The

constituents of the HLAs are all independent networks. It likes a
sieve to sieve the data out of the input training data to several dif-
ferent groups. In fact, this HLA is suitable for data sets that can
be grouped into a smaller number of classes, where each class
can further be divided into a set of clusters. The problem we
handle, multiclass and multifold classification of protein struc-
tures, has this kind of characteristic. Also, since the proposed
HLA houses a set of multiclass classifiers as the basic building
blocks, it dose not need a stochastic voting mechanism after a
long series of two-class classifications normally used in bioin-
formatics.

In our experiments, we shall use NN and SVM, all belonging
to the machine learning family, as the basic building blocks
of our HLA. We shall introduce these classifiers and the ex-
perimental results in Sections IV-A and IV-B. No matter what
kind of classifiers we choose, the overall classification results
are better than those of the one-versus-others method (OvO)
method with NN, and are even better than those of the existing
modified OvO method [9]. Such higher classification accuracy
is obtained by using fewer classifiers with smaller network size.
The extra decision mechanism such as voting scheme is also
avoided.

A. Neural Networks

NNs have been developed for many years and been used well
in various applications. Many researchers continue to apply dif-
ferent algorithms and develop different structures to enhance the
ability of NNs. Here we use NN models as the multiclass clas-
sifiers in the HLA. Some brief introductions about two popular
NN models are given below.

1) Multilayer perceptron (MLP) is a classic and widely used
NN model. Such a network can solve nonlinear regres-
sion, and construct global approximation to the nonlinear
input–output mapping [18], [19].

2) The radial basis function network (RBFN) is a three-layer
network. The hidden layer nodes use a basis function, the
Gaussian function, as the activation function. Unlike the
MLP network, the output nodes are linear. The RBFN,
suggested by Moody [20], is very suitable to be used as
classifier. The RBFN used here can grow its hidden nodes
automatically. When data are fed into the network, the
sum square error (SSE) will be calculated with the cost
function, and the backpropagation (BP) learning rule is
used to minimize the SSE until the restrict number of
nodes or the preset value of SSE arrived [21], [22].

B. Support Vector Machines

An SVM is a new-generation learning algorithm based on re-
cent advances in statistical learning theory. In the early 1990s,
their introduction leads to a recent explosion of applications and
deepening theoretical analysis. Basically, the SVM is a typical
two-class classifier and a kind of universal feedforward network
which was developed by Vapnik and his colleagues at Bell Labo-
ratories, and has been improved by other researchers. It is a kind
of machine learning algorithm, while in operation, the SVM will
construct a hyperplane in a high-dimensional features space as
the decision surface between positive and negative patterns. The
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structural risk minimization ability makes the SVM a very ef-
ficient classifier in various applications including biosequences
analysis, etc. [23]–[26].

With the further improvements by other researchers recently,
the SVM has the ability to do multiclass classification directly
[27], which is the model adopted here in our HLA as the con-
stituent multiclass classifiers. In practice, the SVM algorithm is
used in three types of learning machine: 1) polynomial learning
machines; 2) RBFNs; and 3) two-layer perceptrons (MLPs). In
this study, we choose the RBFNs for the SVM algorithm and act
as the kernels (building blocks) of the proposed HLA.

V. ONLINE FEATURE SELECTION THROUGH GATING

Due to the large number of input dimensions in the multi-
fold classification of protein structures, especially for the com-
bined global and local features, it is essential to perform impor-
tant feature selection automatically. In general, feature selection
methods could be classified into two major categories. One is
based on statistical information of features; the other is based
on classifiers. These two major methods have their differences
in concepts. The former is based on statistics criteria to find out
the optimal subset, and the latter is based on the learned weights
to find out the useless features or point out the most importance
features by the preset criteria. The latter methods commonly use
NNs to complete the feature selection work [14]–[17].

In a standard MLP network, the effect of some features (in-
puts) can be eliminated by not allowing them into the network,
i.e., by equipping each input node (hence, each feature) with a
gate and closing the gate. For good features the associated gates
can be completely opened. On the other hand, if a feature is
partially important, then the corresponding gate should be par-
tially opened. Pal and Chintalapudi suggested a mechanism for
realizing such a gate so that “partially useful” features be iden-
tified and attenuated according to their relative usefulness [13],
[16], [17]. In order to model the gates, we consider an attenu-
ation function for each feature such that for a good feature the
function produces a value of one or nearly one; while for a bad
feature, it should be nearly zero. For a partially effective feature,
it should have a value that is intermediate to these extremes. To
model the gate, we multiply the input feature value by its gate
function value and the modulated feature value is passed into the
network. The gate functions attenuate the features before they
propagate through the network, so we may call these gate func-
tions attenuation functions. A simple way of identifying useful
gate functions is to use sigmoidal functions with a tunable pa-
rameter, which can be learned using training data. To complete
the description of the method, we define the followings in con-
nection with a MLP network.

Let be the gate or attenuation function associ-
ated with the th input feature, have an argument ,
be the value of derivative of the attenuation function at; be
the learning rate of the attenuation parameter;be the learning
rate of the connection weights, be the th input of an input
vector, be the attenuated value of, i.e., , be
the weight connecting theth node of the first hidden layer to
the th node of the input layer, and be the error term for the
th node of the first hidden layer. It can be easily shown that ex-

Fig. 2. Proposed HLA with gating network for online feature selection. The
arrows on gates represent the variable online feature selection function.

cept for , the update rules for all weights remain the same as
that for an ordinary MLP. Assuming that the first hidden layer
has nodes, the update rules for and are

(1)

(2)

Although for the gate function, several choices are possible,
we use here the sigmoidal function .
The gate parameters are so initialized that when the training
starts, is practically zero for all gates; i.e., no feature is
allowed to enter the network. As the backpropagation learning
proceeds, gates for the features that can reduce the error faster
are opened. Note that the learning of the gate function con-
tinues along with other weights of the network. At the end of
the training, important features can be picked up based on the
values of the attenuation function [13], [16], [17].

This feature selection mechanism is put in front of every mul-
ticlass classifier in the HLA such that each classifier can se-
lect the most important features for its respective classification
problem as shown in Fig. 2. In other words, before a set of
training data are sent into a classifier in the HLA for training,
they are passed into the feature selection mechanism (i.e., the
gating network) first. According to the results of feature selec-
tion, only the training data corresponding to the selected impor-
tant features are used for the training of the classifier, which is
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RBFN or SVM in our HLA. Also, in the testing phase, only the
same selected important features are fed into the classifiers. It
is noted that since every classifier in the HLA aims at different
classification job, the important features selected for each clas-
sifier might not be the same, although every classifier faces the
same original input training data before feature selection.

VI. M EASUREMENTINDICES OFCLASSIFICATION ACCURACY

In bioinformatics, because the two-way classifiers are usu-
ally used, several different accuracy measurement methods were
proposed to account for the confusing situations of “true posi-
tive” or “false positive” [7]. In our HLA classification approach,
such confusing conditions will not happen. Therefore, the accu-
racy measurement in our experiments is quite clear and simple.
Let us use a function (accuracy) to indicate the classification
correctness of a protein pattern fed into the HLA. Then the total
number of correctly classified proteins can be expressed as

level 2 level 1

level 2 level 1 level 2 (3)

where is a conditional function whose value is one only when
a protein pattern is correctly classified by the classifiers in both
Level 1 and Level 2 of the HLA, and is zero otherwise.

Based on the above concepts, the accuracy measurement of
the proposed approach is defined as follows. If the number of
testing proteins belonging to theth fold is , but the tested
classifier only recognizes proteins as the th fold, then the
accuracy rate of this tested classifier is set as for the th
fold. In addition to the calculation of individual accuracy, the
total classification accuracy can be briefly calculated as follows:

i N (4)

i (5)

(6)

where is the total number of testing proteins data,is the
total number of correctly classified proteins in (3), andis the
classification (prediction) accuracy.

VII. EXPERIMENTAL RESULTS

To test and demonstrate the proposed techniques for mul-
ticlass protein fold classification, several experiments are de-
signed and performed and the results are reported and discussed
in this section. These experiments are based on the protein data-
base, SCOP, introduced in Section II. To demonstrate the three
novelties of the proposed techniques, our experiments are di-
vided into three parts focusing on the proposed HLA, new local
features of protein sequences, and automatic feature selection
mechanism, respectively, in Sections VII-A–C.

TABLE IV
PROTEIN FOLD CLASSIFICATION ACCURACY OFVARIOUS SINGLE-LEVEL

CLASSIFICATION APPROACHES, WHERE THEINPUT PSIS FED INTO THE

CLASSIFIER AREC + S + H + P + V + Z

A. Experiments on HLA

In the experiments of this subsection, we shall perform ex-
tensive tests on the effectiveness of the proposed HLA with dif-
ferent constituent classifiers fed with different combinations of
conventional global PSI features. In the experiments, we use
four different multiclass classifiers as the basic building blocks
in the proposed HLA, respectively. They are MLP, RBFN, Gen-
eral Regression Neural Network (GRNN) [18]–[22], and SVM,
introduced in Section IV. The used MLP has three hidden layers
with 40, 80, and 40 sigmoid nodes, respectively. The used RBFN
has only one hidden layer, where various numbers of hidden
nodes are tested as stated below. The used GRNN also has only
one hidden layer. The used SVM is the multiclass SVM pro-
posed in [27]. In each case, the whole HLA is trained com-
pletely. Especially, the nodes and training epochs of NNs are
chosen carefully during the experiments to avoid the overfitting
problem.

In our experiments, the proposed HLA with different basic
building blocks (classifiers) is used to recognize the protein
folds given in the SCOP database. Six different combinations
of features were used as the input vectors to the classifiers,
respectively. They are C, C + S, C + S+ H, C + S + H + P,
C + S + H + P + V, and C + S + H + P + V + Z, where each
character represents a kind of PSI defined in Table III, and
“ ” means combination. For performance comparisons, we
also use each of MLP, RBFN, GRNN, and SVM to classify the
proteins into 27 folds directly without using the proposed HLA,
where 27 output nodes are used in each NN model. We call
this the single-level approach. Table IV lists the classification
rates of various single-level approaches, where the full set of
PSIs are used as input features. It is observed that the average
classification accuracy is only about 50%. The classification
accuracies of the proposed HLA with various NN or SVM
classifiers with respect to different combinations of PSIs are
listed in Table V. It is observed that the HLA can increase the
classification accuracy by about 7%. Also, more PSIs result
in higher values.

The results obtained by the proposed HLA are also better
than those by the OvO method, unique OvO method (uOvO),
and all-versus-all method (AvA) methods proposed in [9]. These
methods require a series of SVMs or NNs and a voting mech-
anism. The comparison results are given in Table VI. Table VI
shows that the overall classification results of the proposed ap-
proach are normally better than those of the compared coun-
terparts. Especially, the proposed HLA with the RBFN classi-
fiers achieves the best classification accuracy, 56.4%, which is
higher than the best result (53.9%) achieved by the AvA method
with the two-class SVM classifiers [AvA(SVM)] proposed in
[9]. The higher classification accuracy of the proposed approach
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TABLE V
PROTEIN FOLD CLASSIFICATION ACCURACY OF THEPROPOSEDHLA WITH

VARIOUS NN OR SVM SUBCLASSIFIERS, WHERE DIFFERENTCOMBINATIONS

OF PSIS ARE TESTED. THE CORRESPONDINGCLASSIFICATION ACCURACIES

OF VARIOUS SINGLE-LEVEL CLASSIFICATION APPROACHESARE ALSO

SHOWN FORCOMPARISONS

TABLE VI
PROTEIN FOLD CLASSIFICATION ACCURACY COMPARISONS OF

THE PROPOSEDHLA AND THE EXISTING APPROACHES, WHERE “OVO”
STANDS FOR THEONE-VERSUS-OTHERS METHOD, “UOVO” FOR THE

UNIQUE ONE-VERSUS-OTHERS METHOD, AND “A VA” FOR THE

ALL-VERSUS-ALL METHOD

is obtained by using fewer classifiers with smaller size. Also,
the extra decision mechanism such as the voting scheme is also
avoided.

In Table VI, the architecture of the used RBFN-based HLA
consists of five RBFN classifiers as shown in Fig. 1, with a total
of 366 hidden nodes. The RBFN can find the proper number of
hidden nodes by itself during the training process. In our HLA,
the largest RBFN is Classifier #1 in Level 1, which contains 145
hidden nodes. The smallest RBFN is Classifier # 5 in Level 2,
which contains only 13 hidden nodes. More detailed informa-
tion about the node numbers are given in Table VII. For compar-
isons, the total number of hidden nodes used in the single-level
RBFN is 125, which achieves 49.4% classification accuracy,
and cannot be better even with more hidden nodes. Also, in
the AvA(SVM) method proposed in [9], which achieved 53.9%

TABLE VII
NUMBER OF NODESUSED IN THE RBFNS OF THEPROPOSEDRBFN-BASED

HLA

TABLE VIII
COMPARISONS OF THEPROTEIN FOLD CLASSIFICATION ACCURACY OF THE

PROPOSEDRBFN-BASED HLA AND THE SINGLE-LEVEL RBFN WITH

TRAINING DATA AND TESTING DATA EXCHANGED, WHERE THE FULL

SET OF PSIS ARE USED

TABLE IX
REQUIREDTRAINING TIME OF THE SINGLE-LEVEL RBFN AND EACH RBFN IN

THE PROPOSEDHLA, WHERE THETOTAL SIX PSIS ARE USED ASNETWORK

INPUTS, AND THE TRAINING IS PERFORMED IN A PERSONAL COMPUTERWITH

INTEL PENTIUM IV CPU UNDER 1-GHZ CLOCKS

classification accuracy, a total of 351 two-way SVM classifiers
were used. In another experiment, we further compare the clas-
sification accuracy of the RBFN-based HLA with those of the
single-level RBFN. In this experiment, we switched the roles of
training data and testing data used in the previous experiments.
The results are listed in Table VIII indicating the superiority of
the proposed approach again.

In Table IX, we also show the training time required by
the single-level RBFN, and the training time required by each
RBFN in the HLA, where the training was performed in a
personal computer with Intel Pentium IV CPU under 1-GHz
clocks. The results indicate that although Level 1 RBFN
in the HLA consumed longer training time, the training of
each Level 2 RBFN converged very quickly. This reflects the
underlined “divide-and-conquer” philosophy of the proposed
HLA. Although the total training time of the RBFN-based HLA
is longer than that of the single-level one, this is the expense
paid for higher classification accuracy. It is worthy to mention
that the single-level RBFN could not perform better even more
training time were taken in our experiments.
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TABLE X
CLASSIFICATION ACCURACIES OF THERBFN-BASED HLA WITH VARIOUS

COMBINATIONS OF GLOBAL FEATURES (C + H + S + P + V + Z) AND

LOCAL FEATURES [BIGRAM-CODED FEATURE (B) AND SPACED

BIGRAM-CODED FEATURE (SB)]

As compared to the popular OvO method, and the modified
uOvO method and AvA methods proposed in [9], the proposed
HLA with embedded multiclass classifiers has another impor-
tant advantage. Due to the removal of the voting mechanism
required by the OvO, uOvO, and AvA methods, the numerical
output value of the classifiers in the proposed HLA can indicate
the reliability or confidence of the prediction. Since each pro-
tein is predicted with different reliability, such a reliability score
is necessary for practical classification/prediction systems. For
example, a low reliability score for a new protein may indicate
that it does not belong to any fold in the system.

B. Experiments on New Protein Features

In Section VII-A, we find that the HLA housing RBFNs
or SVMs achieved the best results among the compared
counterparts. In this subsection, we shall focus on the HLA
with these two building blocks fed with the combination of the
conventional global features and the new local features of the
amino-acid sequences of proteins proposed in Section III. In ad-
ditional to the six types of PSI describing the physical/chemical
characteristics of proteins used in Section VII-A, two new sets
of local features obtained by the bigram coding and spaced bi-
gram coding schemes are considered to add to the input vectors
of the HLA. Table X shows the classification accuracies of the
RBFN-based HLA with these combined features. Four different
combinations of input features are tested: 1) the conventional
six types of PSI (i.e., C + S + H + P + V + Z) (125 dimen-
sions); 2) the bigram-coded feature vector (441 dimensions);
3) the combination of 1) and 2) (125 + 441 dimensions); and
4) the combination of 3) and the spaced bigram-coded feature
vector (125 + 441 + 441 dimensions). Table X shows that the
new local features did improve the accuracies of protein fold
classification, obviously. It is observed that the addition of the
bigram-coded feature to the original six PSI features increase
the accuracy by 7.3%, which is even 9.8% higher than the result
reported in [9]. Especially the full set of features including
the global and local features improves the accuracy by 11.7%

TABLE XI
CLASSIFICATION ACCURACIES OF THESVM-BASED HLA WITH VARIOUS

COMBINATIONS OF GLOBAL FEATURES (C + H + S + P + V + Z) AND

LOCAL FEATURES [BIGRAM-CODED FEATURE (B) AND SPACED

BIGRAM-CODED FEATURE (SB)]

TABLE XII
CLASSIFICATION ACCURACIES OF THERBFN-BASED HLA WITH DIFFERENT

GLOBAL FEATURES SETS (C + H + S + P + V + Z) SELECTED BY

THE GATING NETWORK

and achieves 65.5% classification rate in total. Table XI shows
the experimental results of SVM-based HLA corresponding to
those on Table X. This table also shows the advantages of the
newly proposed local protein features in Section III.

C. Experiments on Automatic Feature Selection Scheme
(Gating Network)

Sections VII-A and VII-B clearly indicate that the protein
fold recognition problems always contain large feature dimen-
sions, from 125 to 125 + 441 + 441. In this subsection, we shall
test the automatic feature selection scheme proposed in Sec-
tion V to reduce the feature dimensions for HLA. We shall
first consider the HLA fed with the conventional six types of
PSI (i.e., C + S + H + P + V + Z) (125 dimensions). Table XII
presents classification performance of the RBFN-based HLA
with different feature sets. The performance of Level 1 HLA
(see Fig. 1) shows that with 67 features (50% reduction), the
decrease in performance is only 1.26% while with 65% features
the test accuracy is reduced by only 0.76%. This clearly suggests
that the gating network can do an excellent job of selecting im-
portant features. Let us now consider the overall classification
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TABLE XIII
VALUES OF THE GATING FUNCTIONS FOR THEMOST IMPORTANT 15

FEATURESAFTER DIFFERENTITERATIONS

performance (with 27 folds). For this case we get 53% test ac-
curacy with 67% features, which is just 3% less than what we
can achieve taking into account all 125 features.

We have made several runs of the gating networks and results
reported corresponding to some typical output. We emphasize
the fact that depending on the initialization, two different sets of
features may be picked up by the gating network in two different
runs. This is absolutely fine, since if there are two correlated fea-
tures, a and b, the net may pick up feature a in run 1 and feature b
in run 2. Moreover, depending on the choice of the threshold, the
number of selected features may be different. Table XIII shows
15 of the most important features of a typical run of the gating
network after 1000, 1500, and 4000 iterations. It is interesting to
note that after 1000 iterations, eight of the top most 15 important
features come from the predicted secondary structure. Of these
eight, one of the features, number 27, disappears from the list
of important features with iterations. Probably the gate corre-
sponding to some other correlated feature opened faster. After
4000 iterations, of the important 15 features, nine come from
the predicted secondary structure. This clearly tells that the local
secondary structure, as expected, has a strong impact on the final
folds. In this list of 15 important features, we have representa-
tion from polarity, polarizability, volume, and hydrophobicity.
In this investigation, we initialized the gating function with a
value of 0.000 124.

Table XIV depicts the classification performance at level 1
(into four classes) by the MLP network with different sets of

TABLE XIV
PERFORMANCE OFORDINARY MLP ON DIFFERENTSUBSETS OFFEATURES AT

LEVEL 1 OF HLA TO SHOW THE IMPORTANCE OFEACH PSI

TABLE XV
CLASSIFICATION ACCURACIES OF THERBFN-BASED HLA WITH VARIOUS

COMBINATIONS OF GLOBAL FEATURES(C + H + S + P + V + Z) AND LOCAL

FEATURES[BIGRAM-CODED FEATURE (B) AND SPACED BIGRAM-CODED

FEATURE (SB)] SELECTED BY THE GATING NETWORK

features. Table XIII reveals the fact that use of more features
is not necessarily good. It also says that the distribution of pre-
dicted secondary structure and composition constitutes a good
set of features. This is also consistent with the results obtained
from the gating network.

We shall now apply the gating network scheme to the enlarged
input vectors combining the global and local features. The re-
sulting classification accuracies of the RBFN-based HLA are
presented in Table XV. With the same preset threshold value,
the gating network reduces the dimension of the six types of
PSI to 67 from 125, the dimension of the bigram-coded feature
to 242 from 441, and the dimension of the spaced bigram-coded
feature to 205 from 441. The dimension reduction reduces the
classification accuracy of the RBFN-based HLA by 2.9% using
only about half of the original features.

In the above experiments, we used the same threshold value
in the gating networks for all the basic classifier units of HLA,
which will produce different input vector sizes for different clas-
sifiers at different levels of HLA. In another experiment, we
try to use the same size of feature vector for each classifier of
the HLA though the gating networks. The results and compar-
isons with different combinations of protein features are given
in Table XVI. It is observed that the classification accuracy is
further improved. Table XVII shows the required number of
nodes in each RBFN classifier of the RBFN-based HLA with
respect to different gated features. The total number of the re-
quired nodes is found to be quite small. This demonstrates the
efficiency the proposed HLA with automatic feature selection
mechanism (gating network).
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TABLE XVI
PERFORMANCECOMPARISON OF THERBFN-BASED AND SVM-BASED HLA

WITH GATING NETWORK USING FIXED THRESHOLD ORFIXED SIZE

OF FEATURE DIMENSION

TABLE XVII
REQUIRED NODE NUMBERS IN EACH RBFN OF THE RBFN-BASED HLA

FOR DIFFERENTGATED GLOBAL FEATURES

VIII. C ONCLUSION

In this paper, we proposed a new HLA with online feature
selection mechanism to solve the multiclass protein fold classi-
fication problem. We also derived new local features from the
protein sequences to enhance the classification rate. The pro-
posed HLA is a general learning concept, which can integrate a
set of baseline classifiers (such as NN or SVM) in an efficient
way to attack highly complex classification problems. Further-
more, the proposed modified bigram coding scheme for protein
sequences are based on a concept of entropy, which can well
describe the cubic structures of proteins in space. Such kinds
of information were usually missing in the conventional global
features of protein sequences.

The extensive experimental results based on the SCOP data-
base demonstrated the superiority of the proposed protein fold
classification scheme, in both learning mechanism and new pro-
tein features. The classification accuracy of the novel scheme is
also higher than that of the popular OvO method, the modified
uOvO method and AvA method. In addition, due to the use of
the multiclass classifiers as the basic building blocks, the pro-
posed HLA does not need a large number of two-class classifiers
and a voting scheme. As a result, the computation time for a
prediction can be reduced and each prediction can be associated
with a numerical value to assess the reliability or confidence of
the prediction.

The experimental results also showed that the online feature
selection mechanism in HLA was quite effective in reducing the
dimensionality of the input data features. Such online feature
selection capability can give a better insight into the folding
process. So far the bioinformatics researchers did not have any
tools for such online feature selection and, consequently, they
are used to consider different intuitive combination of features.
Since consideration of all possible subset is computationally not
feasible, it is often impossible to find the best set of features. The
proposed system opens up the possibility of computing many
more features from the amino-acid sequence and then allowing
the system to pickup the desirable ones. Its application domain
is extended to all other areas of bioinformatics also.
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