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Abstract

In this paper, a direct adaptive fuzzy-neural output-feedback controller (DAFOC) for a class of uncertain
nonlinear systems is developed under the constraint that only the system output is available for measurement.
An output feedback control law and an update law are derived for on-line tuning the weighting factors of the
DAFOC. By using strictly positive-real Lyapunov theory, the stability of the closed-loop system compensated
by the DAFOC can be veri7ed. Moreover, the proposed overall control scheme guarantees that all signals
involved are bounded and the output of the closed-loop system asymptotically tracks the desired output
trajectory. To demonstrate the e9ectiveness of the proposed method, simulation results are illustrated in this
paper.
c© 2002 Elsevier B.V. All rights reserved.
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1. Introduction

Adaptive control theory has been an active area of research for at least a quarter of a century
[23,24,28,11,9,10,12,31,29,22,13]. For linear systems, there have been some researches on stability
analysis of adaptive control systems, design of adaptive observers and adaptive control of plants, etc.,
all with satisfactory results [24,28]. There are also researches focusing on robust adaptive control that
guarantee signal boundedness in the presence of modeling errors and bounded disturbances [11,9,10].
As for nonlinear systems, adaptive control schemes via feedback linearization have been reported
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on continuous-time or discrete-time systems [12,31,29,22,13]. The fundamental ideal of feedback
linearization is to transform a nonlinear system into a linear one, so that linear control techniques
can be employed to acquire desired performance.

Recently, neural networks and fuzzy systems are applied to several control problems with satisfac-
tory results. Because both the neural networks [8] and fuzzy systems [38] are universal approximators,
many adaptive control schemes for nonlinear systems based on fuzzy systems [35,14,32], or neural
networks [25,16,26,20,6,5,21] have been proposed to obtain better control performance. For a class of
nonlinear discrete-time systems, adaptive control using neural networks has been proposed in [27] by
feedback linearization. Also, a dynamic recurrent neural-network-based adaptive observer for a class
of nonlinear systems has been presented in [15]. In [39], an output feedback controller using multi-
layer neural networks has been developed based on a high-gain observer used to estimate the time
derivatives of the system output. Moreover, applications of fuzzy systems incorporated into neural
networks in function approximation, decision systems and nonlinear control systems have been pro-
posed in [7,37,36,30,18,19,34,2]. In [37,36,30,18,19], the indirect adaptive fuzzy-neural controllers
for nonlinear systems have been proposed and in [30,18] the output feedback control laws, which
also are tuned by the indirect adaptive methods, provide robust stability for the closed-loop systems.

Theoretical justi7cation on the use of the direct adaptive fuzzy controllers [34,2,1,3,17,4] using
a state feedback approach is valid when all of the system states are available for measurement. In
practice, however, the state feedback control does not always hold because system states are not
always available. Estimations of states from the system output for output feedback control design of
the direct adaptive fuzzy-neural controller is required. Therefore, problem as to how a direct adaptive
fuzzy-neural output-feedback controller (DAFOC) is designed remains to be solved. It is therefore
the objective of this paper to develop a design algorithm of the DAFOC for uncertain nonlinear
systems under the constraint that only the system output is available for measurement. Particularly,
the output feedback control law and the update law can be on-line tuned. Moreover, the overall
adaptive scheme guarantees that all signals involved are bounded and the output of the closed-loop
system will asymptotically tracks the desired output trajectory.

The paper is organized as follows. In Section 2, the problem is formulated and a brief description
of a fuzzy-neural network is presented. Design methodology of the DAFOC is included in Section
3. In Section 4, simulation results are demonstrated to show the e9ectiveness and applicability of
the proposed method. Conclusions are included in Section 5.

2. Problem formulation and fuzzy-neural network

Consider the nth order nonlinear dynamical system of the form

x(n) = f(x; ẋ; : : : ; x(n−1)) + g(x; ẋ; : : : ; x(n−1))u + d;

y = x; (1)

where d is the external bounded disturbance, and u∈R and y∈R are the control input and system
output, respectively. We assume that f and g are uncertain functions, and g is, without loss of
generality, a strictly positive function. It is also assumed that a solution for (1) exists. In addition,
only the system output y is assumed to be measurable. The control objective is to design a DAFOC



W.-Y. Wang et al. / Fuzzy Sets and Systems 140 (2003) 341–358 343

such that the system output y follows a given bounded reference signal ym, and all signals involved
are bounded.

First, we convert the tracking problem to a regulation problem. Eq. (1) can be rewritten as

ẋ = Ax + B(f(x) + g(x)u + d);

y = CTx; (2)

where

A =




0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
0 0 0 0 0


 ; B =




0
0
...
0
1


 ; C =




1
0
...
0
0


 ;

and x= [x; ẋ; : : : ; x(n−1)]T = [x1; x2; : : : ; xn]T ∈Rn is a vector of states. De7ne the output tracking error
e=ym − y, the reference vector ym = [ym; ẏm; : : : ; y

(n−1)
m ] and the tracking error vector e= [e; ė; : : : ;

e(n−1)]T = [e1; e2; : : : ; en]T.
Based on the certainty equivalence approach, an optimal control law is

u∗ =
1

g(x)
[−f(x) + y(n)

m + KT
c ê]; (3)

where ê= ym − x̂, ê and x̂ denote the estimates of e and x, respectively. Kc = [kcnk
c
n−1 : : : k

c
1]

T is the
feedback gain vector, chosen such that the characteristic polynomial of A−BKT

c is Hurwitz because
(A;B) is controllable. Since only the system output y is assumed to be measurable, and f(x) and
g(x) are assumed to be uncertain, the optimal control law (3) cannot be implemented. Thus, suppose
a control input u is

u = uf + us; (4)

where uf is designed to approximate the optimal control law (3), and the control term us is employed
to compensate the external disturbance and the modeling error. From (2), (3) and (4), we have

ė = Ae− BKT
c ê + B[g(x)u∗ − g(x)uf − g(x)us − d];

e1 = CTe: (5)

Thus, the tracking problem has been converted into the regulation problem of designing a state
observer for estimating the state vector e in (5) in order to regulate e1 to zero.

In addition, the con7guration of the fuzzy-neural network shown in Fig. 1 consists of a fuzzy
system and neural network. The fuzzy system can be divided into two parts: some fuzzy IF-THEN
rules and a fuzzy inference engine. The fuzzy inference engine uses the fuzzy IF-THEN rules to
perform a mapping from an input linguistic vector e= [e1; e2; : : : ; en]∈Rn to an output linguistic
variable uf ∈R. The ith fuzzy IF-THEN rule is written as

Ri: If e1 is Ai
1 and : : : and en is Ai

n than uf is Bi; (6)
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Fig. 1. Con7guration of a fuzzy-neural approximator.

where Ai
1; A

i
2; : : : ; A

i
n and Bi are fuzzy sets [35,14]. By using produce inference, center average and

singleton fuzzi7er, the output of the fuzzy-neural network can be expressed as

uf =

∑h
i=1 Lui[

∏n
j=1 �Ai

j
(ej)]∑h

i=1 [
∏n

j=1 �Ai
j
(ej)]

= XT’(e); (7)

where �Ai
j
(ej) is the membership function value of the fuzzy variable, h is the total number of the

IF-THEN rules, Lui is the point at which �Bi( Lui) = 1, X=[ Lu1; Lu2; : : : ; Luh]T is an adjustable parameter
vector, and ’= [’1; ’2; : : : ; ’h]T is a fuzzy basis vector, where ’i is de7ned as

’i(e) =

∏n
j=1 �Ai

j
(ej)∑h

i=1 [
n∏

j=1
�Ai

j
(ej)]

: (8)

When the inputs are given into the fuzzy-neural network shown in Fig. 1, the truth value ’i(layer
III) of the antecedent part of the ith implication is calculated by (8). Among the commonly used
de9uzzi7cation strategies, the output (layer IV) of the fuzzy-neural network is expressed as (7).
Therefore, the fuzzy logic approximator based on the nerual network can be established [37,19].
Fig. 1 shows the con7guration of the fuzzy-neural function approximator. The approximator has four
layers. At layer I, input nodes stand for the input linguistic variables e1; e2; : : : ; en. At layer II, nodes
represent the values of the membership functions. At layer III, nodes are the values of the fuzzy
basis vector ’. Each node of layer III performs a fuzzy rule. The links between layer III and layer
IV are full connected by the weighting factors X=[ Lu1; Lu2; : : : ; Luh]T, i.e., the adjusted parameters. At
layer IV, the output stands for the value of uf.
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3. Output feedback control design of direct adaptive fuzzy-neural controller

In this section, our primary tasks are to design an observer that estimates the state vector e in
(5), to use the fuzzy-neural network to approximate to the optimal control law u∗ in (3) and to
develop the direct adaptive update law to adjust the parameters of the fuzzy neural network in order
to achieve the control objective.

First, we replace uf in (4) by the output of the fuzzy-neural network, XT’(ê) in (7), i.e.,

uf(ê|X) = XT’(ê); (9)

where ê denotes the estimate of e.
Next, consider the following observer that estimates the state vector e in (5)

˙̂e = Aê− BKT
c ê + B(gv− gus) + Ko(e1 − ê1);

ê1 = CTê; (10)

where Ko = [ko
1 ; k

o
2 ; : : : ; k

o
n ]

T is the observer gain vector, chosen such that the characteristic polynomial
of A − KoCT is strictly Hurwitz because (C;A) is observable. The control term v is employed to
compensate the external disturbance d and the modeling error. We de7ne the observation errors as
ẽ= e− ê and ẽ1 = e1 − ê1. Subtracting (10) from (5), we have

˙̃e = (A − KoCT)ẽ + B[gu∗ − guf(ê|X) − gv− d];

ẽ1 = CTẽ: (11)

Besides, the output error dynamics of (11) can be given as

ẽ1 = H (s)[gu∗ − guf(ê|�) − gv− d]; (12)

where s is the Laplace variable, and H (s) =CT(sI − (A − KoCT))−1B is the transfer function of
(11).

In order to derive the direct adaptive update law, the following assumption and lemma must be
required.

Assumption 1 (Tsakalis and Ioannou [33]). Let e and ê belong to compact sets Ue= {e∈Rn :
‖e‖6me ¡ ∞} and Uê= {ê∈Rn : ‖ê‖6mê ¡ ∞}, respectively, where ê denotes the estimate
of e and me and mê are designed parameters. It is known a prior that the optimal parameter vector
X∗ = arg minX∈MX[supe∈Ue ;ê∈Uê |u∗ − u(ê|X)|] lies in some convex region MX= {X∈Rn : ‖X‖6mX},
where the radius mX is constant.

Lemma 1 (Ioannou and Sun [10]). Consider the linear time-invariant system

ẋ(t) = Ax(t) + Bu(t); x(0) = x0;

where x∈Rn; u(t)∈Rm;A∈Rn×n;B∈Rn×m. Suppose that A is Hurwitz matrix and u(t)∈L2e.
Let �0 and  0 be the positive constants that satisfy ‖eA(t−!)‖6 0e−�0(t−!). Then for any constant
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"∈ [0; "1], where 0¡"1¡2�0,

‖x(t)‖6  0e−�0t‖x0‖ +
‖B‖ 0√
2�0 − "

‖ut‖2";

where ‖ut‖2" = (
∫ t

0 e−"(t−!)uT(!)u(!) d!)1=2.

According to Assumption 1, (11) can be rewritten as

˙̃e = (A − KoCT)ẽ + B[guf(ê|X∗) − guf(ê|X) − gv + w − d];

ẽ1 = CTẽ; (13)

where w= gu∗ − guf(ê|X∗) is an approximation error. According to (9), (13) can be rewritten as

˙̃e = (A − KoCT)ẽ + B[gX̃T
’(ê) − gv + w − d];

ẽ1 = CTẽ; (14)

where X̃= X∗ − X. Since only the output ẽ1, in (14) is assumed to be measurable, we use the SPR
Lyapunov design approach to analyze the stability of (14) and generate the direct adaptive update
law for X. Eq. (14) can be rewritten as

ẽ1 = H (s)[gX̃T
’(ê) − gv + w − d]; (15)

where H (s) =CT(sI− (A−KoCT))−1B is a known stable transfer function. In order to employ the
SPR-Lyapunov design approach, (15) can be written as

ẽ1 = H (s)L(s)[X̃T
%(ê) − vf + wf]; (16)

where vf = L−1(s)[gv], wf = L−1(s)[w − d + gX̃T
’(ê)] − X̃T

%(ê), %(ê) = L−1(s)[’(ê)] and L(s)
is chosen so that L−1(s) is a proper stable transfer function and H (s)L(s) is a proper SPR transfer
function. Supposed that L(s) = sm + b1sm−1 + b2sm−2 + · · · + bm, where m ¡ n, such that H (s)L(s)
is a proper SPR transfer function. Then the state–space realization of (16) can be written as

˙̃e = Acẽ + Bc[X̃
T
%(ê) − vf + wf];

ẽ1 = CT
c ẽ; (17)

where Ac = (A − KoCT)∈Rn×n;BT
c = [0 0 · · · b1 b2 · · · bm]∈Rn and CT

c = [10 · · · 0]∈Rn. For
the purpose of stability analysis of the DAFOC, the following assumptions and lemma must be
required.

Lemma 2 (Wang [35] and Leu et al. [18]). Supposed that the update laws are chosen as

Ẋ =

{
'ẽ1%(ê) if ‖X‖ ¡ mX or (‖X‖ = mX and ẽ1XT%(ê) ¿ 0);

Pr('ẽ1%(ê)) if ‖X‖ = mX and ẽ1XT%(ê) ¡ 0;
(18)
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where the projection operator [35] is given as

Pr('ẽ1%(ê)) = 'ẽ1%(ê) − '
ẽ1XT%(ê)
‖X‖2 X:

Then ‖X‖6mX and ‖X̃‖62mX.

Assumption 2. The uncertain function g(x) is bounded by

+1 6 ‖g(x)‖6 +2; (19)

where +1 and +2 are positive constants.

Assumption 3. wf is assumed to satisfy

|wf|6 ,; (20)

where , is a positive constant.

Remark 1. The assumption of |wf|6, is reasonable because of Assumption 2, the universal approx-
imate theorem and the external bounded disturbance.

On the basis of the above discussions, the following theorems can be obtained.

Theorem 1. Consider system (17) that satis7es Assumptions 1–3. Let X be adjusted by the update
law (18), and let v be given as

v =

{
- if ẽ1 ¿ 0;

−- if ẽ1 ¡ 0;
(21)

where -¿,=+1. Then ẽ1(t) converges to zero as t → ∞.

Proof. Given in Appendix A.

Theorem 2. Consider the nonlinear system (1) that satis7es Assumptions 1–3. Let the control term
us in (4) and (10) be us = v in (21), such that the state observer (10) becomes

˙̂e = (A − BKT
c )ê + Koẽ1: (22)

Suppose that the control law is

u = uf(ê|X) + us (23)

with the update law (18). Then all signals in the closed-loop system are bounded, and e1(t) con-
verges to zero as t→∞.

Proof. Given in Appendix B.
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Fig. 2. Overall scheme of the proposed direct adaptive fuzzy-neural control system.

According to the above theorems, the design algorithm of the DAFOC is described as
following.

Design algorithm. Step 1: Select the feedback and observer gain vectors Kc;Ko such that the ma-
trices A − BKT

c and A − KoCT are Hurwitz matrices, respectively.
Step 2: Choose an appropriate value - in (21) and ' in (18). In order to remedy the control

chattering, (21) can be modi7ed as

v =




- if ẽ1 ¿ 0 and|ẽ1| ¿ �;

−- if ẽ1 ¡ 0 and |ẽ1| ¿ �; where � is a positive constant;

-ẽ1=� if |ẽ1| ¡ �:

(24)

Step 3: Solve the state observer in (22), where v in (21) or (24).
Step 4: Construct fuzzy sets for ê(t). Then, from (8) compute the fuzzy basis vector ’.
Step 5: Obtain the control law (23), and the update law (18).

To summarize, Fig. 2 shows the overall scheme of the direct adaptive fuzzy-neural output feedback
control system proposed in this paper.



W.-Y. Wang et al. / Fuzzy Sets and Systems 140 (2003) 341–358 349

4. The illustrative example

This section presents simulation results of the proposed design algorithm to illustrate that stability
of the closed-loop system is guaranteed, and all signals involved are bounded.

Example. Consider the DuNng forced oscillation system [34]

ẋ1 = x2;

ẋ2 = −0:1x2 − x3
1 + 12 cos t + u + d;

y = x1: (25)

It is assumed that the external disturbance d(t) is a square wave having an amplitude ± 1 with a
period of 2/. The control objective is to control the state x1 of the system to track the reference
trajectory ym, under the condition that only the system output y is measurable. The design parameters
are selected as '= 0:5× 103 and -= 20. The feedback and observer gain vectors are given as
Kc = [144 24]T and Ko = [60 900]T, respectively. The 7lter L−1(s) is given as L−1(s) = 1=(s + 2).
The following membership functions for êj; j= 1; 2 are given as

�A1
j
(êj) = 1=(1 + exp(5 × (êj + 3))); �A2

j
(êj) = exp(−(êj + 2)2);

�A3
j
(êj) = exp(−(êj + 1)2); �A4

j
(êj) = exp(−(êj)2);

�A5
j
(êj) = exp(−(êj − 1)2); �A6

j
(êj) = exp(−(êj − 2)2);

�A7
j
(êj) = 1=(1 + exp(−5 × (êj − 3)):

The initial states are chosen to be x1(0) = x2(0) = 3; x̂1(0) = x̂2(0) = −1 and ê(0) = ym(0) − x̂(0).
Simulation results are provided for three cases with di9erent reference trajectories, i.e., ym = 0
(Case 1), ym = sin t (Case 2), and ym = 1− exp(−t=2) (Case 3), respectively. Figs. 3–13 show the
computer simulation results for these three cases. With reference to Figs. 3, 6, and 9, it is observed
that the state observer correctly and responsively generates the estimated state x̂1. Referring to Figs.
4, 7, and 10, it is also observed that the tracking convergence is fast with only a relatively small
tracking error by using the control term v in (24). To avoid the chattering e9ect of control input,
the control term v in (24), instead of v in (21), is used for these three cases as shown in Figs. 3–11.
Comparing Figs. 4 with 12 (Case 1), we 7nd that tracking performance using v in (21) is slightly
better than that using v in (24). However, the chattering e9ect of control input using v in (21) is
much serious than that using v in (24), as clearly demonstrated in Figs. 5 and 13. As shown in
Figs. 5, 8, and 11, chattering e9ect of the control input for these three cases almost disappears by
using the control term v in (24). That is the reason that v in (24), instead of v in (21), is suggested
to derive the control law for practical applications.
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Fig. 3. Trajectories of the states x1 and x̂1 of Case 1 using v in (24).
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Fig. 4. Trajectories of the states x1 and ym = 0 of Case 1 using v in (24).
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Fig. 5. Control input u of Case 1 using v in (24).
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Fig. 6. Trajectories of the states x1 and x̂1 of Case 2 using v in (24).
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Fig. 7. Trajectories of the states x1 and ym of Case 2 using v in (24).
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Fig. 8. Control input u of Case 2 using v in (24).
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Fig. 9. Trajectories of the states x1 and x̂1 of Case 3 using v in (24).
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Fig. 10. Trajectories of the states x1 and ym of Case 3 using v in (24).
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Fig. 11. Control input u of Case 3 using v in (24).
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Fig. 12. Trajectories of the states x1 and ym = 0 of Case 1 using v in (21).
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Fig. 13. Control input u of Case 1 using v in (21).

5. Conclusions

The direct adaptive fuzzy-neural output-feedback controller (DAFOC), which can be subject to on-
line tuning for nonlinear systems, has been proposed in this paper. In designing the output feedback
control law, no di9erentiation of system outputs is performed in order to avoid the noise ampli7cation
associated with numerical di9erentiation, and no knowledge on nonlinearities of the nonlinear systems
is required. Also, preliminary o9-line tuning of the weighting factors of the fuzzy-neural controller is
no longer required. The overall adaptive scheme guarantees that all signals involved are bounded and
the output of the closed-loop system asymptotically tracks the desired output trajectory. Moreover,
the proposed design algorithm has been successfully applied to control the nonlinear DuNng forced
oscillation system to track a reference trajectory. Simulation results have shown that the DAFOC
performs good control and achieve desired performance.
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Appendix A.

Proof of Theorem 1. Consider the Lyapunov-like function candidate

V =
1
2
ẽTPẽ +

1
2'
X̃TX̃; (A.1)
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where P=PT¿0. Di9erentiating (A.1) with respect to time and inserting (17) in the above equation
yield

V̇ =
1
2
ẽT(AT

c P+ PAc)ẽ + ẽTPBc[X̃
T
%− vf + wf] +

1
'

˙̃X
T
X̃: (A.2)

Because H (s)L(s) is SPR, there exists P = PT ¿ 0 such that

AT
c P+ PAc = −Q;
PBc = Cc; (A.3)

where Q=QT ¿ 0. By using (A.3), (A.2) becomes

V̇ = −1
2
ẽTQẽ + ẽ1[X̃

T
%: − vf + wf] +

1
'

˙̃X
T
X̃: (A.4)

By using Assumptions 2–3, (21) and the fact  min(Q)‖ẽ‖2¿ min(Q)|ẽ1|2, where  min(Q) ¿ 0, we
have

V̇ 6 −1
2
 min(Q)|ẽ1|2 + ẽ1X̃

T
% +

1
'

˙̃X
T
X̃: (A.5)

Inserting (18) in (A.5) and after some manipulation yields

V̇ 6 −1
2
 min(Q)|ẽ1|2: (A.6)

Eqs. (21) and (A.6) only guarantee that ẽ1(t) ∈ L∞ and ẽ(t) ∈ L∞, but do not guarantee the
convergence. Because all variables in the right-hand side of (17) are bounded, ˙̃e1(t) is bounded, i.e.,
˙̃e1(t) ∈ L∞. Integrating both side of (A.6) and after some manipulation yields∫ ∞

0
|ẽ1(t)|2 dt 6

V (0) − V (∞)
(1=2) min(Q)

: (A.7)

Since the right side of (A.7) is bounded, so ẽ1(t) ∈ L2. Using Barbalat’s lemma [28], we have
limt→∞ |ẽ1(t)|= 0. This completes the proof.

Appendix B.

Proof of Theorem 2. First, from Theorem 1, we have limt→∞ |ẽ1(t)| = 0. Next, consider Eq. (14).

De7ne Lu = gX̃T
’(ê) − gv + w − d. Because A− KoCT is a Hurwitz matrix, and Lu is bounded from

Lemma 2 and under Assumptions 1–3, we have

‖ẽ(t)‖6  0e−�0t‖ẽ(0)‖ +
‖B‖ 0√
2�0 − "

‖ Lut‖2" (B.1)
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according to Lemma 1. Therefore ẽ(t) ∈ L∞. By using the state observer (22), we obtain the dynamic
system

˙̂e = (A − BKT
c )ê + KoCTẽ

ê1 = CTê: (B.2)

Similarly, because A−BKT
c is a Hurwitz matrix and ẽ(t) is bounded, ê(t) is bounded. From ẽ= e− ê,

it follows that e1; e∈L∞ and e1(t)→ 0 as t→∞. From ê; e∈L∞, it follows that x; x̂∈L∞. The
boundedness of y(t) follows that of e1(t) and ym(t). This completes the proof.
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