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Abstract

The crossed cub€Q, introduced by Efe has many properties similar to those of the popular hypercube. However, the
diameter ofCQ,, is about one half of that of the hypercube. Failures of links and nodes in an interconnection network are
inevitable. Hence, in this paper, we consider the hybrid fault-tolerant capability of the crossed cube. f.edtinbf, be the
numbers of faulty edges and verticesdQ,, we show that a cycle of lengthfor any 4< 1 < |V(CQ,,)| — fv, can be embedded
into a wounded crossed cube as long as the total number of fgults f.) is no more tham — 2, and we say thatQ,, is
(n — 2)-fault-tolerant pancyclic. This result is optimal in the sense that if there aré faults, there is no guarantee of having
a cycle of a certain length in it.
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1. Introduction To lower the diameter, we may change some links
of the hypercube. Some variations of the hypercube
have been studied in the literature. In [2], Efe first
studied the crossed culi),, which has a structure
similar to that of the hypercube, including recursive
structure, the same number of vertices, and the same

Network topology is essential for parallel and
distributed computation, and many topologies have
been proposed, for example, hypercubes, butterfly

graphs and star graphs. The hypercube is one of thenumber of edges. However, the diameterGs, is

most popular networks since it has a simple structure only about one half of that of the hypercube, and the
and is easy to implement. However, there are still some iameter is an important factor for parallel computing
different points of view to construct new topologies; gpeed. Other studies have been done to explore more
for example, a new topology having smaller diameter. properties of the crossed culfQ,, such as edge
congestion ofCQ,, as studied in [1]. Furthermore,
embedding of binary trees, hamiltonian paths, and
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existing algorithms for guest graphs to host graphs.
This problem has attracted a burst of studies over the
years.

The pancycle problem asks if a cycle of length a
subgraph of a given graph with a given positive integer
[. Hwang [4] and Fan [3] et al. studied this problem on
butterfly graphs and Mébius cubes, respectively. But
they did not consider the possibilities of failures of
nodes and/or links.

Failures are inevitable when a network is put
in use. Therefore, the fault-tolerant capacity of an
interconnection network is a crucial issue in parallel
computing. Furthermore, both nodes and links may
simultaneously be faulty in a network. Hence we study
the hybrid fault tolerance a2Q,, in this paper. Letting
f» and f, be the numbers of faulty vertices and edges
in CQ,,, respectively, we show that a cycle of length
[, forany 4< 1 < |V(CQ,)| — fu, is a subgraph of a
wounded crossed cube witlf, + f.) < (n — 2). That
is, CQ, is (n — 2)-fault-tolerant pancyclic. In addition,
this result is optimal, and the reason is explained as
follows: Thern-dimensional crossed cuberisregular.

As aresult, if there aré: — 1) faulty edges incident to
a single node, a hamiltonian cycle cannot be embedde
into a woundedCQ,,.

The rest of this paper is organized as follows:
Section 2 includes the definition of the crossed cubes
and some basic notation and terminologies. Then, the
proof of the pancyclicity ofCQ,, is given in Section 3.
For the case = 4, the proof is a little tedious, and we
leave some parts of it to Appendix A.

2. Definitions and notation

Given a simple graplé;, we useV(G) and E(G)
to denote the vertex and edge setfrespectively.
In order to define the crossed cuB®,, as proposed
by Efe [2], the pair related seR is introduced.
Let R = {(00, 00), (10, 10), (11, 01), (01, 11)}. Two
binary stringsaiaz and b1by of length 2 are pair
related, denoted byias ~ bibo, if (a1az, b1b2) € R.
The following is the recursive definition of the-
dimensional crossed culi#), . CQ, has 2 vertices,
each labeled by a binary string of lengih CQ; is
a complete graph with two vertices labeled 0 and 1,
respectively. Fom > 2, CQ, is obtained by taking
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two copies 0fCQ,_1, denoted bycQ®_, andCQ? ,,
respectively, and adding 2! edges as follows:
Let

V(CQP_;) = {Oxy—2...x1x0: x; =0 0r 1}
and
V(CQE_y) = (1yn—2...y1y0: yi=0o0r 1.

A vertex Oc,—2...x1x0 € V(CQP_)) and a vertex
Iyn—2...y1y0 € V(CQL_)) are adjacent if

(1) xy—2=yn,—2if niseven, and
(2) x2i41x2i ~ y2ip1y2i for0<i < [(n —1)/2].

We take CQs; and CQ, as examples and display
them in Fig. 1 (a) and (b), respectively. In Fig. 1(c),
we use a different way to dra@Qs in order to see its
vertex-symmetry.

We now introduce some basic terminologies and
notation needed for later discussion.path is a se-
quence of vertices with any two consecutive vertices
being adjacenti;. We use{us, ua, ..., u;) to denote

R path that begins with1 and ends withy;. In addi-

tion, (u1,uz,...,u;) is acycle if uy = u;. A hamil-
tonian path is defined as a path which contains all the
vertices ofG exactly once. A grapld is hamiltonian
connected if, for any two vertices ofG, there exists a
hamiltonian path between them. We say that a gGiph
is pancyclicif G contains a cycle of lengthas a sub-
graph, for every & I < |V(G)|. A cycle is ahamil-
tonian cycleif it traverses all the vertices a¥ exactly
once. A graphG is hamiltonianif G contains a hamil-
tonian cycle.

To consider a wounded graph, we give the fol-
lowing terminologies and notation. Given a gra@h
let F, C V(G) and F, € E(G); and F = F, U F,.
Let G’ be the graph obtained fror& by deleting
all the edges inF,. We useG — F to denote the
subgraph ofG’ induced byV(G’) — F,. We call a
graphG k-fault-tolerant hamiltonian connected (ab-
breviated ast-hamiltonian connected) if G — F is
hamiltonian connected for arfywith | F| < k. We call
a graphG k-fault-tolerant hamiltonian (abbreviated as
k-hamiltonian) if G — F is hamiltonian for anyF with
|F| < k.AgraphgG is calledk-fault-tolerant pancyclic
(abbreviated a&-pancyclic) if G — F is pancyclic for
any F with |F| < k.
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Fig. 1. (a)CQg3, (b) CQ4, and (c)CQ3 drawn in a different way.

3. Main result

We useCQf{_2 to denote an(n — 2)-dimensional
crossed cube which is a subgraphGsp, induced by

the vertices labeletfx,—3...xp. We say that an edge

is acritical edge of CQ, if itis an edge inCQj'z_1 with
one endpoint in CQ° , and the other irCQ* , for
i €{0,1}.

Lemma 1. Let (u1,up) be a critical edge of CQ,
whichisin CQS_l, and v1, v2 be the neighbors of u1
anduinCQL_,, respectively, for n > 4. Then (v1, v2)
isalsoacritical edgeof CQ, inCQ! ;.

Proof. We discuss two cases: (&)is even, and (2)
is odd.

Case 1. n is even. Without loss of generality,
we assume that1 = 00x,_3x,_4...x1x0 and up =
0ly,_3yn—4...y1y0, Where xz;11x2; ~ yzi11y2 for
0<i<[(n—3)/2]. Thenvi = 10y,-3ys—4...y1y0,
and vy = 11x,_3x,-4...x1x0. By definition, vy and
v are adjacent, andvi, v2) is a critical edge in
cQl ..

Case 2. n is odd. Without loss of generality, we
assume thatiy = 00x,_3x,—4X,—5...Xx1x0. SUPpOSE
thatx,_3=0. Thenu1 = 000x,_4x,_5...x1Xx0, U2 =
010y,—ayn-5...y1y0, Wherexz;1x2; ~ yoi+1y2i for
0<i<[(n—4%4/2], vi =100y,-4ys-5...y1y0,
and vy = 110x,,_4x,_5...x1x0. Thus,v; andvy are
adjacent, andv1, v2) is a critical edge irCQ,%_l. It

It is observed that verticesy, uo, v1, v2 in the
above lemma form a 4-cycle. We call this cycle a
crossed 4-cycle in CQ,. It is clear that, for each
vertex 0Q,_3---xg, there is exactly one crossed 4-
cycle corresponding to the vertex. Thus, there are
2"—2 disjoint crossed 4-cycles i68Q,. We note that
a crossed 4-cycle contains two critical edges.

Huang et al. [5] showed the validity of the follow-
ing theorem. Based on this theorem, we show the pan-
cyclicity of the crossed cube by induction.

Theorem 1 [5]. The crossed cube CQ, is (n — 2)-
hamiltonian and (n — 3)-hamiltonian connected for
n>3.

The base case is= 3, and the proof is given in the
following.

Theorem 2. CQs is 1-pancyclic.

Proof. Note thatCQs can be redrawn as Fig. 1(c), and
it is vertex-transitive. We consider two cases (1) one
faulty vertex, and (2) one faulty edge as follows:

Case 1. One faulty vertex. Without loss of gener-
ality, we assume that vertex = 000 is faulty. We
list cycles of lengths from 4 to 7 as followg001,
111,101 011, 001), (001,111,110 010 011, 001y,
(001,111,110 100,101, 011,002y, and (001,111,
101,100 110,010 011, 001).

Case 2. Onefaulty edge. Without loss of generality,
we assume that the faulty edgés incident to 000. By
case 1, there are cycles of lengths from 4 to 7 in the

can be checked that the statement is also true for thefaulty CQs. For a cycle of length 8, suppose that

caser,_3=1. O

(000,010). Then (000,001,111,110,010,011, 101,
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Fig. 2. Cases of Theorem 3.

100 000 is the desired one. Suppose tlrat (000,
001). Then (000 010,110 111,001,011 101, 100
000 is a cycle of length 8. It = (000, 100), the case
is symmetric to the case= (000, 001). O

Let F be a set of faults i€Q,,. We say that a vertex
u in one subcube o€Q), is a safe crossing-point in
CQ,, — F if u still connects to the neighbor in the other
subcube inCQ,, — F, i.e., the corresponding neighbor
u’ in the other subcube of is fault-free, and the edge
(u,u") is also fault-free. The main result is as follows.

Theorem 3. The crossed cube CQ, is (n — 2)-
pancyclic for n > 3.

Proof. We prove this by induction om. It follows
from Theorem 2 thaCQ; is 1-pancyclic. Now we
proceed to the induction step. Suppose 0@}, _; is
(n — 3)-pancyclic for some: > 4. We will show that
CQ, is (n — 2)-pancyclic. LetF € V(CQ,) U E(CQ,)
be the set of faults. We divide into five disjoint parts:

FP=rFnv(cQ),), F=FnE(CQL,),

Fl=Fnv(CQl,), Fl=FnE(CQ.,).

FS=FN{(u,v) ]| (u,v)is an edge
betweerCcQ?_; andCQ}_, }.

Let f =I|F|, fQ=1F)l, f2=IFQl, f=1F, f} =
|Fe1|, and f¢ = | F{|. For convenience of discussion,
we define the following subsets of: F, = F N
V(CQ,), F, = FNE(CQ,), FO= FOUF?, andF! =
FLUF! Andletf, = |F,], fe |F| f° |F9|, and
fl |F1| Note thatf® + f1= f — fc.

Casel. Thereis a subcube containing all tthe- 2)
faults. Without loss of generality, we assume tfi8t=

n — 2. Thus, there is no fault outsm@Q 1

fl= ff =0. We discuss the existence of cycles of
lengths from 4 to 2 — f,, according to the following
cases.

Case 1.1. Cycles of lengths from 4 to 2"~1. Since
CQ,_1is(n— 3)-pancyc|ic,CQ,%_1 contains cycles of
lengths from 4 to 2~ for n > 4. Clearly,CQ, — F
also contains cycles of these lengths.

Casel.2.Acycleof length2"~1+1. (See Fig. 2(a).)
We want to construct a cycle containing2 — 1
vertices inCQ! ; and two vertices inCQ°_,. To
avoid faults in CQS_l, we introduce a term called
the shadows of the faults. Lék1, u2, vo, v1,u1) be
a crossed 4-cycle withy, uz in CQS_l andvy, vz in
CQL_,, respectively. If there is a fault on this cycle
but the fault is not mCQ,1 1» we call edge(vy, v2)

a shadow fault of F on CQ}z_l. (Similarly, we may
define a shadow fault 0@8Q°_,.) Let F* = {¢ | edger

is a shadow fault o on CQ!_,}. Since all crossed
4-cycles are vertex disjointF*| <n — 2. If |F*| =

n — 2, we arbitrarily pick an edge; in F* , and let
F' =F —ej,orelseF =F5. Then|F'|<n—-3
andCQ,lz_1 — F’ is still pancyclic. So there is a cycle
C of length 2~1 — 1 in CQ!_, — F’. Clearly, there
are two critical edges orC. Let (a,b) # e1 be a
critical edge onC, so (a,b) ¢ F*. Leta’, b’ be the
neighbors ofa and b in CQ°_,, respectively. Then
(a,a’,b',b,a)is afault-free crossed 4-cycle. Suppose
thatC = (a, O, b,a). Then{a’,a, Q,b,b’,a’) forms a
cycle oflength2=1 +1inCQ, — F.

Case 1.3.Cycles of lengths from 2"~1 + 2 t0 2" —
fv. (See Fig. 2(b).) By Theorem €Q°_, is (n — 3)-
hamiltonian angf® = n—2,CQP_, — FO still contains
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a hamiltonianpath, say P = (u1, ua, . ..,I/lzn—l_ﬁ?),
where f0 = f,. Let 2< 1 < 2""1 — £,. We construct
a cycle of length 2-1 + [ as follows: Suppose that
the neighbors ofu; and u; in CQ,lz_1 are v1 and
vy, respectively. Sinc€Q,,_; is (n — 4)-hamiltonian
connected ana > 4, there is a hamiltonian pat@
in CQ,lz_1 betweerv; andy; containing 21 vertices.
So (ui,...,u;, v, Q,v1,u1) forms a cycle of length
=141,

Case 2. Both £ and f1 are at most: — 3. By
induction hypothesisCQ® , — F® andCQ! , — F?
are still pancyclic. We discuss the existence of cycles
of all lengths from 4 to 2— f, in the following cases.

Case 2.1. Cycles of lengths from 4 to 2'—1 — f1.
By induction hypothesisCQ,%_1 is (n — 3)-pancyclic.
Thus, we have cycles of lengths from 4 t62 — f1
inCcQ! , — FL.

Case 2.2. A cycle of length 2= — f1 4+ 1. (See
Fig. 2(c).) We construct the cycle using a similar way
used in Case 1.2. Lef’ = {e | edgee is a shadow
fault of F on CQ! _,}. Then|F* U FY| <n — 2. If
|FS U F1| = n — 2, we arbitrarily choose an edge
e1in F5, and letF’ = F¥ U F1 — ¢q, or else F’
F*UFY. Then|F'| <n—3andCQ} , — F’is still
pancyclic. SinceF’ N V(CQ,%_l) Fvl there is a cy-
cle C of length 2=1 — f1 —1inCQ! , — F’. Since
i1 115 2"=2forn > 4, C contains two crit-
ical edges. Let(a, b) # e1 be a critical edge orC,
so (a,b) ¢ F*. Leta’, b’ be the neighbors of and
b in CQ°_,, respectively. Thena,a’,b',b,a) is a
fault-free crossed 4-cycle. Suppose tliat (a, Q,
b,a). Then(a’,a, Q,b,b’,a’) forms a cycle of length
21 fl41inCQ, - F.

Case 2.3.Cycles of lengths from 2" ~1 — £1 4+ 2to
2" — fy. (See Fig. 2(d).) Without loss of generality,
we assume that — 3> 9> fLIf fl=n—3,
then f=n —3,and 2 — 6 <n — 2= f, which
implies n < 4. Thus, we need to discuss the case
fl=n — 3 just forn = 4. We leave this particular
case to Appendix A, and assume th&t<n — 4 in
the following discussion.

By Theorem 1,CQ! , — F1 is still hamiltonian
connected, i.e., there is a path of length2— f1 -1
between any two vertices @Q_; — F1. As aresult,
if we can find a path of lengthin CQS_1 — FO with
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Since we want to construct cycles of lengths from
2t fly2t02 — f, 1<I< 27— (f, —

) —1=2"1_ r0_ 1. Now we construct a path
of length/ in CQ°_, for eachl, 1< <21 —
f9—1.By Theorem 1€Q°_, is (n — 3)-hamiltonian.
Thus we have a hamiltonian cycté = (ug, us, ...,
up-1_so_y, uo) of length 2= — f0in CcQY_; — FPO.
We claim that there exist two safe crossing-points
u; andu; on C such that(j — i) (mod 2-1_50) = l.
Suppose on the contrary that there do not exist stich
andu . Then there are at leap2" ! — £0)/2] faults
outsideCQ?_,. However, (2"~ — f9)/2] + 0 >
2"=2 5 n — 2 for n > 2. We obtain a contradiction.
Thus, there exist such two verticgsandu ;. And then
we find a path of lengthon C.

Hence, the theorem follows.O

Appendix A

In the following, we construct cycles of lengths
from 21— f142t0 2! — f, forthe casef® = f1 =
n—3.SincefO+ fl=21 —6<n—2,n<4. Thus,
we need only to discuss the cag® = f1 =1 for
n = 4 here. We shall use some symmetric properties
of CQj3 to reduce the cases.

For convenience of discussion (see Fig. 3(a)),
we call (000,010, (001,011, (111,101, (110,100
asinner edges of CQz and (000, 001, (001, 111),
(111 110, (110,010, (010, 011), (011,101, (101,
100), (100, 000) asouter edges of CQg, respectively.
Letx be a vertex oCQs. An inner edge is said to be
an N-edge of x if x connects to one of the endpoints
of e. HenceCQj3 has twoN-edges ofc. An inner edge
e is said to be ari -edge of x if x is not incident tce,
ande is not anN-edge ofx. ThereforeCQ; has one
H-edge ofx.

To explore the pancyclicity a8Q, — F, we need an
observation, and it is stated in the following lemma.

Lemma 2. Let x be a faulty vertex in CQs. Then the
two N-edges of x, e1 and ez, are on cycles of lengths
from 4 to 7 in CQz — x. And the H-edge of x ison
cyclesof lengths 4, 5, and 7 in CQ3 — x.

Proof. Without loss of generality, we may assume that

the two endpoints being safe crossing-points, then x = 000. Then the twaVv-edges ofx are (001, 011)

we find a cycle of length + 2+ (2"~1 — f1 —1).

and(110 100, and theH -edge ofx is (111, 101). We
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Fig. 3. (a)N-edge and{ -edge ofx and (b) a cycle of length 12 with one faulty vertex 0000 and one faulty étieQ 1110.

list all the cycles as follows001, 111, 101, 011, 001),
(111,110 100,101, 111y, (001,111,110,010,01
001), (111,110 010,011,101 111, (110,010 011,
101,100,110, (001,111,110 100,101,011 00D,
and(001, 111,101 100,110,010 011, 001. O

We continue to discuss cycles ©Q, — F, and
consider two situations: (1) cycles of lengths from 8
to 14 and (2) cycles of lengths 15 and 16.

Case 1. Cyclesof lengthsfrom8to 14. Suppose that
there is a faulty vertex in CQg or a faulty edgez;
which is incident tor. Let (11, u2) and(uz, us) be the
two N-edges ofc. By Lemma 2,(u1, u2) and(us, us)
are on cycles of lengths from 4 to 7 Ian — FO,
Let v1, v2, v3, andvg be the neighbors af1, u2, us,
andugy in CQ%, respectively. It is not difficult to check
that both(v1, v2) and(vs, v4) are inner edges cﬂQ%.
(See Fig. 3(b).) Andv1, v2) can not reachvs, va)
via exactly one edge dﬁQ%. Suppose that the other
fault is a faulty vertexy in CQ%, or a faulty edgez>
which is incident toy. Then (v1, v2) or (vs3, v4), Say
(v1, vp) is an N-edge orH-edge ofy in CQ} — F1.
By Lemma 2,(v1, v2) is on cycles of lengths 4, 5,
and 7 inCQlol, — F1. We useC; to denote a cycle of
lengthi. Let C; andC; be cycles containingu1, u»)
and (v1, v2), respectively, & i <7, j =4, 5,0r 7.
Then we can construct a cyolg from C; andC; by
adding(u1, v1) and(uz, v2), and deletingu1, u2) and

(v1, v2) for 8 <1 < 14. For example, Fig. 3(b) shows a
cycle of length 12 inCQ,4 with one faulty vertex 0000
and one faulty edgél10Q 1110.

Case 2. Cycles of lengths from 15t0 16. If f, = 2,
we need only to find cycles of lengths from 4 to 14
which we did in the previous cases. f{ = 1 and
fe =1, we have to find a cycle of length 15. By
Theorem 1CQ, is 2-hamiltonian, so there is a cycle
of length 15 inCQ, — F. If f, =2, sinceCQy is 2-
hamiltonian, there is also a cycle of length 16. Suppose
that F = {(x1, y1), (x2, y2)}. Let F' = {(x1, y1), x2}.
Then there is a cycle of length 15 @Q, — F’. This
cycle is also fault-free it€Q, — F.
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