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Determination of Dynamic Elastic 
Constants of Transversely Isotropic 
Rocks Using a Single Cylindrical 
Specimen 
JYH JONG LIAOt 
TING-BIN HUt 
CHUNN-WE1 CHANGt 

A new experimental procedure and its associated interpretation theories are 
proposed to determine the jive dynamic elastic constants of a transverse& 
isotropic rock. Using Christofel’s equations, the elastic constants can be 
uniquely determined based on ultrasonic wave velocity measurements on a 
single cylindrical specimen. The new method requires that the orientation of 
planes of elastic symmetry be parallel to its longitudinal axis. The wave 
velocity measuring devices (i.e. transducers) can be mounted on the sides 01 
ends of the specimen. The new method has been implemented in the laboratory 
on a transversely isotropic rock, argillite. Wave velocity measurements were 
taken on specimens with and without a tensile load applied at the en&. 
Consistent results were obtained in both cases. This paper describes details af 
the analytical background and the proposed experimental procedure. Availabie 
test results are presented to demonstrate the efficacy of the new method. 0 
1997 Elsevier Science Ltd 

INTRODUCTION 

Stiffness, a fourth order tensor C,,, that relates stress bii 
to strain 4, is an important parameter in the analysis of 
rocks under stress. In general, for the fourth order tensor 
C,,, there are 34 = 81 constants. Since oli and &/ are 
symmetrical, thus c,k, has the following symmetry 
conditions: 

c(ik! = cjik[ = cij[k = cj/[k (1) 

Hence, the total number of independent constants is 
reduced to 36. Through considerations of the existence 
of an elastic potential (strain energy per volume), the 
number of independent constants is reduced from 36 to 
21. That is, if we know these 2 1 constants, we know all 
8 1 constants. A rock having 21 independent constants in 
C,k, is called generally anisotropic [l]. If cijkl, bu and ck/ 

are detined in a Cartesian coordinate system (X, Y, Z), 
these tensors are related in a matrix form (i.e. the 
generalized Hooke’s law) as: 

tDepartment of Civil Engimring, National Chiao-Tung University, Group IV: C45, C,, CS, relate shear strains to shear 
Hsinchu, Taiwan 30050, Republic of China. stresses in different directions (i.e. yyz to zrz and Y,~/ to trz). 

Cl, Cl? Cl3 Cl4 Cl5 CM 

Cl2 c22 cn c24 czs ca 

Cl3 cz, G3 c34 c3s CM 

Cl4 c24 c34 c44 c4s C46 

Cl5 Cl, c,s c4s css C% 

CM C26 C36 c45 CS6 c66 1 (2) 

A 

where g.y, o?, or and c.?, E,., c.- are normal stresses and 
normal strains in the X, Y, Z directions; r,:, t.yz, r.Xj 
and y,.: , ylz, yrr are shear stresses and shear strains on the 
YZ, XZ, XY coordinate planes; CII, Cl2 . . . Cti are 
material parameters that relate gii to ekl. 

The constants of C# are referred to as elastic 
constants. The 21 independent elastic constants can be 
divided into five groups according to their physical 
meanings as follows [2]: 
Group I: C,, , Czz, C3,, relate normal strains to normal 
stresses. 
Group II: C,, CsS, C&, relate shear strains to shear 
stresses. 
Group III: Cu, C13 and C23, relate normal strains to 
normal stresses in different directions (i.e. cj to es and cr 
to a?). 
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Group V: C14, Cls, . . . CJ5, CJ6, these are coupling factors 
between normal stresses and shear strains. 

Determination of such parameters are, unfortunately, 
complicated by the often anisotropic nature of rocks. 
Anisotropy is common for foliated metamorphic rocks 
(e.g. argillite, slate, schist, phyllite, and gneiss), stratified 
sedimentary rocks (e.g. shale, sandstone, and coal), and 
rocks cut by one or several sets of regularly spaced joints. 
The engineering analysis of rock deformation under a 
given loading condition often involves the use of elastic 
theories that assume rock as a linear elastic continuum. 
For such analysis to be valid, it is imperative to consider 
the rock anisotropy. 

The number of elastic constants can be reduced if the 
elastic material has some form of symmetry. The rock 
anisotropy is typically distinguished according to the 
number and orientation of planes of elastic symmetry. In 
most cases, an anisotropic rock can be modeled as 
orthotropic or transversely isotropic materials. An 
orthotropic rock contains three orthogonal planes of 
elastic symmetry and these planes have the same 
orientation throughout the rock. In this case, the elastic 
constants of group IV and V are reduced to zero, and 
thus only nine independent elastic constants remain. 
Transverse isotropy implies that, at each point in the 
rock, there exists an axis of symmetry of rotation, and 
the rock has isotropic properties in a plane normal to 
this axis. For a rock that is transversely isotropic, only 
five out of the nine remaining elastic constants are 
independent. If all directions in a rock are elastically 
equivalent, only two elastic constants are needed to 
describe its deformability. 

Inversely, strains can be expressed in terms of stresses 
in the following tensor form: 

(0) = [%I(~) (3) 

where a0 is defined as the elastic compliance of an elastic 
material. Similar to the elastic constants, there are 21, 9, 
5, and 2 components of elastic compliances for a 
generally anisotropic, orthotropic, transversely 
isotropic, and isotropic rock, respectively. These elastic 
compliances are directly related to the engineering elastic 
constants, such as Young’s modulus (E) and Poisson’s 
ratio (v) for an isotropic rock. The relation between 
elastic compliances and engineering elastic constants for 
a transversely isotropic rock is given in the Appendix. 

These elastic constants are usually assessed by static 
or dynamic tests in the field or laboratory [3]. The static 
elastic constants are suitable for conventional rock 
mechanics analysis. For rocks subjected to transient 
dynamic loading conditions, the dynamic elastic 
constants are required. Also, the dynamic elastic 
constants are frequently used in assessing the degree of 
fractures in rocks. 

The borehole jack or pressure plate are popular means 
of measuring rock stiffness on tunnel walls [4-6]. 
However, these applications are limited to isotropic 
rocks. It is possible to use borehole jacking in 
conjunction with seismic methods to determine the five 

elastic constants in a transversely isotropic rock [7]. 
The application of such field methods is rare because 
they are expensive, time consuming, and unreliable. 
Static and dynamic laboratory tests are frequently 
conducted on rock specimens to determine the elastic 
constants. 

Ultrasonic wave velocity measurements are commonly 
used to determine the dynamic elastic constants for rocks 
in the laboratory. This method could require the use of 
multiple rock specimens [8-l 11, depending on the nature 
of anisotropy or the number of elastic constants 
involved. Alternatively, a single specimen with a special 
shape, such as an 18-faced polyhedron or a sphere, could 
be used to perform the ultrasonic tests [12,13]. Most of 
the anisotropic rocks are either orthotropic or 
transversely isotropic. Three or four cylindrical speci- 
mens [14-161 with different orientations of elastic 
symmetry planes have been used in the past to determine 
the elastic constants using wave velocity measurements. 
The accuracy of the test results depends on the 
homogeneity of rock specimens, repeatability of the 
testing techniques, among others. Hence, the less 
the number of test specimens the better it is. Although 
the number of a specially shaped specimen can be 
restricted to one as previously mentioned, the sample 
preparation is difficult and these specimens can not 
be used for other types of rock mechanics tests. Jones 
and Wang [17] proposed a testing method to determine 
the five dynamic elastic constants using a cylindrical 
specimen with planes of transverse isotropy perpendicu- 
lar to the longitudinal axis. Their method involves a 
series of end to end shear and compression wave velocity 
measurements on the specimens. A single cylindrical 
specimen would suffice in Jones and Wang’s method in 
case of transverse isotropy, if compression wave 
velocities at 45” from the planes of elastic symmetry are 
measured. However, no test results using a single 
specimen were presented in their paper. This is 
apparently because end to end, 45” measurements are 
difficult to conduct, especially when loading is applied at 
the ends. 

In this paper* a practical method of conducting and 
interpreting ultrasonic tests is proposed to determine the 
dynamic elastic constants of a transversely isotropic 
rock. The new method uses a single cylindrical specimen 
with planes of transverse isotropy parallel to the 
longitudinal axis. The ultrasonic sensors can be placed 
on the side of the specimen, thus allow end loading to 
be applied while conducting 45” compressive velocity 
measurements. To demonstrate the advantages of the 
new method, a series of tests were performed on an 
argillite specimen that was transversely isotropic. The 
ultrasonic wave velocities were measured under direct 
tension, and loading free conditions. This paper briefly 
reviews the principles of wave propagation in a 
transversely isotropic body. Two types of ultrasonic 
wave velocity measurement techniques are then pre- 
sented. Finally, test results on the argillite rock 
specimen, using both techniques, are presented and 
discussed. 
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WAVE PROPAGATION IN A TRANSVERSELY 
ISOTROPIC BODY 

A general form for the constitutive relationship of an 
anisotropic medium [equation (211 can be written in a 
tensor form as: 

64 = c,,,t,, (4) 

Where C,,, represents the elastic stiffness. Incorporating 
the equation of motion into equation (4), wave 
propagation in an anisotropic space can be derived using 
Christoffel’s equation [ 181 as follows: 

CVk,nkn,Ai - pVAi = 0 (5) 

If we set Iii = Ci,krnknl, then Christoffel’s equation 
becomes: 

I,Aj - p VAi = 0 (6) 

where Iii is called Christoffel’s tensor and is symmetrical; 
nk and n, are the components of a unit vector that defines 
the direction of wave propagation; AL\i is the polarization 
of the wave; V is the magnitude of wave velocity; and p 
is the unit weight of the medium. 

Solving Christoffel’s equation is an eigenvalue 
problem. The solution is obtained from the determinant 
of the coefficients of equation (6): 

det(I,-- pV$&)= 0 (7) 

pi/f are the three eigenvalues of the corresponding 
eigenvector Ai of tensor Iij. The solutions include three 
orthogonal polarization directions at any given point on 
a wavefront. The wave velocity in these three directions 
may be different in an anisotropic medium. Depending 
on the direction of propagation and polarization 
(direction of particle motion) of a wavefront, three wave 
types may be identified (i.e. one compression and two 
shear wave types). The equation also implies that the 
velocity at a point depends on the orientation of the 
planes of elastic symmetry and the elastic compliance 
of the medium. Thus, the elastic constants .(i.e. 
components of C,,,) of an anisotropic rock can be 
calculated from Christoffel’s equation if V, through 
the medium is known. The constants thus calculated are 
generally said to be dynamic, as distinguished from the 
static constants obtained from compression or tension 
tests. For a general anisotropic material, to calculate the 
21 dynamic elastic constants using equation (6), 21 or 
more wave velocities of different propagation and 
polarization directions are required. 

For a material that is transversely isotropic, consider 
2 to be the rotation axis of elastic symmetry, X and Y 
axes in the plane of transverse isotropy, equation (2) 
becomes: 

= 

Cl1 Cl2 Cl3 0 0 0 

cn Cl, Cl3 0 0 0 

Cl3 Cl3 c33 0 0 0 

0 0 0 c44 0 0 

0 0 0 0 c44 0 

0 0 0 0 0 c, 

Cti = (C,, - Cl*)/2 and thus, only five independent 
elastic constants C,,, Cj3, Cl2 (or CM), Cl), and CM exist 
in C,,,. These components are directly related to a set of 
engineering elastic constants E, E’, v, v’, and G’ (see the 
Appendix) where: 

l E, E’ are Young’s moduli in the plane of transverse 
isotropy and in a direction normal to it, respectively, 
l v, v’ are Poisson’s ratios characterizing the lateral 
strain response in the plane of transverse isotropy to a 
stress acting parallel and normal to it, respectively, and, 
l G’ is the shear modulus in planes normal to the plane 
of transverse isotropy. 

For a plane wave in the X2 or YZ planes, equations 
of body wave velocities in terms of the five constants are 
derived from equation (7) as follows: 

VP, e&r, Z) = VP, MY, a 

CH Sin% + Cj3 cos2& + CM + A “2 = 
2P 

(10) 

Vs2,8*(X, Z) = vs2, &(y, a 

CII sin% + C3 cos2tlz + CM - A I/* = 
2P 

(11) 

A = ([(C,, - CM)sin2& - (C33 - CM)cos28z]2 

+ 4(C13 + C44)2 sin*& cos*& )‘I2 

where 

l 8,, I$, and 6; are angles between the direction of the 
plane wave on the coordinate planes XY, YZ, and XZ 
and the coordinate axes X, Y, and Z, respectively, as 
shown in Fig. 1. 
l V, is the velocity of compression wave; V,, is the shear 
wave velocity polarized on the plane of wave 
propagation; and KZ is the shear wave velocity polarized 
perpendicular to the plane of wave propagation. 

The velocities in the XY plane are expressed only in 
terms of three independent constants, i.e. Cl,, CM, and 
Clz (or C,,) as follows: 

vp, excx, y) = 
J 

C,I p; VSI, Mx, Y> 

Since the plane XY is isotropic, the velocities in the plane 
depend only on the elastic constants and p. 

For waves propagating parallel to the three coordinate 
axes, the wave velocities in terms of dynamic elastic 
constants and p are: 
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Fig. 1. Wave types in an anisotropic medium. 
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= b, e,(y, 4 = J y+ (14) 

vs2, e,(x, Y) = vs,, w, 4 = c66 
d- T- (15) 

where 0, = 0: = 90”. 
Only four constants can be calculated if velocity 

measurements are performed on the three coordinate 
planes. The value of C,, can be calculated from equation 
(10) using a compression wave velocity measurement 
with an inclined angle (0,) to the axis perpendicular to 
the plane of transverse isotropy (Z axis), or a plane 
involving Z axis (for example XZ or YZ planes). 

LARORATORY MEASUREMENTS OF ELASTIC 
CONSTANTS ON TRANSVERSELY ISOTROPIC ROCK 

The wave velocities, as shown in equations (9x1 I), 
are directly related to the elastic constants. Theoretically, 
the five elastic constants can be uniquely determined 
with five wave velocity measurements, if the direction of 
these waves are strategically selected. Wave velocity 
measurements are conducted using a pair of ultrasonic 
transducers. The wave direction is controlled by the 
relative locations of the transducer pair on the specimen 
surface. Figure 2 depicts possible locations of ultrasonic 
transducers and their relationship with the plane of 
symmetry. Two alternatives of transducer set ups and 
their interpretation of test results are proposed as 
follows: 

Transducers mounted on the sides of a cylindrical 
specimen 

This set up takes advantage of the fact that coordinate 
plane XY is on the plane of elastic symmetry, and YZ 
is parallel to the cross section of specimen. For waves 
propagating in YZ plane, equations (9x11) can be 
directly applied to solve the five elastic constants. Pairs 
of ultrasonic transducers are located at different vertical 
locations on a YZ plane. The velocities calculated from 
equations (9x11) are expressed in terms of the five 
elastic constants and & which is calculated from the 
relative locations of the two transducers. Hence, 
constants CIz, G, and C,I can be obtained from 
measuring V,, with different &. With two additional 
measurements of VP or VSz at different &, the remaining 
constants are calculated. 

Equations (10) and (11) imply that a velocity 
measurement on the YZ plane but with a & between 0 
and 90” is required to obtain CIX. Theoretically, the five 

VS1Brfx.y) 

A+ 
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x VP*&(X.Y) 
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\ 
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V p, MY-Z) 

V p. 6k(Y.X) 
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Fig. 2. Transducer locations to measure elastic constants of a 
transversely isotropic rock. 

elastic constants can be calculated with five or more 
measurements of VP or VSz with different & angle. For 
example, a set of measurements at 62 = 15, 30, 45, 60, 
and 75”, or at t% = 10,20,30,40, 50,60,70, and 80” are 
all acceptable locations. When the number of measure- 
ments exceeds five, a statistical technique, such as a 
non-linear least square analysis, should be used to 
optimize a set of constants. However, wave velocity 
measurements with 8~ between 0 and 90” are more 
susceptible to errors, and thus are not recommended to 
replace those along the axes of symmetry. Based on the 
previous experience and theoretical considerations, 
recommended transducer arrangements to obtain the 
five dynamic elastic constants are shown as Fig. 2. 
Figure 2 depicts V,, and VP measurements at & = 0” and 
at & = 90”, and an extra VP measurement at & = 45”. 
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Fig. 3. Ultrasonic wave velocity measuring system. 

The resulting dynamic elastic constants expressed in 
terms of measured velocities are: 

Cl, = PC, em z); 

c33 = pvg, wy, z); 

c44 = Pci, K(Y, z); 

GA = PE,, P(Y, z); 

c,3 = [(2&, 8:‘(y, z) - OS(CII + C33) 

- C,)’ - 0.25(C,, - C33)2]o.5 - CL; (16) 

where &@ = 90”, (3,’ = O”, and 8; = 45”. 

Transducers mounted on the sides and ends of a cylindrical 
specimen 

Because of better contact conditions, transducers 
mounted on a flat surface (i.e. ends of a cylinder) are 
inherently better than on a curved surface (i.e. side of a 
cylinder). An alternative method, involving transducers 
mounted on ends of a cylindrical specimen, for part of 
the measurements, is proposed. In this method, VP, V,,, 
and KZ from transducers on the ends of cylinder (i.e. 
ox = 0) are used to determine C,, , CM, and C,. 
Constants Cl3 and C3 are calculated from the side to side 
measurements of VP with f& = 45 and 0 as previously 
described. The dynamic elastic constants expressed in 
terms of the measured velocities are: 

cl1 = pq, e:(x,y); c, = pe,,, e:(x,y); 

c66 = pc2, @xx9 Y>; c33 = pk$ exh Z) 

cl3 = wv2,, exy, Z) - o.5(cII + c3) - cd 

- 0.25(C,, - C33)‘]“” - C,; (17) 

where 0: = t7: = 0” and 0; = 45”. 
For the case presented in this paper, only two 

velocities VP and V,, (or Vs2) can be measured by the pair 
of transducers due to the limitation of their capabilities. 
Hence, three velocity measurements on the sides and two 
on the ends of the specimen are proposed. The 
arrangement of ultrasonic transducers is depicted in 
Fig. 2. In this case, the dynamic elastic constants can be 
expressed as similar to equation (17), except that CM is 
replaced by: 

C44 = ~vi, em z); (18) 

where 01 = 0”. 

VP vs1 

l!bt = 16 .S2cw P 
Fig. 4. A typical wave record. 
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Fig. 5. Transducer housing cap. 

LABORATORY DEMONSTRATION 

In order to verify and demonstrate the proposed 
methods described in this paper, a series of ultrasonic 
tests were conducted on cylindrical specimens of a 
transversely isotropic rock. In the first part of the tests, 
wave velocity measurements were performed on eight 
specimens with no load applied. In the second part of the 
tests, wave velocity measurements were made when the 
specimen was under a direct tension loading condition. 
Details of the rock specimens, test set up, and results are 
described in the following sections. 

The rock specimens 

NX sized core specimens with a length to diameter 
ratio of 2.5 were prepared with core axis parallel to 
foliation planes from block samples of argillite, a 
metamorphic rock. The argillite was formed from slight 
metamorphism of shale or silty shale. Given a 
moderately increased degree of metamorphism, it could 
transform into slate. Argillite is often encountered in 
mountainous areas of Taiwan. The argillite block 

samples used in this study were taken from a tunnel in 
northern Taiwan. The core samples were prepared 
following the procedure suggested by ISRM [19]. The 
microscopy studies on the rock specimens revealed that 
the argillite consisted of 45% quartz and 55% other 
silicate minerals (Illite, chlorite, . . .). Clear foliation 
planes are well-developed by the recrystallization of clay 
minerals. The foliation planes can be considered as 
planes of elastic symmetry of an anisotropic material 
and the argillite considered as a transversely isotropic 
material. The grain size of argillite is between that of silt 
and clay. The argillite has a dry unit weight of 
26.3-21.2 kN/m3, specific gravity of 2.71-2.75, and 
porosity of 0.014-0.018. 

Laboratory experimental program and set up 

The elastic constants were determined based on 
ultrasonic wave velocity measurements in rock speci- 
mens. The wave velocity measurement set up is depicted 
in Fig. 3. The ultrasonic testing system includes a 
pulser/receiver (Parametrics 5058 PR), 10 mm diameter 
ultrasonic transducers capable of generating/receiving 
1 MHz shear waves (Parametrics VlOl-RM) and 
compressive waves (Parametrics VI 53-RM), and an 
oscilloscope (HP 54600A). VlOl-RM can generate and 
receive both compressive and shear waves. The 
ultrasonic system is used to measure the wave travel 
time. Knowing the distance between the generating and 
receiving ultrasonic transducers, the wave velocity is 
then determined. The accuracy of velocity measurements 
is directly related to the reliability of observed wave 
travel time. Figure 4 shows a typical wave form 
generated/received from a pair of VlOl-RM transducers. 
The arrivals of the compressive and shear waves are 
clearly distinguishable. Possible errors in selecting the 
wave arrival time, and hence the wave travel time, as 
depicted in Fig. 4 are minimal. 

In the first part of the tests, wave velocity 
measurements were performed on eight specimens 
(numbered l-8) with no load applied. As depicted in 
Fig. 2, five sets of velocity measurements were conducted 
with transducers mounted on the sides of the specimens 
only. 

In the second part of the tests, specimen No. 7 of 
the first part was used for wave velocity measurements. 

Table 1. Velocitv measurements under loadinx free conditions 

Sample 
no. 

VP, WY, 2) 
(m/set) 

VP, 81 (Y, z) 
(misec) 

VS!, @(Y, 2) 
(misec) 

VP, e;t:()‘, z) 
(misec) 

1 4742 2874 5319 3236 4955 
2 4697 2849 5303 3283 4931 
3 4730 2915 5387 3331 4977 
4 4621 2709 5357 3277 4834 
5 4560 2745 5351 3254 4806 
6 4551 2670 5363 3247 4754 
7 4565 2892 5318 3266 4803 
8 4499 2844 5273 3395 4725 
mean 4621 2812 5334 3286 4848 
Codficimts 2.0 3.2 0.7 1.6 2.0 
of variation 
(%I 

(~5 = 00, er = 900, 82 = 450). 
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The transducers were located on ends and sides of the 
specimen. Wave velocity measurements were made when 
the specimen was under different levels of tension 
applied at the ends. In addition, strain gauges were 
attached to the surface of the specimen to provide 
reference measurements of axial and transverse strains 
during loading. 

A material testing machine (MTS 8 10) with a capacity 
of 250 kN capacity was used to apply tension on the 
specimen in Part 2 tests. Readers are referred to [9] for 
details of the tensile test set up and the associated 
gripping device. A pair of metal caps were used to house 
the ultrasonic transducers as shown in Fig. 5. The 
transducers are connected to the pulser/receiver through 
a switch box that allows velocity readings to be taken 
sequentially. The transducers may be damaged due to 
the sudden impact when specimens fail. The average 
tensile strength of argillite specimens with foliation 
parallel to the loading direction is 12.0 MPa [9]. Hence, 
the maximum applied stress (6 MPa) is selected to be less 
than half of the expected tensile strength. Tension was 
applied in 6 steps of 1 MPa. For each increment, the 
tensile stress was kept constant for 1 min. 

Test results 
The results of Part 1, including velocity measurements 

and calculated engineering elastic constants, are shown 
in Tables 1 and 2. The results indicate that the measured 
velocities and elastic constants are rather consistent 
among the eight specimens, with coefficient of variation 
less than 6%, except for v and v’. The values of E/E’, 
v/v’, and G/G’ are between 1 and 2. These ratios are 
within reasonable thermal dynamic constraints of an 
anisotropic material [20,21]. Hence, the measured 
dynamic elastic constants can be considered reasonable 
and the test method valid. 

Figure 6 shows the velocity measurements on 
specimen No. 7 at different tensile stresses from Part 2 
tests. The result indicates that compression wave velocity 
changes little with tensile stress. The shear wave velocity 
increases slightly with the tensile stress after 2 MPa. The 
total increase of the shear wave velocity at 6 MPa is 
0.5%. The results imply that the dynamic elastic 
constants are approximately constant when the applied 
stress is low. As the tensile stress increases, the dynamic 

Table 2. Results of calculated dynamic engineering elastic constants of 
argillite under loading free conditions 

Sample 
no. (GEpa) (&a) (&a) v VT 

1 66.58 52.49 21.89 0.20 0.19 
2 66.69 50.95 21.51 0.17 0.20 
3 69.53 53.07 22.52 0.18 0.18 
4 68.02 50.25 19.45 0.20 0.18 
5 68.20 50.08 19.97 0.22 0.16 
6 68.53 50.37 18.90 0.23 0.15 
7 69.04 52.42 22.16 0.22 0.12 
8 70.13 51.18 21.43 0.15 0.12 
mean 68.34 51.35 20.98 0.196 0.163 
Coefficients 1.8 2.2 6.0 14 18 
of variation 
(%I 

5318 

5265 
3299 

-3+- vs2e ‘x(1.y) 

3266 R :: x 

3233 I I I I I I I 
0 2 St& 6 8 

Axial (MPa) 

(e: = 6: = cP,e’; = 49) 

Fig. 6. Wave velocities (specimen No. 7) under tensile stress. 

elastic constants begin to be moderately sensitive to the 
change of stress. This means that the magnitude of stress 
within the specimen and the presence of microcracking 
can influence the elastic constants (Fig. 7). Hence, the 
elastic constant measurements can be used to 
evaluate the degree of fracture in the specimen during 
loading. 

The E and v values from wave velocity measurements 
(part of dynamic elastic constants) are consistent with 
those deduced from strain gage readings (see Fig. 8) 
which are static parameters. The static elastic constants, 
E = 65.2 GPa and v = 0.21, are tangential values at the 
tensile stress of 5 MPa. These two sets of values agree 
within 5%, although the dynamic E and v values are 
slightly higher. Again, the results indicate the test 
method and its interpretation are valid. 

CONCLUSION 

A new experimental method has been proposed for the 
determination of dynamic elastic constants for a 
transversely isotropic rock. The interpretation of test 
results follows the theories of wave propagation in a 
transversely isotropic elastic medium. Available tests 
have demonstrated that this method can be used for rock 
specimens with or without an axial load applied through 
the ends of the specimen. A single cylindrical specimen 
would suffice in the new method to obtain the five elastic 
constants. 
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Fig. 7. Calculated dynamic engineering elastic constants (specimen No. 7) under tensile stress. 

An important requirement for the new method is that 
the planes of transverse isotropy have to be parallel to 
the longitudinal axis of the specimen. Unfortunately, the 
orientation of the planes of elastic symmetry is not easily 

) 
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strain 

Fig. 8. Stress-strain curves of specimen No. 7 under tensile stress. 
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to be controlled when taking rock cores in the field. As 
a result, the proposed method may only be applicable to 
specimens specifically prepared from a block sample. An 
obvious desirable improvement is to extend the theories 
and test procedure to include the cases of inclined planes 
of transverse isotropy. In that case, the method can be 
practically applied to any transversely isotropic rock 
cores directly from the field. 
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APPENDIX 

The relation between elastic compliances and engineering elastic 
constants of a transversely isotropic material is expressed as follows: 

alt a12 ai, 0 0 0 
a12 all al, 0 0 0 

t7= 

a13 a13 a33 0 0 0 I-1, 0 0 0 a44 0 0 
0 0 0 0 a41 0 
0 0 0 0 0 a66 

1 -g -; -2 0 0 0 

1 ’ -- ; i-g -5 0 0 0 

VI 1 = -- & -- F 0 0 0 E’ 

0 0 o&o0 

0 0 00&o 

0 0 000; 

Based on the general Hooke’s law for a transversely isotropic material, 
the elastic complainces can be expressed in terms of the elastic 
constants: 

CIICII - CL 
a” = (C,, - CII)(CIIC33 + C&3 - 2C!,) 

a3’ = (GC,, x2- 2C!,) 

c:, - Cl& 
a’2 = (Cl, - C12)(CllC31 + CIZG - 2C!,) 

1 ati = - 
Ct.6 

Then, the engineering elastic constants are easy to obtain as: 

E=&, El=&, G’=--$ 


