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Abstract. An edge dominating set of a graph is a set of edges D such that every edge not in 
D is adjacent to an edge in D. An edge domatic partition of a graph G = (V, E) is a collection 
of pairwise disjoint edge dominating sets of G whose union is E. The maximum size of an 
edge domatic partition of G is called the edge domatic number of G. In this paper we study 
the edge domatic numbers of complete n-partite graphs. In particular, we give exact values 
for the edge domatic numbers of complete 3-partite graphs and balanced complete n-partite 
graphs with odd n. 

1. Introduction 

In this paper all graphs are simple, i.e., finite, undirected, loopless, and without 
multiple edges. An edge dominating set of a graph is a set of edges D such that every 
edge not in D is adjacent to an edge in D. An edge domatic partition of a graph 
G = (V, E) is a collection of pairwise disjoint edge dominating sets of G whose union 
is E. The edge domatic number problem is to determine the edge domatic number 
ed(G) of G, which is the maximum size of an edge domatic partition of G. Zelinka 
[8] showed that tS(G) _< ed(G) < tSe(G ) + 1 where cS(G) is the minimum degree of a 
vertex in G and re(G) is the minimum degree of an edge in G. He also determined 
the values ofed(G) when G are circuits, complete graphs, complete bipartite graphs, 
and trees. Algorithmic results on domatic numbers are also extensively studied in 
[1,2,3,5,6].  

The purpose of this paper is to study the edge domatic number of a complete 
n-partite graph KI ,  . . . . . . .  whose parts are M1, . . . ,  M, of size ml . . . . .  m,, respectively. 
For  simplicity, we assume mt < ... < m,. For  1 < i < j < t, we denote by Eij the 
set of all edges between Mi and Mj, i.e., Eij= {(a,b): 1 < a < mi and 1 < b < mj}. 

It is well known that ed(K . . . .  2) = m2" In general, the exact value of the edge 
domatic number of a complete n-partite graph with n > 3 is not easy to find. This 
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paper  gives exact values for the edge domatic numbers of complete 3-partite graphs 
and balanced complete n-partite graphs with odd n. 

2. Edge Domatic Numbers of Complete 3-Partite Graphs 

This section determines the exact value of the edge domatic number  ed(Kmz,m2,,n3) 
of a complete 3-patite graph Km,.m2,m3 with rn~ < m 2 < m 3. 

In a graph G, an edge set A is said to cover a vertex v i times if v is incident to 
at least i edges in A. An edge set A is said to cover a vertex set B if every vertex in 
B is incident to some edge in A. Note  that an edge set D is an edge dominating set 
of Kml . . . . . . .  if and only i fD covers U My for some i. 

First of all, we shall establish the lower bound of ed(Km~,m~,m~). To do this, we 
want to partition E(Km,m~,m) into as many  edge dominating sets as possible. For  
convenience, we need the following notation. Suppose r, s, t are integers and 
1 < t < m~mJd~y where d~y is the greatest common divisor of m~ and my. Denote by 
Eiy(r,s,t) the set {(amodmi,  (a + r ) m o d m  i) ~ Eo: a = s + 1,s + 2 . . . . .  s + t} and 
E~y(r) = Eiy(r, O, rn~mJd~y), where "x mod  y"  always results a positive integer between 
1 and y. 

Lemma  2.1. [Eij(r, s, t) l = t. Also, Eiy(r, s, mi) covers Mi and Eiy(r, s, my) covers M i U My. 

Proof. Suppose (a rood m/, (a + r) rood rn~) = (b m o d  m/, (b + r) mod  %) for some 
s + 1 < a _< b _< s + t. Then b - a is a common multiple of rn~ and m r. However  
0 < b - a <_ t - 1 < m~my/diy where m~my/d~y is the least common multiple ofm~ and 
%. So a = b and hence IEiy(r,s,t)[ = t. 

Eiy(r, s, mi) covers Mi since a mod m/ranges over { 1, 2 . . . . .  mi} when a ranges over 
{s + 1, s + 2, : . . ,  s + m~}. Similar arguments and the fact that m~ < my imply that  
Eiy(r, s, n~) covers M i [.J My. [] 

Lemma 2.2. E o can be partitioned into Eij(r), r = 1, 2, . . . ,  di~. 

Proof. Suppose there exist 1 _< r < s < dij such that  E~j(r)fq Eo(s ) ~ ~,  i.e., a - b 
(rood mi) and a -b r =- b + s (mod my) for some 1 < a, b < raimJd O. Since diy is a 
common divisor of m~ and my, a - b (mod dij) and a + r - b + s (mod d~y). These 
imply that r = s (mod d~y), in contradiction to 1 < r < s < d~j. [ ]  

Lemma  2.3. ed(K,,l,m2,m3) > fm l  + 2m2 + [m2(ml - m2)/msJ, 
- [ml  + m3 + [ml(m2 - ml)/msJ- 

Proof. By Lemma 2.2, we can partition E12 into E12(r ), 1 < r _< d12. By Lemma 2.1, 
we can further partition each Ela(r) into E12(r, (i - 1)m 1, ml), 1 < i < mz/d12, each 
of size m~ and covering M~ but covering only m~ vertices of M 2. For  simplicity, we 
denote these mE sets by Ax . . . . .  A, , .  The idea is for eachj  to find a subset Bj of E23 
such that IBjl = m2 - ml and AjUBj c o v e r s  M 2. 

Suppose m2(m 2 - ml) = ~(rn2m3/d23 ) + fl where 0 < fl < m2m3/d23. Note that 
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fl is a multiple of  m 2 . Let B = g E23 (r) U E 23 (ct q- 1, 0, fl). Then B is of size m 2 (m 2 - -  m 1) 
r= l  

Ftl 2 

and covers each vertex o f M  2 exactly m 2 -- m 1 times. Since El2 = U Aj covers each 
j = l  

vertex of  M 2 exactly m 1 times and each Aj covers each vertex of M 2 at mos t  once, 
we can par t i t ion B into B~ . . . . .  Bm~ each of  size m 2 - -  m 1 such that  A~U Bj covers 
M 2 for 1 _<j < m 2. Then  each A j U B j  covers M i UM2, i.e., E1EUB can be parti- 
t ioned into m 2 edge domina t ing  sets of  K,I . ,~, ,~.  

Fo r  the first lower bound,  we shall partit ion the remaining edges into dominat ing 
d2a 

s e t s o f s i z e m a . N o t e t h a t E 2 3  - B = E23(ct + 1,fl, m2m3/d23 - fl)U U E2a(r) and 
r=~ t+2  

dla  

El3 = U Ela(r)" By L e m m a  2.1, E2a(Ct + 1,fl, m2m3/d2a - fl) can be part i t ioned 
r = l  

into L ( m 2 m a / d 2 3  - fl)/maJ = L m 2 / d 2 3  - fl/maJ edge dominat ing sets and each E23( r  ) 

(resp. Eia(r)) can be part i t ioned into m2/d23 (resp. ml/d l3  ) edge domina t ing  sets. 
Hence E ( K  . . . .  ~.,,~) can be part i t ioned into m 2 q- L m 2 / d 2 3  - fl/maJ + (d2a - ot - 

1)m2/d23 + d laml /d l3  = m 1 + 2m 2 + [-o~m2/d23 - fl/maJ = m 1 + 2m 2 + 
I.mz(m 1 - m2)/ra3J edge domina t ing  sets. These give the first lower bound  in the 
lemma. 

F o r  the second lower bound,  by L e m m a  2.1, E23 -- B = E23(g + 1,fl, m2m3/ 
d2a 

d2a - fl)O U E23(r ) can be part i t ioned into (m2ma/d23 - fl)/m 2 + ( d 2 3 -  g - 
r = a + 2  

1)(m2ma/d23)/m2 = m a -  m2 + mx sets Cx . . . .  , C,,3-r~+m~ each of  size m 2 and 
coveting M2. Suppose ml(m a - m 2 + m l )  = 2(mlma/di3 ) + # where 0 < # < reims~ 

l 

d~ 3. N o t e  tha t  # is a multiple of  m~. Let D = U E13(/') U g 13 (2  -~- 1, 0 ,  # ) .  Then, by 
I"=1 

L e m m a  2.1, D can be part i t ioned into 2(mlm3/dia) /m 1 + #/m i = m a - m 2 q- m i 
sets D 1 . . . .  , Dm3-m2+m~ each of  size m~ and covering M 1. Then  each CiUDz, 
1 _< i _< m a -- m 2 + ml,  covers M 2 U M i .  S o  (E23 - B) U D can be part i t ioned into 
m3 - m2 -km i edge domina t ing  sets. Finally, by L e m m a  2.1, E13 - D = E13(2 + 1, 

dxa 

lz, m l m 3 / d l 3 -  #)U ~ Ela(r) can be part i t ioned into I.(mlm3/dl3 - # ) / m 3 J  + 
r =,; .+2 

( d i s -  2 -  1)(mima/d13)/m a = [ m l ( m 2 -  ml)/maJ edge dominat ing  sets. Hence 
e d ( K m t , m 2 , m 3  ) >_ m 2 -b (m 3 - -  m 2 -I.- / ' h i )  + kmx(m2 - mi)/maJ = m i + m 3 --k 

Lmi (m 2 - mx)/maJ. These give the second lower bound  of  the theorem. [ ]  

No te  tha t  for the two lower bounds  in L e m m a  2.3, ml + 2m2 -t- Lm2(mi - m2)/ 
m3] < ml + m3 + Lml(m2 - ml)/rn3J if and  only if or mi + m2 < m3. 

We now give an  example to demonst ra te  L e m m a  2.3, as follows. Consider  
K . . . .  2,m3 with m 1 = 3, m 2 = 8 and m 3 = 12. Let M 1 = {1,2,3}, M 2 = {1',2', . . . .  8'} 
and M 3 = { 1", 2" , . . . ,  12"}. In  Fig.  2.1 and Fig. 2.2, an entry (a, b) represents an edge 
(a, b) of  K . . . .  2.,~3 and  entry (a, b) is numbered  by i when edge (a, b) is in the i-th edge 
dominat ing  set X~. 

In  Fig. 2.1, E12 is part i t ioned into A 1 . . . . .  A a, each of  size 3 and covering M 1 
but covet ing only 3 vertices of  M2. G r a y  entries in E23 form the set B of  size 40. B 
is part i t ioned into B 1 . . . . .  B s such that  X 1 = A~ U B 1 . . . . .  X s = A a U B s are edge 
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Fig. 2.1. An edge domatic partition of K s . s ,  12, which has 15 edge dominating sets 

Fig. 2.2. An edge domatic partition of K3.s ,  12, which has 16 edge dominating sets 

dominating sets. E23  - -  B is then parti t ioned into 4 edge dominating sets X 9 . . . . .  
X12 with 8 edges unused. Finally, Ea3 is parti t ioned into 3 edge dominating sets 
Xx3, Xa4 and X~5. So, there are a total of ml + 2m2 + [.m2(ml - rn2)/m3J = 15 
edge dominating sets. 

In Fig. 2.2, we also partition Ea2 into A~, . . . ,  A 8 and B into B 1 . . . . .  B 8 to form 
8 edge dominating sets X 1 = A a t.J Bx . . . . .  X 8 = A 8 t.J B a. Then, E23 -- B is parti- 
tioned into 7 sets Ca . . . . .  C7, each of size 8 and covering M2. White entries in E13 
form the set D of size 24. D is partit ioned into 7 sets D 1 . . . . .  D 7, each of size 3 and 
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cover ing  M1, with 3 edges unused.  So, X 9 = C1 U D 1 . . . . .  X~5 = C7 U D7 are  7 edge 
d o m i n a t i n g  sets. F ina l ly ,  El3 - D is pa r t i t i oned  into 1 edge d o m i n a t i n g  set X~6. 
So there  are  a to ta l  of m 1 + m 3 q- Lm~(m2 - m~)/m3J = 16 edge d o m i n a t i n g  sets 
a l together .  

F o r  the  upper  b o u n d  of  ed (K  . . . .  ~,m~), assume P is an edge doma t i c  pa r t i t i on  of  
K . . . .  ,,m3 and  x i = I{D e P:  [DI = i}l for  each i. N o t e  tha t  P conta ins  ~ xi edge 

i 

d o m i n a t i n g  sets of  Kml,m2,m~. Since the size of  each edge domina t ing  set of  Km,,~2,m3 
is a t  least  m2, we have  

2 ixi = mlm2 "-F mira 3 q" m2m 3 (2.1) 
i ~ m  2 

L e m m a  2.4. ~ (m i + m 2 - -  i ) x  i <_ m i r a  2 where c~ = min{m 1 + m 2 - -  1 , m  3 - -  1}. 
i = m  2 

Proof.  Let  D be any edge d o m i n a t i n g  set of K~l,m2,m 3 with m 2 _ ID[ ---- i _< C(. 
I t  suffices to p rove  tha t  D f] E12 has at  least  mx + m 2 - -  i edges. Suppose  not,  
i.e., D f') E l 2  has at  mos t  ml + m2 - -  i - 1 edges and so it covers  at  mos t  ml + m2 - -  

i - -  1 vertices of  M1. Since IOl < ~ < m3 - 1, D canno t  cover  M 3. Then,  since D is 
an  edge d o m i n a t i n g  se t  of  K . . . .  2,m3, D covers  M~ U M 2. Therefore,  D fl  E~ 3 covers  
a t  least  i + 1 - m 2 vertices of  M i and  so ID f] E131 _> i d- 1 --  m 2. However ,  since 

D covers  M2, IO t3 ( E l 2  U E23)t  ~ 19l 2. Hence  IO] = ID f] E13l + IO t] ( E l 2  IJ E23)1 >_ 

i + 1, in con t rad ic t s  to IDI = i. Hence  ~ (ml + m2 - -  i ) x l  <-- mira2. [] 
i = r a  2 

L e m m a  2.5. ~ xi < ml + m3 
m 2 < i < m  3 

Proof.  Let  D be any  edge d o m i n a t i n g  set of  K . . . . . . .  ~ with m 2 _< ]D[ : i < m 3. Since 
D canno t  cover  M3, D covers M~ U M 2. By the fact that  D c o v e r s  M 2 ,  [D f') ( E l 2  I J E23)] 

~_ m 2. Therefore,  m 2 Z xi ~- m2(rrtl q- m3), i.e., ~ x i _< m 1 + m 3. [ ]  
ra2<i<ra  3 m 2 < i < r a  3 

ml + 2m2 + Lm2(ml - m2)/raaJ i f m i  + m2 >- m3, 
L e m m a  2.6. e d ( K  . . . .  2,m3) < 

- mi + ma + Lmi(m2 - mi)/maJ i f m l  + m 2 <_ m 3. 

Proof. In  the case of  m 1 + m 2 >_ ma, the  c~ in L c m m a  2.4 is equal  to m 3 - 1. By 
mul t ip ly ing  the inequa l i ty  of  L c m m a  2.4 by  (m a - m2)/rn i and add ing  it to (2.1), 
we have 

Y, (i + (m~ + m~ - i )(m~ - m~) /m~)x ,  + Y, ix, 
ra2 < i  <ra 3 i>_m 3 

<_ m3(m i + 2m2) + m2(mi -- m2) 

F o r  m 2 _ i < m a, i + (m i + m 2 --  i)(m a --  m2)/m 1 = m 3 -}- (i - m2)(m 1 q- m 2 --  m3) / 
m i _> m 3. Therefore,  m 3 ~ xl < m3(ml + 2m2) -I- m2(m I - -  m 2 ) a n d  so ed (K  . . . .  2.m3) 

i>_ ra 2 

< ~ xl < ml + 2m2 + Lm2(ml - mE)/maJ. 
i>_m 2 

In  the  case of  m 1 + m E _< m 3, ~ = ml + m2 - -  1. By mul t ip ly ing  the inequa l i ty  
in L e m m a  2.5 by  m 3 - ml  - m E and  add ing  it to (2.1) and  the inequal i ty  in L e m m a  
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2.4, we have 

m3xi + 
rn2 <_ i < m  ! + m  2 
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E (i + m 3 -- m 2 + m i ) x  i + ~ ixi 
m I + m 2 < i < m  3 i>_m 3 

__< m3(m 1 + m3) + mi(m2 -- mt). 

Note  that each coefficient of x~ in the left hand side is greater than or equal to m 3. 
Then ed(Kml . . . . .  3) <- ~, xi <- ml + m3 + Lml(m2 - ml)/maJ. [] 

i>_m 2 

Theorem 2.7. ed(Kml m 2 m 3 )  = ~ ml + 2m2 + Lm2(mt - m2)/maJ i f  mr + m2 >- m3, 
' ' /.ml + m 3 + Lml(m2 - ml)/m3J i f m l  + m 2 <-- m 3 .  

Proof. This theorem follows directly from Lemmas 2.3 and 2.6. [ ]  

3. Balanced Complete n-Partite Graphs 

Now we consider the edge domatic number problem for the balanced complete 
n-partite graph K(r, n) =- K ....... in which every part has exactly r vertices. Exact 
values for ed(K(r, n)) with odd n and ed(K(r, 4)) with even r are given in this section. 
Note  that ed(K(r, 2)) = r. So we only consider ed(K(r, n)) for n > 3. Also, K(1, n) = 
K,  and it was showed in [8] that ed(K,) = n for odd n > 3and  ed(K,) = n - 1 for 
even n. 

Let G (k) = (V (k), E ~k)) be the graph obtained from a graph G = (V, E) by dupli- 
cating each vertex k times, i.e., 

and 

v r = {Vl . . . . .  v~: v ~ v }  

E (k) = {(ui, vj): (u, v) e E and 1 < i , j  < k}. 

Lemma 3.1. ed(G (kJ) _> k ed(G) 

Proo f  Let P = {D 1 . . . . .  Ded(O)} be an edge domatic partition of G. It suffices to prove 
that G(k).has k ed(G) pairwise disjoint edge dominating sets. For  every Dq e P, we 
construct k edge dominating sets of G (k) as follows: 

D ~ j = { ( u i ,  v~+j):(u,v)eD~,l  < i < k } ,  l <_j<_k, 

where index of v~§ is taken modulo k. It is straightforward to check that each Dqj 
is an edge dominating set of G tk), and so G (k) has ked(G) pairwise disjoint edge 
dominating sets. [ ]  

Theorem 3.2. ed(K(r,n))  < r2n(n - 1)/2[r(n - 1)/2] < m for  n > 3. 

Proof. Since every edge dominating set of K(r, n) must cover at least n - 1 parts of 
K(r, n), every edge dominating set of K(r, n) has at least r r ( n -  1)/21 edges. The 
theorem follows from this and that K(r, n) has r2n(n - 1)/2 edges. []  



Edge Domatic Numbers of Complete n-Partite Graphs 247 

Al though we believe that  the uppe r  bound  r2n(n - 1)/2 [r(n - 1)/2] in Theorem 
3.2 is the exact value o f e d ( K ( r ,  n)) for  n > 3, only two cases have been settled: those 
where n is odd  and r is even with n = 4. 

Theorem 3.3. ed(K(r ,  n)) = rn i f  n >_ 3 and  n is odd. 

P r o o f .  ed(K(r,  n)) < rn by T h e o r e m  3.2. O n  the other  hand,  by [4], ed(K,)  = n for 
odd  n. By L e m m a  3.1, e d ( K ( r , n ) )  = ed(K~ )) > r e d ( K , )  = rn. So e d ( K ( r , n ) )  = rn. 

[ ]  

By [4], ed(K,)  = n - 1 when n is even. Again, by  L e m m a  3.1, e d ( K ( r , n ) )  = 

ed(Kt, ")) > r e d ( K , )  = r(n - 1). There  is a gap between the lower bound  r(n - 1) and 
the upper  bound  in Theo rem 3.2. We  now consider ed(K(r ,  4)) when r is even. 

Theorem 3.4. ed(K(r ,  4)) = 4r i f  r is even.  

P r o o f .  F o r  the case of  r = 2, let the vertex set of K(2, 4) be {0 (~ 1(i): i = 1, 2, 3, 4} and 
the edge set of  K(2,4)  be {(x(i),y~ x , y  ~ {0, 1}, 1 < i ~ j  < 4}. Then  ed(K(2,4)) = 
8, as it is s t ra ightforward to check tha t  the following sets A 1 . . . . .  A s are pairwise 
disjoint edge domina t ing  sets of  K(2,  4): 

A1--- 

A 2 = 

A 3 = 

A 4 = 

A s = 

A 6 = 

A 7 = 

A 8 = 

{(0(1),0(2)),(!(2),0(3)),(1(3) , 1(1))}, 
{(0(2),0(3)),(1(3),0(')),(1 (4), 1(2))}, 

{(1TM, 1(4)),(0(~),0m),(1(1),0(3))}, 
{(O(*),lm),(Om, l(Z)),(O(Z),l(4))}, 
{(1 m, l(Z)),(O (2), 1(3)),(0(3),0(1))}, 
{(1 (2), 1(3)),(0 (3), l(')),(O(*),O(Z))}, 
{(0(3),0(4)),(1 (*), 1(1)),(0 m, 1(3))}, 
{(1(*),0m),(1(1),0(2)),(1(2),0(4))}. 

In general, let r = 2s. Then K(r ,  4) = K ( 2 s ,  4) = K(2, 4) (s). By L e m m a  3.1, ed(K(r, 4)) 
> sed(K(2,4))  > 8s = 4r. On  the o ther  hand,  ed(K(r ,4))  < 4r by T h e o r e m  3.2. 
Hence  ed(K(r,  4)) = 4r. [ ]  

We close this paper  by the following conjecture: ed(K(r, n)) = r2n(n - 1)/2 [r(n - 1)// 
2] for any n > 3. The  solutions to the domat i c  numbers  of  general comple te  n-part i te 
g raphs  are also desirable. 
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