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Abstract. An edge dominating set of a graph is a set of edges D such that every edge not in
D is adjacent to an edge in D. An edge domatic partition of a graph G = (V, E} is a collection
of pairwise disjoint edge dominating sets of G whose union is E. The maximum size of an
edge domatic partition of G is called the edge domatic number of G. In this paper we study
the edge domatic numbers of complete n-partite graphs. In particular, we give exact values
for the edge domatic numbers of complete 3-partite graphs and balanced complete n-partite
graphs with odd n.

1. Introduction

In this paper all graphs are simple, i.e., finite, undirected, loopless, and without
multiple edges. An edge dominating set of a graph is a set of edges D such that every
edge not in D is adjacent to an edge in D. An edge domatic partition of a graph
G = (V, E)is a collection of pairwise disjoint edge dominating sets of G whose union
is E. The edge domatic number problem is to determine the edge domatic number
ed(G) of G, which is the maximum size of an edge domatic partition of G. Zelinka
[8] showed that §(G) < ed(G) < 8.(G) + 1 where 6(G) is the minimum degree of a
vertex in G and J,(G) is the minimum degree of an edge in G. He also determined
the values of ed(G) when G are circuits, complete graphs, complete bipartite graphs,
and trees. Algorithmic resuits on domatic numbers are also extensively studied in
[1,2,3,5,6].

The purpose of this paper is to study the edge domatic number of a complete
n-partite graph K,, ., whosepartsare M,,..., M, of sizem, ..., m,, respectively.
For simplicity, we assume m; <-:- <m,. For 1 <i <j <t, we denote by E;; the
set of all edges between M; and M, ie, E;; = {(a,b): 1 <a<m;and 1 <b <m}.

It is well known that ed(K,,, ,,,) = m,. In general, the exact value of the edge
domatic number of a complete n-partite graph with n > 3 is not easy to find. This
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paper gives exact values for the edge domatic numbers of complete 3-partite graphs
and balanced complete n-partite graphs with odd n.

2. Edge Domatic Numbers of Complete 3-Partite Graphs

This section determines the exact value of the edge domatic number ed(K,,,, m,,m,)
of a complete 3-patite graph K, m, m, With m; < m, < ms.

In a graph G, an edge set A is said to cover a vertex v i times if v is incident to
at least i edges in A. An edge set A is said to cover a vertex set B if every vertex in
B is incident to some edge in 4. Note that an edge set D is an edge dominating set
of K,,.....m, if and only if D covers | | M; for some i.

#i

First of all, we shall establish thJe lower bound of ed(K,,, m,,m,)- To do this, we
want to partition E(K,,, ., »,) into as many edge dominating sets as possible. For
convenience, we need the following notation. Suppose r, s, t are integers and
1 <t < m;m;/d;; where d;; is the greatest common divisor of m; and m;. Denote by
E;(r,s,t) the set {(amodm;, (a + ymodm;)€e E;za=5+1,5+2,...,5s + 1t} and
E;(r) = E;;(r,0,m;m;/d,;), where “x mod y” always results a positive integer between
1andy.

Lemma 2.1.|E; i(r,s,t)| = t. Also, E;(r, s, m;) covers M; and E;(r, s, m;) covers M; U M.

Proof. Suppose (amodm;,(a + rymod m;) = (bmodm,, (b + rymodm;) for some
s+1<a<b<s+t Then b —ais a common multiple of m; and m;. However
0<b—ac<t—1<mmyd;where mym;/d;is the least common multiple of m; and
m;. So a = b and hence |Ey(r,s,t)| = t.

E;(r, s, m;) covers M, since amod m; ranges over {1,2,...,m;} when a ranges over
{s+1,s +2,:..,5 + m;}. Similar arguments and the fact that m; < m; imply that
E;i(r,s,m;) covers M;UM,. O

Lemma 2.2. E;; can be partitioned into E;(r),r = 1,2,..., d;;.

Proof. Suppose there exist 1 <r <s < d,; such that E;;(r)NE;(s) # @, i.e,a=b
(modm,) and a + r = b + s (mod m;) for some 1 < a, b < m;m;/d;;. Since d;; is a
common divisor of m; and m;, a = b (modd;;) and a + r = b + s (mod d;;). These
imply that r = s (mod d,;), in contradictionto 1 <r <5 < d;;. d

my + 2my + my(my — my)/ms |,

Lemma 2.3. ed(K,,, ,, m,) = {
T my + my + {m(m, — m;)/ms].

Proof. By Lemma 2.2, we can partition E,, into E;,(r), ! <r <d,,. By Lemma 2.1,
we can further partition each E, ,(r) into E,,(r,(i — 1)m;,m,),1 <i < m,/d,,, each
of size m; and covering M, but covering only m, vertices of M,. For simplicity, we
denote these m, sets by 4,, ..., A,,. The idea is for each j to find a subset B; of E, 3
such that |B;| = m, — m; and A4;U B; covers M,.

Suppose m,(m, — m,) = a(m,m;/d,;) + f where 0 < f < m,m,/d;5. Note that
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Bisamultiple of m,. Let B = | ) E,5(r)U E,3(x + 1,0, f). Then Bis of size m,(m, — m,)
r=1

my
and covers each vertex of M, exactly m, — m, times. Since E,, = |} A4;covers each
M

vertex of M, exactly m, times and each A4; covers each vertex of M, at most once,
we can partition B into By, ..., B, each of size m, — m; such that 4;U B; covers
M, for 1 <j < m,. Then each 4;U B, covers M; UM,, ie., E;, U B can be parti-
tioned into m, edge dominating sets of K, .. m.-

For the first lower bound, we shall partition the remaining edges into dominating
da3

sets of sizem;. Notethat E;3; — B = E 3(a + 1,8,mym;/dys — )U |) Eja(r)and

r=a+2
dyis
E 3 = {J E5(r). By Lemma 2.1, Ey3(x + 1, 8,mym;/d,5 — B) can be partitioned
r=1

into |(mym,/d,5 — B)/ms] = |m,/d,5 — B/m; ] edge dominating sets and each E,;(r)
(resp. E,5(r)) can be partitioned into m,/d,; (resp. m,/d,;) edge dominating sets.
Hence E(K,,,, m, m,) can be partitioned into m, + |m,/d,3 — f/ms]| + (dy3 —« —
Dmyfdyy + diamyfdis = my + 2my + | —amy/dy; — B/ms] = my + 2m, +
{m,(my; — m,)/m,| edge dominating sets. These give the first lower bound in the
lemma.

For the second lower bound, by Lemma 2.1, E,3 — B = E,3(a + 1, ,m,m;/

dys
—B)U |J E,3() can be partitioned into (mym;/d,; — B)/my + (dys — o —
r=a+2

(m,ymy/d,y3)/my, = my —my + my sets Cy, ..., Cp._pmy+m, €ach of size m, and
covering M,. Suppose m;(m; —m, + m,) = l(m1m3/d13) + pwhere0 < p <mym,/

d,. Note that y is a multiple of m,. Let D = U E 3(r)UE 3(1 + 1,0, ). Then, by

Lemma 2.1, D can be partitioned into l(m1m3/d13)/m1 + p/m, =my —my, +m,
sets Dy, ..., Dp,_m,+m, €ach of size m;, and covering M,. Then each C;UD,
1 <i<my—m, + my,covers M, UM,. So (E,3 — B)UD can be partitioned into
my — m, + m, edge ddominating sets. Finally, by Lemma 2.1, E,; — D = E 54 + 1,

pymymy/d, s — U _LA)H E,;(r) can be partitioned into [(m,m;/d,5 — w)/m;] +

(dys — A= 1)(mymy/d,3)/my = |m(m, — m)/m;] edge dominating sets. Hence
ed(Kp, mymy) = My + (M3 — my + my) + |my(my — my)fmy| = my + my +
Lm,(m, — m,)/m5]. These give the second lower bound of the theorem. O

Note that for the two lower bounds in Lemma 2.3, m; + 2m, + {m,(m; — m,)/
ms] <my; + my + my(m, — m;)/m;] if and only if or m; + m, < mj;.

We now give an example to demonstrate Lemma 2.3, as follows. Consider
Ko, mpm, Withmy =3, m, =8andm, = 12. Let M, = {1,2,3}, M, = {1,2,...,8}
and M; = {17,2",...,12"}. In Fig. 2.1 and Fig. 2.2, an entry (a, b) represents an edge
(@,b) of Ky s ms and entry (a, b) is numbered by i when edge (a, b) is in the i-th edge
dominating set X ;.

In Fig. 2.1, E, is partitioned into A,, ..., A4, each of size 3 and covering M,
but covering only 3 vertices of M,. Gray entries in E,; form the set B of size 40. B
is partitioned into By, ..., By such that X, = A, UB,, ..., X3 = 44U Bg are edge
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1 2 3 4* 5 &' 7° 8 1" 2* 3" 4 5- g~ 7T 8= 9" 1o 11" 12"

Fig. 2.1. An edge domatic partition of K g ,,, which has 15 edge dominating sets

8" 9= 10" 11~ 12"

i 2* 3 4 5’ & 7' 8" 1 2%

15

15

6!
7112
8 |_9

Fig. 2.2. An edge domatic partition of K g ;,, which has 16 edge dominating sets

dominating sets. E,; — B is then partitioned into 4 edge dominating sets X, ...,
X, with 8 edges unused. Finally, E, ; is partitioned into 3 edge dominating sets
X13, X14 and X, 5. So, there are a total of m; + 2m, + |my(m; — m,)/m5] = 15
edge dominating sets.

In Fig. 2.2, we also partition E,, into A, ..., Ag and Binto B,, ..., Bg to form
8 edge dominating sets X; = A, UB,, ..., Xg = AgU Bg. Then, E,; — B is parti-
tioned into 7 sets C,, ..., C,, each of size 8 and covering M,. White entries in E, 5
form the set D of size 24. D is partitioned into 7 sets D, ..., D, each of size 3 and
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covering M, , with 3 edges unused. So, Xy = C,UD,,..., X5 = C;UD, are 7 edge
dominating sets. Finally, E,; — D is partitioned into 1 edge dominating set X .
So there are a total of m, + my + |m,;(m, — m,)/m;] = 16 edge dominating sets
altogether.

For the upper bound of ed(K,, ., m,), assume P is an edge domatic partition of

K and x; = |{D € P:|D| = i}| for each i. Note that P contains Z x; edge

my,my,msy

Since the size of each edge dominating set of K

my,mz,msy

dominating sets of K, 1, m,-
is at least m,, we have
Y ix;=mym, + mymy + mym, 2.1

izm,

Lemma 24. ) (m; + m, — i)x; < mym, where a = min{m, + m, — 1,m; — 1}.
i=my

Proof. Let D be any edge dominating set of K,, .., ., With m, <|D|=i<a
It suffices to prove that DN E,, has at least m; + m, — i edges. Suppose not,
te., DN E,, hasat most m; + m, — i — 1 edges and so it covers at most m; + m, —
i — 1 vertices of M, . Since |D| < « < m3 — 1, D cannot cover M;. Then, since D is
an edge dominating set of K,, ., m,» D covers M; U M,. Therefore, DN E, 5 covers
at least i + 1 — m, vertices of M, and so |[DNE,3| > i+ 1 — m,. However, since
D covers M,, |DN(E,; UE,;)| = m,. Hence |D| = |DNE ;| + |DN(E,, U E,3)| =

i+ 1, in contradicts to |D| = i. Hence Y, (m; + m, — i)x; < mym,. O

i=my

Lemma25. ) x;<m; +m;

my;<i<mj
Proof. Let D be any edge dominating set of K, ,,, ., Withm, <{D| =i < m;. Since
D cannot cover M,, D covers M, U M,. By the fact that D covers M,, | DN(E,, U E,;)]
>m,. Therefore,m, ), x;<my(my, +my)ie, Y x;,<my +ms. O

my<i<ms my<i<mg

my + 2m, + [my(my — my)/myif my + my, > ms,

Lemma 2.6. ed(K,, ., m.) < -
Koy ms,ms) {ml + ms + [my(my —my)/ms]if my + my <mj.

Proof. In the case of m;, + m, > m;, the « in Lemma 2.4 is equal to m; — 1. By
multiplying the inequality of Lemma 2.4 by (m; — m,)/m, and adding it to (2.1),
we have

2 G+ (my+my —i)(my — my)/my)x; + z ix;

my<i<ms izms
S m3(m1 + 2m2) + mz(ml - mz)

Form, <i<ms, i+ (my +my, —i)(imy —my)/m; =my + (@ —my)(m, + my —ms)/
my > mj. Therefore,my Y. x; < my(m, + 2m,) + my(m, — m,)and so ed(K,n,, mym;)
izmy
< Y X <my+ 2my + [my(my — my)/m;y .
izm;,
In the case of m; + m, < m;, « = m; + m, — 1. By multiplying the inequality
in Lemma 2.5 by m; — m; — m, and adding it to (2.1) and the inequality in Lemma
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2.4, we have

myx; + Z (+my—my+mx; + Z ix;

my<i<m; +my my tmy<i<ms izmsy
< my(m; + m3) + my(m; — my).

Note that each coefficient of x; in the left hand side is greater than or equal to m,.
Then ed(K,,,, my,m,) < Z X, <my +my + |m(m; —m;)/ms]. J

izm;y

my + 2my + [my(my — my)/my]if my + my 2 ms,

Theorem 2.7. ed(K =
Koo, ms) {ml + my + |my(my, — my)mylifmy + my < mj.

Proof. This theorem follows directly from Lemmas 2.3 and 2.6. O

3. Balanced Complete n-Partite Graphs

Now we consider the edge domatic number problem for the balanced complete
n-partite graph K(r,n) = K, , in which every part has exactly r vertices. Exact
values for ed(K(r, n)) with odd n and ed(K(r, 4)) with even r are given in this section.
Note that ed(K(r, 2)) = r. So we only consider ed(K(r, n)) for n > 3. Also, K(1,n) =
K, and it was showed in [8] that ed(K,) = nfor odd n > 3.and ed(K,) = n — 1 for
even n.

Let G* = (V®, E®) be the graph obtained from a graph G = (¥, E) by dupli-
cating each vertex k times, i.e.,

VO = {v,,...,00:veV}
and

E® = {(u;,v;: (u,v)e Eand 1 <i,j < k}.

Lemma 3.1. ed(G®) > ked(G)

Proof Let P = {D,,..., D} be an edge domatic partition of G. It suffices to prove
that G® _has ked(G) pairwise disjoint edge dominating sets. For every D, € P, we
construct k edge dominating sets of G* as follows:

Dq,j = {(ui’vi+j): (u,v) € Dq’]- S l S k}7 1 S.} —<— k,

where index of v, is taken modulo k. It is straightforward to check that each D, ;
is an edge dominating set of G®, and so G* has ked(G) pairwise disjoint edge
dominating sets. O

Theorem 3.2. ed(K(r,n)) < r*n(n — 1)/2[r(n — 1)/2] < rn for n > 3.

Proof. Since every edge dominating set of K(r,n) must cover at least n — 1 parts of
K(r,n), every edge dominating set of K(r,n) has at least [r(n — 1)/2] edges. The
theorem follows from this and that K(r, n) has r’n(n — 1)/2 edges. : ]
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Although we believe that the upper bound r*n(n — 1)/2[r(n — 1)/2] in Theorem
3.2 is the exact value of ed(K(r, n)) for n > 3, only two cases have been settled: those
where n is odd and r is even with n = 4.

Theorem 3.3. ed(K(r,n)) = rnif n > 3 and n is odd.

Proof. ed(K(r,n)) < rn by Theorem 3.2. On the other hand, by [4], ed(X,) = n for
odd n. By Lemma 3.1, ed(K(r,n)) = ed(K") > red(K,) = rn. So ed(K(r,n)) = rn.
a

By [4], ed(K,) =n — 1 when n is even. Again, by Lemma 3.1, ed(K(r,n)) =
ed(K") > red(K,) = r(n — 1). There is a gap between the lower bound r(n — 1) and
the upper bound in Theorem 3.2. We now consider ed(K(r,4)) when r is even.

Theorem 3.4. ed(K(r,4)) = 4r if r is even.

Proof. For the case of r = 2, let the vertex set of K(2,4) be {09, 19: i = 1,2,3,4} and
the edge set of K(2,4) be {(x?,y¥): x,y € {0,1},1 < i  j < 4}. Then ed(K(2,4)) =
8, as it is straightforward to check that the following sets A,, ..., Ag are pairwise
disjoint edge dominating sets of K(2,4):

Al = {(0(1), 0(2))’(1(2)’ 0(3)),(1(3)’ 1(1))}’
A, = {(0(2)’ 0(3)),(1(3), 0(4)),(1(4), 1(2))}’
4 = {(19,19),09,00), (1,09},
A, = {(0(4), 1(1))’ (0(1)’ 1(2)), (0(2), 1(4))},
As = {(1(1)’ 1(2)), (0(2), 1(3))’ (0(3)’ 0(1))},
Ag = {(19,1®), (0P, 19, (0@, 02))},
A, = {(0®,0@),(1¥), 1W), (0™, 1)},
Ag = {(1¥,01), (1D, 0®), (1, 0@},

In general, let r = 2s. Then K(r, 4) = K(25,4) = K(2,4)®. By Lemma 3.1, ed(K (r, 4))
> sed(K(2,4)) > 85 = 4r. On the other hand, ed(K(r,4)) < 4r by Theorem 3.2.
Hence ed(K(r,4)) = 4r. O

We close this paper by the following conjecture: ed(K (r, n)) = r*n(n — 1)/2[r(n — 1)/
2} forany n > 3. The solutions to the domatic numbers of general complete n-partite
graphs are also desirable.
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