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Abstract

The crossed cubeCQn introduced by Efe has many properties similar to those of the popular hypercube. Howev
diameter ofCQn is about one half of that of the hypercube. Failures of links and nodes in an interconnection netw
inevitable. Hence, in this paper, we consider the hybrid fault-tolerant capability of the crossed cube. Lettingfe andfv be the
numbers of faulty edges and vertices inCQn, we show that a cycle of lengthl, for any 4� l � |V (CQn)|−fv , can be embedde
into a wounded crossed cube as long as the total number of faults(fv + fe) is no more thann− 2, and we say thatCQn is
(n− 2)-fault-tolerant pancyclic. This result is optimal in the sense that if there aren− 1 faults, there is no guarantee of havi
a cycle of a certain length in it.
 2003 Published by Elsevier B.V.
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Network topology is essential for parallel an
distributed computation, and many topologies h
been proposed, for example, hypercubes, butte
graphs and star graphs. The hypercube is one o
most popular networks since it has a simple struc
and is easy to implement. However, there are still so
different points of view to construct new topologie
for example, a new topology having smaller diame
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have been studied in the literature. In [2], Efe fi
studied the crossed cubeCQn, which has a structur
similar to that of the hypercube, including recurs
structure, the same number of vertices, and the s
number of edges. However, the diameter ofCQn is
only about one half of that of the hypercube, and
diameter is an important factor for parallel computi
speed. Other studies have been done to explore m
properties of the crossed cubeCQn, such as edge
congestion ofCQn, as studied in [1]. Furthermore
embedding of binary trees, hamiltonian paths, a
hamiltonian cycles intoCQn were discussed in [5,6].

The graph embedding problem asks if a gu
graph is a subgraph of a host graph, and an impor
benefit of graph embedding is that we can ap
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existing algorithms for guest graphs to host graphs.
This problem has attracted a burst of studies over the
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two copies ofCQn−1, denoted byCQ0
n−1 andCQ1

n−1,
respectively, and adding 2n−1 edges as follows:
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The pancycle problem asks if a cycle of lengthl is a

subgraph of a given graph with a given positive inte
l. Hwang [4] and Fan [3] et al. studied this problem
butterfly graphs and Möbius cubes, respectively.
they did not consider the possibilities of failures
nodes and/or links.

Failures are inevitable when a network is p
in use. Therefore, the fault-tolerant capacity of
interconnection network is a crucial issue in para
computing. Furthermore, both nodes and links m
simultaneously be faulty in a network. Hence we stu
the hybrid fault tolerance ofCQn in this paper. Letting
fv andfe be the numbers of faulty vertices and edg
in CQn, respectively, we show that a cycle of leng
l, for any 4� l � |V (CQn)| − fv , is a subgraph of a
wounded crossed cube with(fv + fe)� (n− 2). That
is, CQn is (n−2)-fault-tolerant pancyclic. In addition
this result is optimal, and the reason is explained
follows: Then-dimensional crossed cube isn-regular.
As a result, if there are(n−1) faulty edges incident to
a single node, a hamiltonian cycle cannot be embed
into a woundedCQn.

The rest of this paper is organized as follow
Section 2 includes the definition of the crossed cu
and some basic notation and terminologies. Then,
proof of the pancyclicity ofCQn is given in Section 3
For the casen= 4, the proof is a little tedious, and w
leave some parts of it to Appendix A.

2. Definitions and notation

Given a simple graphG, we useV (G) andE(G)
to denote the vertex and edge sets ofG, respectively.
In order to define the crossed cubeCQn, as proposed
by Efe [2], the pair related setR is introduced.
Let R = {(00,00), (10,10), (11,01), (01,11)}. Two
binary stringsa1a2 and b1b2 of length 2 are pair
related, denoted bya1a2 ∼ b1b2, if (a1a2, b1b2) ∈ R.
The following is the recursive definition of then-
dimensional crossed cubeCQn. CQn has 2n vertices,
each labeled by a binary string of lengthn. CQ1 is
a complete graph with two vertices labeled 0 and
respectively. Forn � 2, CQn is obtained by taking
Let

V
(
CQ0

n−1

) = {0xn−2 . . . x1x0: xi = 0 or 1}
and

V
(
CQ1

n−1

) = {1yn−2 . . . y1y0: yi = 0 or 1}.
A vertex 0xn−2 . . . x1x0 ∈ V (CQ0

n−1) and a vertex

1yn−2 . . . y1y0 ∈ V (CQ1
n−1) are adjacent if

(1) xn−2 = yn−2 if n is even, and
(2) x2i+1x2i ∼ y2i+1y2i for 0� i < 
(n− 1)/2�.

We takeCQ3 and CQ4 as examples and displa
them in Fig. 1 (a) and (b), respectively. In Fig. 1(
we use a different way to drawCQ3 in order to see its
vertex-symmetry.

We now introduce some basic terminologies a
notation needed for later discussion. Apath is a se-
quence of vertices with any two consecutive verti
being adjacent inG. We use〈u1, u2, . . . , ul〉 to denote
a path that begins withu1 and ends withul . In addi-
tion, 〈u1, u2, . . . , ul〉 is a cycle if u1 = ul . A hamil-
tonian path is defined as a path which contains all t
vertices ofG exactly once. A graphG is hamiltonian
connected if, for any two vertices ofG, there exists a
hamiltonian path between them. We say that a grapG
is pancyclic if G contains a cycle of lengthl as a sub-
graph, for every 4� l � |V (G)|. A cycle is ahamil-
tonian cycle if it traverses all the vertices ofG exactly
once. A graphG is hamiltonian if G contains a hamil-
tonian cycle.

To consider a wounded graph, we give the f
lowing terminologies and notation. Given a graphG,
let Fv ⊆ V (G) and Fe ⊆ E(G); and F = Fv ∪ Fe.
Let G′ be the graph obtained fromG by deleting
all the edges inFe . We useG − F to denote the
subgraph ofG′ induced byV (G′) − Fv . We call a
graphG k-fault-tolerant hamiltonian connected (ab-
breviated ask-hamiltonian connected) if G − F is
hamiltonian connected for anyF with |F | � k. We call
a graphG k-fault-tolerant hamiltonian (abbreviated as
k-hamiltonian) if G−F is hamiltonian for anyF with
|F | � k. A graphG is calledk-fault-tolerant pancyclic
(abbreviated ask-pancyclic) if G− F is pancyclic for
anyF with |F | � k.
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Fig. 1. (a)CQ3, (b) CQ4, and (c)CQ3 drawn in a different way.

3. Main result It is observed that verticesu1, u2, v1, v2 in the
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above lemma form a 4-cycle. We call this cycle a
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We useCQijn−2 to denote an(n − 2)-dimensional
crossed cube which is a subgraph ofCQn induced by
the vertices labeledijxn−3 . . . x0. We say that an edg
is acritical edge of CQn if it is an edge inCQin−1 with
one endpoint in CQi0n−2 and the other inCQi1n−2 for
i ∈ {0,1}.

Lemma 1. Let (u1, u2) be a critical edge of CQn
which is in CQ0

n−1, and v1, v2 be the neighbors of u1

and u2 in CQ1
n−1, respectively, for n� 4. Then (v1, v2)

is also a critical edge of CQn in CQ1
n−1.

Proof. We discuss two cases: (1)n is even, and (2)n
is odd.

Case 1. n is even. Without loss of generality
we assume thatu1 = 00xn−3xn−4 . . . x1x0 and u2 =
01yn−3yn−4 . . . y1y0, where x2i+1x2i ∼ y2i+1y2i for
0 � i � 
(n− 3)/2�. Thenv1 = 10yn−3yn−4 . . . y1y0,
and v2 = 11xn−3xn−4 . . . x1x0. By definition, v1 and
v2 are adjacent, and(v1, v2) is a critical edge in
CQ1

n−1.
Case 2. n is odd. Without loss of generality, we

assume thatu1 = 00xn−3xn−4xn−5 . . . x1x0. Suppose
thatxn−3 = 0. Thenu1 = 000xn−4xn−5 . . . x1x0, u2 =
010yn−4yn−5 . . . y1y0, wherex2i+1x2i ∼ y2i+1y2i for
0 � i � 
(n − 4)/2�, v1 = 100yn−4yn−5 . . . y1y0,
and v2 = 110xn−4xn−5 . . . x1x0. Thus,v1 andv2 are
adjacent, and(v1, v2) is a critical edge inCQ1

n−1. It
can be checked that the statement is also true for
casexn−3 = 1. ✷
crossed 4-cycle in CQn. It is clear that, for each
vertex 00xn−3 · · ·x0, there is exactly one crossed
cycle corresponding to the vertex. Thus, there
2n−2 disjoint crossed 4-cycles inCQn. We note that
a crossed 4-cycle contains two critical edges.

Huang et al. [5] showed the validity of the follow
ing theorem. Based on this theorem, we show the p
cyclicity of the crossed cube by induction.

Theorem 1 [5]. The crossed cube CQn is (n − 2)-
hamiltonian and (n − 3)-hamiltonian connected for
n� 3.

The base case isn= 3, and the proof is given in th
following.

Theorem 2. CQ3 is 1-pancyclic.

Proof. Note thatCQ3 can be redrawn as Fig. 1(c), an
it is vertex-transitive. We consider two cases (1) o
faulty vertex, and (2) one faulty edge as follows:

Case 1. One faulty vertex. Without loss of gener
ality, we assume that vertexx = 000 is faulty. We
list cycles of lengths from 4 to 7 as follows:〈001,
111,101,011,001〉, 〈001,111,110,010,011,001〉,
〈001,111,110,100,101,011,001〉, and 〈001,111,
101,100,110,010,011,001〉.

Case 2. One faulty edge. Without loss of generality
we assume that the faulty edgee is incident to 000. By
case 1, there are cycles of lengths from 4 to 7 in
faulty CQ3. For a cycle of length 8, suppose thate =
(000,010). Then 〈000,001,111,110,010,011,101,
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Fig. 2. Cases of Theorem 3.

100,000〉 is the desired one. Suppose thate = (000, n − 2. Thus, there is no fault outsideCQ0
n−1, i.e.,
001). Then 〈000,010,110,111,001,011,101,100,
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f 1 = f c = 0. We discuss the existence of cycles of
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e

se
000〉 is a cycle of length 8. Ife= (000,100), the case
is symmetric to the casee= (000,001). ✷

LetF be a set of faults inCQn. We say that a verte
u in one subcube ofCQn is a safe crossing-point in
CQn−F if u still connects to the neighbor in the oth
subcube inCQn − F , i.e., the corresponding neighb
u′ in the other subcube ofu is fault-free, and the edg
(u,u′) is also fault-free. The main result is as follow

Theorem 3. The crossed cube CQn is (n − 2)-
pancyclic for n� 3.

Proof. We prove this by induction onn. It follows
from Theorem 2 thatCQ3 is 1-pancyclic. Now we
proceed to the induction step. Suppose thatCQn−1 is
(n− 3)-pancyclic for somen � 4. We will show that
CQn is (n−2)-pancyclic. LetF ⊆ V (CQn)∪E(CQn)
be the set of faults. We divideF into five disjoint parts:

F 0
v = F ∩ V (

CQ0
n−1

)
, F 0

e = F ∩E(
CQ0

n−1

)
,

F 1
v = F ∩ V (

CQ1
n−1

)
, F 1

e = F ∩E(
CQ1

n−1

)
,

F ce = F ∩ {
(u, v) | (u, v) is an edge

betweenCQ0
n−1 andCQ1

n−1

}
.

Let f = |F |, f 0
v = |F 0

v |, f 0
e = |F 0

e |, f 1
v = |F 1

v |, f 1
e =

|F 1
e |, andf ce = |Fce |. For convenience of discussio

we define the following subsets ofF : Fv = F ∩
V (CQn),Fe = F ∩E(CQn),F

0 = F 0
v ∪F 0

e , andF 1 =
F 1
v ∪F 1

e . And letfv = |Fv |, fe = |Fe|, f 0 = |F 0|, and
f 1 = |F 1|. Note thatf 0 + f 1 = f − f ce .

Case 1. There is a subcube containing all the(n−2)
faults. Without loss of generality, we assume thatf 0 =
e

lengths from 4 to 2n − fv according to the following
cases.

Case 1.1. Cycles of lengths from 4 to 2n−1. Since
CQn−1 is (n−3)-pancyclic,CQ1

n−1 contains cycles o
lengths from 4 to 2n−1 for n � 4. Clearly,CQn − F
also contains cycles of these lengths.

Case 1.2.A cycle of length 2n−1+1. (See Fig. 2(a).)
We want to construct a cycle containing 2n−1 − 1
vertices in CQ1

n−1 and two vertices inCQ0
n−1. To

avoid faults in CQ0
n−1, we introduce a term calle

the shadows of the faults. Let〈u1, u2, v2, v1, u1〉 be
a crossed 4-cycle withu1, u2 in CQ0

n−1 andv1, v2 in
CQ1

n−1, respectively. If there is a fault on this cyc
but the fault is not inCQ1

n−1, we call edge(v1, v2)

a shadow fault of F on CQ1
n−1. (Similarly, we may

define a shadow fault onCQ0
n−1.) LetFs = {e | edgee

is a shadow fault ofF on CQ1
n−1}. Since all crossed

4-cycles are vertex disjoint,|Fs | � n − 2. If |Fs | =
n − 2, we arbitrarily pick an edgee1 in Fs , and let
F ′ = Fs − e1, or elseF ′ = Fs . Then |F ′| � n − 3
andCQ1

n−1 − F ′ is still pancyclic. So there is a cycl
C of length 2n−1 − 1 in CQ1

n−1 − F ′. Clearly, there
are two critical edges onC. Let (a, b) �= e1 be a
critical edge onC, so (a, b) /∈ Fs . Let a′, b′ be the
neighbors ofa and b in CQ0

n−1, respectively. Then
〈a, a′, b′, b, a〉 is a fault-free crossed 4-cycle. Suppo
thatC = 〈a,Q,b, a〉. Then〈a′, a,Q,b, b′, a′〉 forms a
cycle of length 2n−1 + 1 in CQn − F .

Case 1.3.Cycles of lengths from 2n−1 + 2 to 2n −
fv . (See Fig. 2(b).) By Theorem 1,CQ0

n−1 is (n− 3)-
hamiltonian andf 0 = n−2,CQ0

n−1−F 0 still contains
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a hamiltonianpath, sayP = 〈u1, u2, . . . , u2n−1−f 0
v
〉,

wheref 0 = f . Let 2� l � 2n−1 − f . We construct
t

les
.

ay

e

y,

se
r

hen

Since we want to construct cycles of lengths from
2n−1 − f 1

v + 2 to 2n − fv , 1 � l � 2n−1 − (fv −
h

nts

h

.

s

ties

a)),

ts

.

at
v v v

a cycle of length 2n−1 + l as follows: Suppose tha
the neighbors ofu1 and ul in CQ1

n−1 are v1 and
vl , respectively. SinceCQn−1 is (n − 4)-hamiltonian
connected andn � 4, there is a hamiltonian pathQ
in CQ1

n−1 betweenv1 andvl containing 2n−1 vertices.
So 〈u1, . . . , ul, vl,Q,v1, u1〉 forms a cycle of length
2n−1 + l.

Case 2. Both f 0 and f 1 are at mostn − 3. By
induction hypothesis,CQ0

n−1 − F 0 andCQ1
n−1 − F 1

are still pancyclic. We discuss the existence of cyc
of all lengths from 4 to 2n− fv in the following cases

Case 2.1. Cycles of lengths from 4 to 2n−1 − f 1
v .

By induction hypothesis,CQ1
n−1 is (n− 3)-pancyclic.

Thus, we have cycles of lengths from 4 to 2n−1 − f 1
v

in CQ1
n−1 − F 1.

Case 2.2. A cycle of length 2n−1 − f 1
v + 1. (See

Fig. 2(c).) We construct the cycle using a similar w
used in Case 1.2. LetFs = {e | edgee is a shadow
fault of F on CQ1

n−1}. Then |Fs ∪ F 1| � n − 2. If
|Fs ∪ F 1| = n − 2, we arbitrarily choose an edg
e1 in Fs , and letF ′ = Fs ∪ F 1 − e1, or elseF ′ =
Fs ∪ F 1. Then|F ′| � n− 3 andCQ1

n−1 − F ′ is still
pancyclic. SinceF ′ ∩ V (CQ1

n−1)= F 1
v , there is a cy-

cleC of length 2n−1 − f 1
v − 1 in CQ1

n−1 − F ′. Since
2n−1 − f 1

v − 1> 2n−2 for n� 4,C contains two crit-
ical edges. Let(a, b) �= e1 be a critical edge onC,
so (a, b) /∈ Fs . Let a′, b′ be the neighbors ofa and
b in CQ0

n−1, respectively. Then〈a, a′, b′, b, a〉 is a
fault-free crossed 4-cycle. Suppose thatC = 〈a,Q,
b, a〉. Then〈a′, a,Q,b, b′, a′〉 forms a cycle of length
2n−1 − f 1

v + 1 in CQn − F .
Case 2.3.Cycles of lengths from 2n−1 − f 1

v + 2 to
2n − fv . (See Fig. 2(d).) Without loss of generalit
we assume thatn − 3 � f 0 � f 1. If f 1 = n − 3,
then f 0 = n − 3, and 2n − 6 � n − 2 = f , which
implies n � 4. Thus, we need to discuss the ca
f 1 = n − 3 just for n = 4. We leave this particula
case to Appendix A, and assume thatf 1 � n − 4 in
the following discussion.

By Theorem 1,CQ1
n−1 − F 1 is still hamiltonian

connected, i.e., there is a path of length 2n−1 − f 1
v − 1

between any two vertices inCQ1
n−1 − F 1. As a result,

if we can find a path of lengthl in CQ0
n−1 − F 0 with

the two endpoints being safe crossing-points, t
we find a cycle of lengthl + 2+ (2n−1 − f 1

v − 1).
f 1
v ) − 1 = 2n−1 − f 0

v − 1. Now we construct a pat
of length l in CQ0

n−1 for each l, 1 � l � 2n−1 −
f 0
v −1. By Theorem 1,CQ0

n−1 is (n−3)-hamiltonian.
Thus we have a hamiltonian cycleC = 〈u0, u1, . . . ,

u2n−1−f 0
v −1, u0〉 of length 2n−1 − f 0

v in CQ0
n−1 − F 0.

We claim that there exist two safe crossing-poi
ui and uj on C such that(j − i)(mod 2n−1−f 0

v )
= l.

Suppose on the contrary that there do not exist sucui
anduj . Then there are at least�(2n−1 − f 0

v )/2� faults
outsideCQ0

n−1. However,�(2n−1 − f 0
v )/2� + f 0

v �
2n−2 > n − 2 for n � 2. We obtain a contradiction
Thus, there exist such two verticesui anduj . And then
we find a path of lengthl onC.

Hence, the theorem follows.✷

Appendix A

In the following, we construct cycles of length
from 2n−1 −f 1

v +2 to 2n−fv for the casef 0 = f 1 =
n− 3. Sincef 0 + f 1 = 2n− 6 � n− 2, n� 4. Thus,
we need only to discuss the casef 0 = f 1 = 1 for
n = 4 here. We shall use some symmetric proper
of CQ3 to reduce the cases.

For convenience of discussion (see Fig. 3(
we call(000,010), (001,011), (111,101), (110,100)
as inner edges of CQ3 and (000,001), (001,111),
(111,110), (110,010), (010,011), (011,101), (101,
100), (100,000) asouter edges of CQ3, respectively.
Let x be a vertex ofCQ3. An inner edgee is said to be
anN -edge of x if x connects to one of the endpoin
of e. HenceCQ3 has twoN -edges ofx. An inner edge
e is said to be anH -edge of x if x is not incident toe,
ande is not anN -edge ofx. Therefore,CQ3 has one
H -edge ofx.

To explore the pancyclicity ofCQ4−F , we need an
observation, and it is stated in the following lemma

Lemma 2. Let x be a faulty vertex in CQ3. Then the
two N -edges of x , e1 and e2, are on cycles of lengths
from 4 to 7 in CQ3 − x . And the H -edge of x is on
cycles of lengths 4, 5, and 7 in CQ3 − x .

Proof. Without loss of generality, we may assume th
x = 000. Then the twoN -edges ofx are (001,011)
and(110,100), and theH -edge ofx is (111,101). We
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a

Fig. 3. (a)N -edge andH -edge ofx and (b) a cycle of length 12 with one faulty vertex 0000 and one faulty edge(1100,1110).

list all the cycles as follows:〈001,111,101,011,001〉, (v1, v2) for 8 � l � 14. For example, Fig. 3(b) shows

〈111,110,100,101,111〉, 〈001,111,110,010,011,

8

t

k

r

,
f

cycle of length 12 inCQ4 with one faulty vertex 0000

14

y
le

ose

ogi-
uted

ing,
24.

the

et-

lt-
da-

ssed
001〉, 〈111,110,010,011,101,111〉, 〈110,010,011,
101,100,110〉, 〈001,111,110,100,101,011,001〉,
and〈001,111,101,100,110,010,011,001〉. ✷

We continue to discuss cycles inCQ4 − F , and
consider two situations: (1) cycles of lengths from
to 14 and (2) cycles of lengths 15 and 16.

Case 1.Cycles of lengths from 8 to 14. Suppose tha
there is a faulty vertexx in CQ0

3 or a faulty edgee1
which is incident tox. Let (u1, u2) and(u3, u4) be the
twoN -edges ofx. By Lemma 2,(u1, u2) and(u3, u4)

are on cycles of lengths from 4 to 7 inCQ0
3 − F 0.

Let v1, v2, v3, andv4 be the neighbors ofu1, u2, u3,
andu4 in CQ1

3, respectively. It is not difficult to chec
that both(v1, v2) and(v3, v4) are inner edges ofCQ1

3.
(See Fig. 3(b).) And(v1, v2) can not reach(v3, v4)

via exactly one edge ofCQ1
3. Suppose that the othe

fault is a faulty vertexy in CQ1
3, or a faulty edgee2

which is incident toy. Then(v1, v2) or (v3, v4), say
(v1, v2) is anN -edge orH -edge ofy in CQ1

3 − F 1.
By Lemma 2,(v1, v2) is on cycles of lengths 4, 5
and 7 inCQ1

3 − F 1. We useCi to denote a cycle o
lengthi. LetCi andCj be cycles containing(u1, u2)

and (v1, v2), respectively, 4� i � 7, j = 4, 5, or 7.
Then we can construct a cycleCl from Ci andCj by
adding(u1, v1) and(u2, v2), and deleting(u1, u2) and
and one faulty edge(1100,1110).
Case 2. Cycles of lengths from 15 to 16. If fv = 2,

we need only to find cycles of lengths from 4 to
which we did in the previous cases. Iffv = 1 and
fe = 1, we have to find a cycle of length 15. B
Theorem 1,CQ4 is 2-hamiltonian, so there is a cyc
of length 15 inCQ4 − F . If fe = 2, sinceCQ4 is 2-
hamiltonian, there is also a cycle of length 16. Supp
that F = {(x1, y1), (x2, y2)}. Let F ′ = {(x1, y1), x2}.
Then there is a cycle of length 15 inCQ4 − F ′. This
cycle is also fault-free inCQ4 − F .
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