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A direct patterning technology of low-permittivity silicate-based polymer is investigated with
electron-beam lithography for multilevel interconnections. The smallest feature size of 60 nm for
damascene lines can be directly patterned in the silicate film. In this direct patterning, dielectric
regions exposed by electron beam are crosslinked and form desirable patterns, while the others are
dissolvable in an aqueous solution containing 2.38% tetramethylammonium hydroxide. With an
optimum condition of electron-beam lithography, the electron-beam-irradiated silicate exhibits
superior dielectric properties than that of the furnace-cured silicate film, due to minimizing the break
of Si—H bonds and moisture uptake. The explanation is in agreement with the analyses of Fourier
transform infrared spectroscopy and thermal desorption spectroscopg00® American Institute

of Physics. [DOI: 10.1063/1.1628401

As feature sizes of integrated circuits reduce beyond 18®SQ films exposed by EB irradiation are not main factors in
nm and enter the sub-100-nm nanoscale fields, signal prop#hie process considerations. On the contrary, for IMD appli-
gation delay due to parasitic resistance and capacitance beations, lowk dielectric characteristics such as leakage cur-
tween the interconnect lines becomes the predominant connent and dielectric constant naturally need to be carefully
ponent of the overall device signal defayhe crosstalk and taken into consideratiohln this letter, direct patterning of
power dissipation both also increase with the escalating pardew-k HSQ using EB lithography is proposed as a multilevel
sitic capacitance. To address these problems, cofer interconnect technology. Dielectric characteristics of EB-
damascene technology with low permittivitlow-k)?=® in-  exposed HSQ films are also investigated for IMD applica-
termetal dielectric§IMD) has been developing for multi- tions.
level interconnects. It is necessary to reduce fabrication pro- A nonphotosensitive silicate-based polymer, hydrogen
cedures for the interconnect architecture, especially etch-stagiisesquioxane, was used as an electron sensitivek|ava-
layer, photoresist, and dry-etching processes for damascemerial through this study. HSQ resins diluted in methylisobu-
technology. Moreover, it is worth noticing that Iokvelielec-  tyl ketone(MIBK ) were spun onto 6-inp-type Si wafers at
trics are easily degraded during photoresist stripping2000 rpm for 20 s to form 500-nm-thick films. After hot
processe8. Direct patterning of lowk dielectrics using baking at 150 °C on a hot plate for 1 min, EB exposure was
electron beanEB) lithography is a promising choice to sim- carried out according to target pattern layouts by use of a
plify process steps and to avoid the damage from photoresisteica Weprint200 stepper. The EB energy was 40 kV with
stripping during Cu damascene manufacturdthough the  beam size 20 nm and the exposure doses were changed from
major drawback of EB lithography is the very small through-100 to 700..C/cn?. After EB exposure, the HSQ films were
put compared to current optical steppers, new ideas on maskgveloped in an agueous solution containing 2.38% tetram-
and scanning strategies have been developing to resolve t@ghylammonium hydroxidéTMAH) for 1 min and rinsed in
throughput limitation on EB systefii'? In this direct pat-  geionized water for 1 min. For the IMD dielectric investiga-
terning, it was found that several lokvdielectric materials  tjons, unpatterned HSQ films were fabricated with EB blan-
were sensitive to EB exposure. One of them, hydrogen silskeﬂy irradiating on the post-baked HSQ films. Then, the
esquioxane(HSQ'" was used as a negative tone electronysq films were immersed in aforementioned developer
beam resist; since HSQ did not show only high resolution TiAH and deionized water. Furnace annealing was finally
with a sensitivity comparable to pdlyethyl methacrylale  performed at temperatures between 300 and 350 °C for 60
(PMMA) but also a very low edge roughnéssror the EB i in N, ambient to remove the residual organic solvent
resist applications, HSQ layers are always stripped after fingq to enhance the dielectric properties of EB-exposed HSQ
ishing pattern transfer; thereby, dielectric properties of thjjms. The control samples were also manufactured for com-
parison, according to a typical commercial recipe, by baking
3Electronic mail: ptliu@ndl.gov.tw as-spun HSQ films at 150, 200, and 300 °C for 1 min, re-
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g network mode growth at the expense of the intensity of Si—O
s cage mode with increasing EB exposure doses. Moreover,
8 |400°C Furnace curing : . . - i
e the intensity of Si—H stretching mode is slightly decreased
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2 cates the structure of HSQ film changes from a cage-like to a
< stable three-dimensional network structure via the breakage
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the furnace-cured HSQ films. =Si0——— =SiOSE.

However, an excess of Si—H bonding breakdown will lead to
spectively, and followed by thermal curing in a furnace atthe generation of dangling bonds in HSQ film, resulting in
400 °C for 60 min under Natmosphere. The chemical struc- degraded dielectric propertié%:1® The optimum EB expo-
tures of all the HSQ films were determined by Fourier trans-sure, in this work, was obtained with a minimum dose of 400
form infrared (FTIR Bio-Red QS30Dspectrometry. Electri- wC/cn?. In comparison with the furnace-cured HSQ film, as
cal measurements were conducted on metal insulathown in Fig. 1b), the intensity of Si—H bonds in the HSQ
semiconductor(MIS) capacitors. Material analysis using film with EB dosage 40QuC/cn? is relatively high. This
thermal desorption spectroscofyDS) was carried out upon result implies the EB-exposed HSQ could have superior di-
heating samples from room temperature to 600 °C at a heaelectric characteristics than that of the furnace-cured HSQ.
ing rate of 20 °C/s in vacuum (10 Pa). In the TDS analy- Scanning electron microscop§8EM) micrographs of line
sis, m/e (mass-to-charge ratie18 peak that is attributed to patterns are displayed in Fig. 2. Dielectric regions of the
H,O was monitored to evaluate dielectric stability of the HSQ films exposed by EB are crosslinked, while the others
EB-exposed HSQ films. without EB exposure maintain gel-like states and are dissolv-

FTIR spectra of HSQ films with different doses of EB able in the TMAH aqueous solution, further forming trench
exposure are shown in Fig.(d. In the HSQ film, Si—-O patterns. The trench patterns will be suitable for the subse-
bending mode(cage-like vibration at 863 cnt), Si-O  quent fill of Cu damascene lines. Also, Fig. 2 shows a good
stretching modegcage-like vibration at near 1130 crh image selection ratio for the developer TMAH. The dimen-
network-like vibration at near 1070 cm), and Si—H sion with 60 nm for line widths is obtained with an EB dose
stretching modénear 2260 cm?) are observed. The Si—H of 400 xC/cn? without using conventional photoresist and
group makes the surface of HSQ film hydrophobic and predry-etching techniques. Figure 3 shows electrical character-
vents moisture uptake. In addition, the ldwproperties of istics of the EB exposed and furnace-cured HSQ films. The
HSQ fiim can be achieved if the density of Si—H bonding isinset of Fig. 3 compares the dielectric constant of both
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HSQ films with electron beam exposure and with furnace curing.

FIG. 3. Leakage current of the EB-exposed and the furnace-cured HSQ

films as a function of electric fields. The inset plot compares the dielectricMaterial analyses including FTIR and TDS have confirmed

constant of HSQ films between using electron beam exposure and furnaggyy explanation, certainly indicating that relatively high in-

cunng. tensity of Si—H bonds and low content of moisture are
present in the electron-beam-exposed silicate.
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