
1 Introduction

Two-level hierarchical
Z-buffer with compression
technique for 3D graphics
hardware

Cheng-Hsien Chen,
Chen-Yi Lee

Dept. of Electronics Engineering, National Chiao
Tung University, 1001, Ta Hsueh Road, Hsinchu,
300, Taiwan, R.O.C.
E-mail: chchen@royals.ee.nctu.edu.tw

Published online: 2 July 2003
c© Springer-Verlag 2003

The hierarchical Z-buffer is application-
invisible and more efficient than the tradi-
tional Z-buffer for quickly rejecting hidden
geometries. But there are construction and
management issues associated with inte-
grating a hierarchical Z-buffer into current
graphics hardware. Here we present a two-
level hierarchical Z-buffer algorithm, and
provide solutions to these issues. Simulation
results show that the bandwidth can be re-
duced by up to 35%. Moreover we propose
a dynamic bi-level HZ-buffer compression
technique that reduces the buffer size up by
to 40%, and for which there is little perfor-
mance degradation.

Key words: 3D graphics hardware – Hierar-
chical Z-buffer – Hierarchical Z-buffer com-
pression

Three-dimensional computer graphics are widely
used in many applications. Large amounts of compu-
tational power, memory bandwidth, and database are
consumed in the generation of lifelike images. Thus
millions of transistors are put into the GPU (Graph-
ics Process Unit) to boost performance. Although
GPU processing power increases rapidly every year,
the growth of bandwidth is not as fast as that of
computing power. The bandwidth bottleneck pre-
vents the GPU from performing at its full power.
A block diagram of a traditional triangle-based 3D
graphics rendering flow is shown in Fig. 1. There
are several memory accesses in the pipeline. Tex-
ture mapping and the Z test (or depth test) consume
most of the bandwidth [8]. Thus reducing memory
accesses in such pipeline systems can enhance over-
all performance.
The Z-buffer test or depth test is the hidden surface
removal stage. Most graphics hardware use the tradi-
tional Z-buffer algorithm [2] to resolve the visibility
problem at the pixel level. Although the traditional
Z-buffer algorithm is simple and easy for hardware
implementation, its efficiency is not high and it does
not make use of object-space coherence. Every pixel
needs to access the Z-buffer, but most of them are
invisible. It wastes memory bandwidth and comput-
ing power to transform, light, and rasterize those
pixels.
A good visibility algorithm should quickly reject
most of the hidden geometry in the scene. There are
many speed-up techniques [7] for visibility tests and
occlusion culling. Most of them need a lot of pre-
processing before entering the hardware-rendering
pipeline. Several examples can be found in the lit-
erature, such as object-space preprocessing with
a binary-space partition (BSP) [3, 4], object-space
octrees combined with an image-space Z pyramid [3,
4], portal culling [6], and image-space hierarchi-
cal occlusion maps [11]. However these techniques
are not suitable for real-time interactive applications
and cannot be integrated into existing hardware.
A new hardware-support visibility-test algorithm
is important for graphics system. The hierarchical
Z-buffer visibility test can meet this requirement.
The concept was first introduced by Greene [5] as
the image-space Z-pyramid. ATI [8] was the first
to integrate a hierarchical Z-buffer into a commer-
cial product. nVidia [9] also integrated a hierarchi-
cal Z-buffer and a new crossbar memory manage-
ment unit to relieve the memory bottleneck. But
the issues associated with putting a hierarchical

The Visual Computer (2003) 19:467–479
Digital Object Identifier (DOI) 10.1007/s00371-003-0212-4

468 C.-H. Chen, C.-Y. Lee: Two-level hierarchical Z-buffer with compression technique for 3D graphics hardware

1

2

Fig. 1. Traditional triangle-based 3D graphics rendering flow
Fig. 2. 2×2 hierarchical Z-buffer

Z-buffer into hardware have not been discussed in
literature.
A hierarchical Z-buffer (HZ-buffer) is a reduced
resolution Z-buffer. Figure 2 shows a degree of
2 HZ-buffer. The original Z-buffer is the finest level
of the pyramid. It combines four Z values at each
level into one Z value at the next coarser level by
choosing the farthest value inside the correspond-
ing block. This process can be iterated to construct
many levels of the hierarchy. Then the HZ-buffer
can be used to determine the visibility of trian-
gles and pixels, instead of querying the original
Z-buffer.
In this paper, we present a two-level HZ-buffer visi-
bility test algorithm, and solve the problem of bring-
ing it into a hardware design. The issues of putting
HZ-buffer into 3D hardware will be addressed in
Sects. 2 and 3. Then we propose a compression tech-
nique to reduce the buffer size of the two-level HZ-
buffer in Sect. 4. Simulation results are given in
Sect. 5.

2 Previous work and issues
of hierarchical Z-buffer hardware

The hierarchical Z-buffer visibility test was first pro-
posed by Greene [5]. Greene’s approach includes oc-
tree spatial subdivision to explore object-space and
temporal coherence, while a Z pyramid is used to ex-
plore image-space coherence. Hierarchical scan con-
version is incorporated into the HZ-buffer to solve
the visibility problem. The concept of the Z pyra-
mid becomes the HZ-buffer of today’s hardware [8,
9]. When applying this technique to hardware, it is
not easy to store, update, and manage so many lev-
els of the HZ-buffer. Updating the lowest level of
the hierarchy will incorporate possible updates of
higher levels. The latency will be long for maintain-
ing the HZ-buffer. Hierarchical scan conversion is
also slower than traditional scan conversion. Thus
the ATI HyperZ technique [8] uses just a one-level
hierarchy. This hierarchy is constructed by 8 × 8-

C.-H. Chen, C.-Y. Lee: Two-level hierarchical Z-buffer with compression technique for 3D graphics hardware 469

Fig. 3. Proposed two-level hierarchical Z-buffer visibility test architecture

or 4 × 4-block sizes from the original Z-buffer. Its
HZ-buffer test stage is also behind the rasterization
stage. The hardware can quickly reject several invis-
ible pixels in one cycle. The visibility test is done at
the pixel-level. It does not make use of the object-
space coherence of the HZ-buffer at the triangle-
level. In addition to triangle-based architectures, Xie
and Shantz [10] proposed an adaptive hierarchical
visibility algorithm for tiled architectures. The tiled
architecture requires bucket sorting triangles in Z at
each tile. It evaluates a cost function and pixel cover-
age when rendering primitives from near to far, and
then construct the HZ-buffer at a selected time. This
algorithm is well suited to the tiled architecture, but
cannot be applied to current popular triangle-based
architectures since they will not perform depth sort-
ing for triangles.
There are two issues when bringing a HZ-buffer into
hardware. The first is the HZ-buffer configuration.
The configurations include the hierarchical block
size, number of levels in the hierarchy, and depth nu-
meric accuracy. There are trade-offs between hard-
ware cost and performance. In order to shorten the
latency of the visibility test, we suggest that the HZ-
buffer should reside on the chip. This also simpli-
fies the memory and HZ-buffer management. Thus
the HZ-buffer should be of reasonable size for hard-
ware implementation. The second issue for the HZ-
buffer is how to update it. Taking a 8×8-block size
one-level hierarchy for example, one value in the
HZ-buffer represents the farthest depth in a 8×8 re-
gion of the original Z-buffer. It means that we have
to fetch 64 depth values from the external Z-buffer
and search the farthest one. This will introduce more
memory access and operations, offsetting the bene-
fit of the HZ-buffer. The algorithm that we present in

this paper addresses all of the above issues. The HZ-
buffer update problem is solved by adding a bit-mask
cache. In addition, the HZ-buffer visibility tests are
done both at the triangle-level and at the pixel-level
in this algorithm. Finally, a HZ-buffer compression
technique is presented to reduce the size of the HZ-
buffer.

3 Two-level hierarchical Z-buffer

In this paper, we propose a HZ-buffer visibility test
algorithm and discuss the problem of integrating it
into hardware. The issues associated with the hard-
ware HZ-buffer will be addressed in the following
sections. Simulation results are shown in Sect. 5.
Figure 3 shows the block diagram of our two-level
hierarchical Z-buffer (HZ-buffer) architecture. The
difference from Fig. 1 is that we insert two HZ vis-
ibility tests. The first one after the transform stage
is used to explore image-space coherence at the
triangle-level and the second is at the pixel-level. The
first HZ test can further reduce the loading and mem-
ory access of lighting, triangle-setup, and following
operations by discarding invisible triangles. The sec-
ond HZ test is done by testing the visibility of every
pixel. The HZ-buffer management unit manages the
HZ-buffer access and update procedure. A bit-mask
cache is added to keep the temporal pixel coverage
information to help updating of the HZ-buffer.

3.1 Hierarchical level selection

First we want to determine the levels of the hierarchy
for the HZ-buffer. In a higher level of the hierar-
chy, the block covers a larger area than in a lower

470 C.-H. Chen, C.-Y. Lee: Two-level hierarchical Z-buffer with compression technique for 3D graphics hardware

Fig. 4. Hierarchical Z-buffer format

level of the hierarchy. Thus higher hierarchy levels
can get more image-space coherence at the triangle-
level. This will discard more invisible triangles at the
triangle-level HZ test. But the overall bandwidth re-
duction will be almost the same when combining the
triangle-level and pixel-level HZ visibility tests. On
the other hand, lower hierarchy levels can get more
coherence at the pixel-level. Here we choose a two-
level HZ-buffer configuration, because the size of the
HZ-buffer is almost the same as for a one-level hi-
erarchy. The complexity of HZ-buffer management
is also smaller than for a higher hierarchy level HZ-
buffer. Figure 4 is an example of the data format in
the two-level HZ-buffer. There are four depth values
for each block in level-1. Each depth value represents
the farthest z-value in the region of the Z-buffer cov-
ered by one level-1 block. The farthest level-2 value
is addressed by adding a 2-bit index in this format.
Thus it does not need to allocate a dedicated memory
for the second level of the hierarchy.

3.2 Hierarchical Z-buffer construction

The block size, depth numeric accuracy, and screen
resolution will determine the size of the HZ-buffer.
The formulation of the two-level HZ-buffer size is
shown in (1). For high-level 16 × 16 and low-level
8 × 8 block sizes, the 8-bit accurate 16 × 16–8 × 8
HZ buffer is 21.7 KB under 1280×1024 screen res-
olution. The 8 × 8–4 × 4 HZ buffer is 87 KB. The
buffer size should be chosen carefully for the trade-
off between hardware cost and HZ-buffer efficiency.

We also simulate the performance for different lev-
els of depth accuracy from 6-bit to 16-bit in Sect. 5.
The results show that the performance difference is
not significant for most cases. The difference is sig-
nificant only for very high depth complexity scenes.

Buffer Size = Width
Low_level_Blockwidth

× Height
Low_Level_Blockheight

×Depth_accuracy+ Width
High_level_Blockwidth

× Height
High_Level_Blockheight

× Bitindex, (1)

NB = High_level_Blockwidth
Low_level_Blockwidth

× High_Level_Blockheight

Low_Level_Blockheight
,

Bitindex = ⌈
log2 NB

⌉
.

3.3 Hierarchical Z-buffer visibility test

There are two HZ-buffer visibility tests in our algo-
rithm: the triangle HZ visibility test and the pixel HZ
visibility test. The triangle HZ test is done after the
transform stage to discard invisible triangles. After
a triangle passes the transform and back-face-culling
stage, we first search the block in the level-2 HZ-
buffer that fully covers the input triangle, as shown
in Fig. 5a. If the triangle is fully covered, we test
the farthest vertex of the triangle with the depth in
the corresponding level-2 block. If the HZ test fails,
we discard this triangle. A smaller triangle that fails
the level-2 HZ test and is fully covered by one level-
1 block (Fig. 5b) goes to the level-1 HZ test. If it
fails the test, we discard it too. Those triangles that

C.-H. Chen, C.-Y. Lee: Two-level hierarchical Z-buffer with compression technique for 3D graphics hardware 471

a b

Fig. 5. Triangle HZ visibility test

straddle multiple level-2 or level-1 blocks are left un-
changed and pass the triangle HZ test. The second
stage pixel HZ test will determine the visibility of
these triangles.
The secondary visibility test is done at the pixel
level after rasterization. When the triangles are scan-
converted at the rasterization stage, the output pix-
els are compared with the corresponding low-level
block depth. If the depth of the pixel is farther than
the current low-level value, it means that the pixel is
farther than any pixels in the low-level block and can
be discarded. The pixel-level HZ test can be done for
many pixels at once to enhance throughput. ATI [8]
shows that it can discard 8 or 16 pixels at one cycle
in the rasterization stage. By combining the triangle
and pixel HZ tests, invisible triangles and pixels can
be efficiently discarded.

3.4 Hierarchical Z-buffer management

HZ-buffer management is a problem for hardware
implementation. The issues have not been mentioned
in previous work [5, 8]. The challenge is how to up-
date the HZ-buffer. The HZ-buffer is a reduced res-
olution of the Z-Buffer. Thus when the Z-Buffer is
updated, the HZ-buffer should be updated too. The
update process is to search the farthest z-value in one
block. The block size may be 4×4, 8×8, or 16×16.
Thus we have to fetch and compare 16, 64, or 256
z-values from the Z-buffer when updating the HZ-
buffer. Comparing these z-values will increase the

number of Z-buffer accesses and the latency. Thus
the benefit of HZ visibility will be largely dimin-
ished. Here we propose a HZ-buffer management ar-
chitecture to solve the updating problem.
The HZ management unit in Fig. 3 includes an on-
chip HZ-buffer and a bit-mask cache. The HZ-buffer
is used to store the two-level HZ depth. The format of
the HZ-buffer is shown in Fig. 4. The bit-mask cache
is shown in Fig. 6. The goal of the bit-mask cache
is to cache the temporal pixel coverage information.
It eliminates the process of reading the Z-buffer to
determine the farthest depth in one block when the
Z-buffer is updated. The bit-mask cache contains the
block tag, the coverage mask of one level-1 block,
and tmpZ for the temporally farthest z-value. The
coverage mask and tmpZ are reset to zero at the be-
ginning. When the pixel passes the HZ test and the
Z-buffer test, both the Z-buffer and bit-mask cache
should be updated. To update the bit-mask cache,
first we search the block that covers this pixel in the
bit-mask cache and set the coverage mask to ‘1’ at
the corresponding address. The z-value of this pixel
is compared with tmpZ. If the new z-value is farther
than tmpZ, tmpZ is updated with this z-value. Thus
tmpZ always represents the farthest z-value of the
pixel entering this block. When the bits in the cov-
erage mask are all set to ‘1’ in one block, it means
that the block is fully covered by recently raster-
ized pixels, and then the HZ-buffer is updated with
tmpZ. The coverage check is a simple bit-wise AND
operation. When the block is fully covered, the cov-

472 C.-H. Chen, C.-Y. Lee: Two-level hierarchical Z-buffer with compression technique for 3D graphics hardware

6

7

Fig. 6. Bit-mask cache organization
Fig. 7. HZ-buffer update flow

C.-H. Chen, C.-Y. Lee: Two-level hierarchical Z-buffer with compression technique for 3D graphics hardware 473

Fig. 8. Performance under different bit-mask cache sizes

erage mask and tmpZ are reset to zero for further
processes.
By using the bit-mask cache, we do not need to fetch
the Z-buffer and search the farthest z-value. This
technique can make sure that the correct z-value is
stored in the HZ-buffer and will not introduce er-
ror at the HZ test. Because the triangles entering the

3D pipeline are most likely to be located on nearby
blocks, the bit-mask cache can get temporary cover-
age information very well. Since the block that is first
touched will probably be covered first, the cache re-
placement mechanics of the bit-mask cache is FIFO
(First In First Out). When the block is chosen for
replacement, the contents of the coverage mask and
tmpZ are discarded and reset. The cache size will
also influence the efficiency of the HZ test. The per-
formance under different cache sizes is also shown
in Fig. 8. We can see that the cache size slightly in-
fluences the performance. For cache sizes of 16 and
128 blocks, the performance differences are within
10 percent in these simulations. Thus a small bit-
mask cache of 16 or 32 blocks is sufficient for HZ
management to cache temporal pixel coverage in-
formation. Figure 7 also shows the detailed flow for
updating the HZ-buffer.

4 Dynamic bi-level hierarchical
Z-buffer compression

The size of the HZ-buffer depends on the screen res-
olution, HZ-buffer configuration, and depth numeric
accuracy. Table 1 shows the buffer size of a two-level
HZ-buffer under 8-bit depth accuracy. Without com-
pression, the original buffer size will consume a large
chip area, especially for higher resolutions and for
a small HZ block configuration. Since the contents
of the HZ-buffer is changed dynamically at run-time,
the compression technique should be simple and it
should be easy to decode the bit stream at run-time.
The spirit of the compression algorithm is not really
to losslessly encode the bit stream of the HZ-buffer,
but to preserve the correct depth order of triangles
and pixels. The algorithm should not cause defects
in the final image representation. Here we propose
a compression technique, which is called dynamic
bi-level HZ-buffer compression, to further reduce the
HZ-buffer size.
From observation, we can see that the depth dif-
ference between one block and its neighbor blocks
may not be large in the HZ-buffer. The reason is that
nearby blocks are most likely to be within the same
object at the same depth complexity. This feature is
significant when the block size is small. Thus we can
further make use of image-space coherence in the
HZ-buffer to reduce the buffer size. It is trivial to
select DPCM to encode the bocks. But DPCM will
result in a variable length bit stream and increase the

474 C.-H. Chen, C.-Y. Lee: Two-level hierarchical Z-buffer with compression technique for 3D graphics hardware

9

10

Fig. 9. The concept of dynamic bi-level HZ-buffer compression
Fig. 10. Relationship between NewZ, HHZ, and LHZ

complexity of HZ-buffer access. The performance
of fixed-length DPCM is also not good for dynamic
changes to the HZ-buffer at run-time. Figure 9 shows
the concept of dynamic bi-level HZ-buffer compres-
sion. In Fig. 9, one level-2 block represents 2 × 2
down-sampling of level-1 blocks. Instead of keeping
all of the depth of the four blocks, we classify these
blocks into two groups and store only two depths.
For those blocks that fall into a nearby depth re-
gion, we group them together and carefully assign
the depth to these blocks. This procedure can be done
by comparing the depth difference between the new
depth and the existing depth (HHZ and LHZ) in cor-
responding blocks. Thus for one level-2 block, it can
store depth complexity of two objects at any time.
This is sufficient for most cases within one level-
2 block. The final bit stream includes two z-values
(HHZ, LHZ) and a 4-bit index. Each bit of the index
indicates the depth of corresponding block, where
‘0’ and ‘1’ stand for HHZ and LHZ, respectively.

When a new depth newZ enters, we may modify
HHZ, LHZ and the index according to the position
of newZ on the z-axis. When newZ is close to HHZ,
we assign the block to HHZ. When newZ is close to
LHZ, the operation depends on the relative distance
of newZ and LHZ. Figure 10 shows the relationship
of newZ, HHZ, and LHZ. The newZ will not be far-
ther than HHZ and may fall on the left or right side of
LHZ. The encoding process is to determine HHZ and
LHZ, and preserve the correct depth order of these
four blocks. The pseudo-code for the encoding pro-
cess is shown below:

1. Initial:
HHZ = 1.0; L HZ = 1.0;

// Reset HHZ, LHZ to farthest value
Index[0 : 3] = "1111";

// Reset Index, ‘1’ represents HHZ, ‘0’ represents LHZ

2. Update:
// Input newZ and blockaddress (if blockaddress = 2 here)

C.-H. Chen, C.-Y. Lee: Two-level hierarchical Z-buffer with compression technique for 3D graphics hardware 475

Fig. 11. Data format of a original HZ-buffer b dynamic bi-level Compression HZ-buffer

if(Index[0 : 3] == "1111")
// Blocks are all HHZ

{ L HZ = newZ;
// Store newZ as LHZ
Index[blockaddress] = ‘0’;

// Set corresponding Index to ‘0’ }
else
{ dH = |newZ − HHZ|;

dL = |newZ − L HZ|;
if(dH < dL)

// newZ closer HHZ
{ Index[blockaddress] = ‘1’;

// Set corresponding Index to ‘1’
//assume blockaddress = 2

No_other_block_belong_to_HHZ =
∼ (Index[0]|Index[1]|Index[3]);
If(No_other_block_belong_to_HHZ)
HHZ = newZ;

// Else
// Do nothing; }

else // new Z closer LHZ
{ Index[blockaddress] = ‘0’;

If(Index[0 : 3] = "0000") //All block are LHZ
{
HHZ = Max(newZ, L HZ); // Update HHZ
LHZ=HHZ; // Reset HHZ=LHZ
Index[0 : 3] = ‘1111′; // Reset Index }

Table 1. HZ-buffer size (in KB) with and without compression

32×32–16×16 16×16–8×8 8×8–4×4

Compression No Yes No Yes No Yes
1600×1200 7.97 4.69 31.88 18.75 127.5 75
1280×1024 5.44 3.2 21.76 12.8 87 51.2
1024×768 3.26 1.92 13.06 7.68 52.2 30.7
800×600 2 1.17 7.97 4.69 31.9 18.75

Else
{ L HZ = Max(newZ, L HZ); } // Update LHZ

}
}

For next newZ, go to step2

During the encoding process, the contents of the
block are changed dynamically and the correct depth
order remains unchanged. The bit stream will be re-
duced from 34- to 20-bit, as shown in Fig. 11. The
size of the HZ-buffer will be decreased by about
40%, as shown in Table 1. Table 3 shows the re-
sult under dynamic bi-level compression. The per-
formance is only degraded by several percent due
to compression. Thus the dynamic bi-level compres-
sion algorithm can not only reduce the buffer size,
but can also preserve the performance.

5 Simulation results and analysis

Here we choose four scenes in Fig. 12 to simulate the
efficiency of our two-level HZ-buffer algorithm. Our
simulation is implemented with a standard graphics

476 C.-H. Chen, C.-Y. Lee: Two-level hierarchical Z-buffer with compression technique for 3D graphics hardware

House Car Teapot Coffee Shop Structure

8×8–4×4 6 12.59 32.92 27.67 11.91 34.73
8 12.77 34.99 28.02 13.08 36.79

12 12.86 35.55 28.08 13.20 37.41
16 12.86 35.61 28.08 13.24 37.49

16×16–8×8 6 9.41 25.60 24.56 12.15 18.4
8 9.44 26.91 24.80 12.90 20.24

12 9.45 27.41 24.92 13.23 20.82
16 9.45 27.49 24.92 13.25 20.85

32×32–16×16 6 5.14 17.43 19.71 11.29 3.53
8 5.16 18.30 19.78 11.73 3.87

12 5.18 18.79 19.83 12.12 3.99
16 5.18 18.84 19.84 12.13 4.04

Table 2. Percentage of bandwidth
reduction with different levels of
depth numeric accuracy (1280 ×
1024, 64 blocks bit mask cache
size)

Table 3. Triangles, pixels, and bandwidth reduction percentage under various HZ configurations and compression (64 blocks bit-
mask cache, 1280×1024 resolution)

House Cars Teapots
Total Triangles 316 671 454 746 102 400
Memory Access 436 234 387 337 147 354
Dynamic Bi-level Compression No Yes No Yes No Yes

% % % % % %

8×8–4×4 Triangle 20.7 21.76 34.9 39.39 5.5 9.9
Pixel 17.2 16.48 44.8 34.66 39.6 33.82
Bandwidth 12.8 12.27 35 28.78 28 26.72

16×16–8×8 Triangle 23.6 21.19 34.6 35.73 12.3 14.62
Pixel 10.2 9.95 30 23.02 28.7 21
Bandwidth 9.4 8.68 27 22.63 24.8 23.29

32×32–16×16 Triangle 14.9 17.22 32.5 30.53 14.4 13.61
Pixel 4.67 5.13 14.5 8.56 14.8 10.36
Bandwidth 5.2 5.48 18.3 21.03 19.8 18.39

pipeline in C++. Table 2 shows the performance for
different levels of z-value accuracy. Table 3 shows
the simulation results for different HZ-buffer config-
urations and compression at 8-bit HZ-buffer depth
accuracy for a 64-block bit-mask cache size with
a 1280 × 1024 image size. The complexity of the
test images is within 100∼600 K triangles. Back-
face culling [1] is enabled in the simulation. Without
back-face culling, the HZ-buffer can also take care of
the visibility of the back-face very well. The Z-buffer
memory access times are listed in Table 3. The num-
bers shown in Table 3 are the percentage of triangles
that fail the first triangle-level HZ test, the percentage
of pixels that fail the secondary pixel-level HZ test,
and the overall memory access reduction.
From Table 2, we can see that the performance does
not change to a great extent with different levels
of depth numeric accuracy. This is because for an
8-bit depth, the HZ-buffer can represent at most
256-level depth complexity, and this is sufficient

for most API’s. The performance difference will
be large when the depth complexity of the scene is
very large. Thus for hardware implementation, 8-
bit HZ accuracy is fine for most applications and
memory alignment considerations. Higher accuracy
will increase the efficiency. There is a tradeoff be-
tween performance and buffer size. From Table 3,
we can see that the overall bandwidth reduction is
10∼35 percent. The dynamic bi-level compression
technique reduces the performance by only several
percent. The simulation results are application de-
pendent. The properties of different applications may
affect the results significantly. For high-occlusion
models (Cars, Teapots, and Structure), the HZ-buffer
efficiency is high. For a low-depth complexity im-
age (House), the efficiency is low. Different HZ
block-size configurations also result in different ef-
ficiencies of the HZ test. For a large triangle image
(Teapots), the efficiency of the HZ test at the trian-
gle level is low for a small block HZ configuration

C.-H. Chen, C.-Y. Lee: Two-level hierarchical Z-buffer with compression technique for 3D graphics hardware 477

a

b

c

d

e

Fig. 12. Test images

(8×8–4×4). Since a larger block size can give more
triangle-level coherence in image space, increasing
the HZ block size to 32 × 32–16 × 16 will increase
the efficiency. For a small triangle image (Structure),
the performance increases largely due to good pixel-
level coherence for a small block size. The second
pixel-level HZ test efficiency is reduced by increas-
ing the block size. Obviously, a small block size will
give a more detailed z-value and result in a more
accurate HZ test and image-space coherence. But
a small block size will increase the HZ buffer size.
A large block size will also result in greater effort
in updating the HZ-buffer. Thus the HZ-buffer con-

figuration is a trade-off between performance and
hardware cost. Here we suggest a 16 × 16–8 × 8,
8-bit accuracy HZ-buffer configuration. A 32- or
64-block bit-mask cache size is sufficient for most
applications.

6 Conclusion

Fast visibility tests and occlusion-culling algorithms
have been important topics in 3D graphics over the
past decades. However most of the solutions are
not easy to implement on current hardware. A fast

478 C.-H. Chen, C.-Y. Lee: Two-level hierarchical Z-buffer with compression technique for 3D graphics hardware

and efficient hardware-support visibility-test algo-
rithm is very important. The HZ-buffer meets this
requirement. It is a good approach for accelerating
visibility tests and efficiency. Since it is invisible
in applications, modification of the API is not re-
quired to get the benefit of the HZ-buffer. In this
paper, we propose a two-level HZ-buffer algorithm,
and solve the problems of hardware implementation.
The visibility tests are done both at the triangle-level
and at the pixel-level. We also show how to con-
struct and manage the HZ-buffer when applying it
to hardware. A bit-mask cache is proposed to store
the temporal pixel coverage information and solve
the update problem of the HZ-buffer. Simulation re-
sults show that a small bit-mask cache can achieve
good performance and solve the update problem. We
also propose a dynamic bi-level HZ-buffer compres-
sion technique to further reduce the HZ-buffer size
while maintaining good performance. The compres-
sion technique is easy to encode and decode. It can
reduce the HZ-buffer by about 40% of its original
size.
For hardware implementation considerations, we
suggest a 16 × 16–8 × 8 HZ-buffer configuration,
8-bit z-value accuracy, and a 64-block bit-mask
cache size. This configuration performs well for
most cases. The bandwidth reduction under differ-
ent HZ-buffer configurations is also shown for the
trade-off between performance and hardware cost
considerations. By applying our technique to hard-
ware, the invisible triangles and pixels can be quickly
discarded. The overall graphics pipeline can also run
smoothly with the overhead of HZ-buffer hardware.
For future content-rich applications, the hardware
should integrate more advanced hidden surface re-
moval technology, such as object-space occlusion
and temporal-space coherence. The graphics library
should also support these techniques and be incorpo-
rated into the hardware to provide a high-efficiency
low-overhead solution.

Acknowledgements. This work was supported by the National Science
Council of Taiwan, ROC, under Grant No. NSC90-2218-E-009-080.

References

1. Blinn J (1996) Jim Blinn’s corner: a trip down the graph-
ics pipeline. Morgan Kaufmann Publishers, San Francisco,
pp 191–197

2. Catmull E (1975) Computer display of curved surfaces. In:
Proc IEEE Conf Computer Graphics, Pattern Recognition
and Data Structures, pp 11–17

3. Fuchs H, Kedem ZM, Naylor BF (1980) On visible sur-
face generation by a priori tree structures. Comput Graphics
14(3):124–133

4. Gordon D, Chen S-H (1991) Front-to-back display of BSP
trees. IEEE Comput Graphics Appl 11(5):79–85

5. Greene N, Kass M, Miller G (1993) Hierarchical Z-buffer
visibility. In: Proc SIGGRAPH ’93, pp 231–238

6. Luebke D, Georges C (1995) Portals and mirrors: simple,
fast evaluation of potentially visible sets. In: Proc 1995
Symp Interactive 3D graphics, pp 105–106

7. Moller T, Haines E (1999) Real-time rendering. A.K. Pe-
ters, Natick, pp 192–218

8. Morein S (2000) ATI Radeon HyperZ technology. In: Euro-
graphics Hardware Workshop 2000, Hot3D Panel

9. nVidia (2001) Technical brief: Geforce3: Lightspeed mem-
ory architecture. http://www.nvidia.com

10. Xie F, Shantz M (1999) Adaptive hierarchical visibil-
ity in a tiled architecture. In: Proc 1999 Eurograph-
ics/SIGGRAPH Workshop on Graphics Hardware, pp
75–142

11. Zhang H, Manocha D, Hudson T, Hoff KE (1997) Visibil-
ity culling using hierarchical occlusion maps. In: Proc 24th
Conf Computer Graphics and Interactive Techniques 1997,
pp 77–88

Photographs of the authors and their biographies are given on
the next page.

C.-H. Chen, C.-Y. Lee: Two-level hierarchical Z-buffer with compression technique for 3D graphics hardware 479

CHEN-YI LEE received his
B.S. degree from the National
Chiao Tung University, Hsinchu,
Taiwan, in 1982, and his M.S.
and Ph.D. degrees from the
Katholieke University Leuven
(KUL), Belgium, in 1986 and
1990, respectively, all in elec-
trical engineering. From 1986
to 1990 he was with IMEC/
VSDM, working in the area of
architecture synthesis for DSP.
In February 1991, he joined the
faculty of the Electronics En-
gineering Department, National

Chiao Tung University, Hsinchu, Taiwan, where he is currently
a Professor. His research interests mainly include VLSI algo-
rithms and architectures for high-throughput DSP applications.
He is also active in various aspects of high-speed networking,
system-on-chip design technology, very low bit rate coding, and
multimedia signal processing.

CHENG-HSIEN CHEN was
born in Tainan City, Taiwan,
R.O.C., on August 6, 1975. He
received his Ph.D degree from
the Department of Electron-
ics Engineering, National Chiao
Tung University, Hsinchu, Tai-
wan, in 2003. His research in-
terests include VLSI algorithms
and architectures (include 3D
graphics and video systems),
and memory optimization for
system-on-chip design.

