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Abstract

This work presented a novel neural network-based approach for detecting structural damage. The proposed ap-

proach involves two steps. The first step, system identification, uses neural system identification networks (NSINs) to

identify the undamaged and damaged states of a structural system. The second step, structural damage detection, uses

the aforementioned trained NSINs to generate free vibration responses with the same initial condition or impulsive

force. Comparing the periods and amplitudes of the free vibration responses of the damaged and undamaged states

allows the extent of changes to be assessed. Furthermore, numerical and experimental examples demonstrate the

feasibility of applying the proposed method for detecting structural damage.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Civil engineering structures are prone to damage and

deterioration during their service life. Damage assess-

ment attempts to determine whether structural damage

has occurred, as well as the location and extent of any

such damage. However, detecting structural damage and

identifying damaged elements in a large complex struc-

ture are challenging tasks since the in situ measured data

of large civil engineering structures such as bridges and

buildings are inaccurate (owing to noise corruption) and

often incomplete (for economy consideration).

Conventional damage assessment methods [1,2] are

inevitably direct process methods, proceeding linearly

from causes to effects. These methods involve first con-

structing a mathematical model for the structure, and
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then applying that model to elucidate structural behav-

ior and establish correlations between specific member

damage conditions and changes in structural response.

Despite their many attractive features, conventional

damage assessment methods may encounter difficulties,

such as measurement noise and modeling errors, when

detecting difficult to model systems. Additionally, com-

monly adopted damage assessment algorithms are gen-

erally complex and inappropriate where measured data

are inappropriate.

The artificial neural network (ANN) model is robust

and fault tolerant [3–5]. ANN can also effectively deal

with qualitative, uncertain, and incomplete information,

making it highly promising for detecting structural

damage. The feasibility of applying these networks to

detect structural damage has received considerable at-

tention. Wu et al. [6] employed spectral acceleration,

generated from a numerical model of a simple frame, as

an input to a neural network. Based on their results,

ANNs can learn about the behavior of undamaged and

damaged structures to identify the damaged portions
ed.
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and the extent of the damage from patterns in the fre-

quency response of the structure. When using ANNs

trained with samples generated from a finite element

model, Elkordy et al. [7] diagnosed damage states ob-

tained experimentally from a series of shaking-table tests

involving a five-story steel frame. Despite promising

results of their case study, Elkordy et al. indicated the

need for further study of the relation between the

number of damage patterns required to train the net-

work to perform satisfactorily and the degree of sim-

plification of the model. Meanwhile, Szewezyk and

Hajela [8] used a modified counter-propagation neural

network to develop the inverse mapping between a

vector of the stiffness of individual structural elements

and the vector of the global static displacements under

a testing load. Their case study results showed that

the network functions as an associative memory de-

vice capable of achieving satisfactory diagnostics even

with noisy or incomplete measurements. Pandey and

Barai [9] examined the feasibility of applying multi-

layer perceptron to detect structural damage to a steel

bridge based on the static vertical displacements of

nodes.

Extending upon previous investigations by address-

ing a class of problems where the failure states are un-

known, Masri et al. [10,11] and Hung and Kao [12]

presented nonparametric structural damage detection

methodologies based on system identification ap-

proaches for monitoring the health of a structure-

unknown system. The approach of Masri et al. [10,11]

relies on using vibration measurements from a ‘‘healthy’’

system to train an ANN for identification purposes.

Subsequently, comparable vibration measurements from

the same structure under different episodes of response

are inputted to the trained network to monitor the

health of the structure. By utilizing the predictions of the

ANN before and after potential structural changes

(damage) in the physical system have occurred, quanti-

fiable measures of the degree of fidelity of the predicted

response measurements can be used to assess the extent

of changes. Hung and Kao [12] demonstrated that par-

tial derivatives of the outputs with respect to the inputs

of the approximating ANN (functions of weights and

activation function), which identifies the system in a

certain undamaged or damaged state, vary little with

system error. Comparing the partial derivatives of the

neural system identification network that identify a

certain damaged state with those that identify the un-

damaged state allows the detection of changes to the

physical system from its undamaged state.

The periods and amplitudes of a structural free vi-

bration responses contain information on structural

properties, meaning structural damage can be detected

based on changes in the periods and amplitudes of the

structural free vibration response. This work develops a

neural network-based approach for detecting changes in
the characteristics of structure-unknown systems. The

proposed approach involves two steps. The first step,

system identification, uses neural system identification

networks (NSINs) to identify the undamaged and

damaged states of a structural system. The second step,

structural damage detection, uses the aforementioned

trained NSINs to generate free vibration responses with

the same initial condition or impulsive force. Comparing

the periods and amplitudes of the free vibration re-

sponse of the damaged state with those of the undam-

aged state allows changes to the physical system from its

undamaged state to be detected. Moreover, numerical

and experimental examples are presented to demonstrate

the feasibility of using the proposed method to detect

structural damage.
2. Artificial neural networks

Among the many different types of ANN, the feed

forward, multilayered, supervised neural network with

the error backpropagation algorithm, generally known

as the backpropagation (BP) network [5], is by far the

most commonly applied owing to its simplicity. Before

an ANN can be applied, it needs to learn or be trained

from an existing training set comprising pairs of input–

output elements. The training of a supervised neural

network using BP learning algorithm usually involves

two stages, the first of which is the data feed forward.

The output of each node is defined as

netj ¼
Xn

i¼1

WijOi þ hj ð1Þ
Oj ¼ f ðnetjÞ ð2Þ

where Wij denotes the weight associated with the ith
node in the preceding layer to the jth node in the current

layer; Oi represents the output of the ith node in the

preceding layer; hj is the threshold value of node j in

the current layer; Oj denotes the output of node j in

the current layer; and function f represents the activa-

tion function. Herein, a nonlinear activation function is

used and defined as

f ðxÞ ¼
1 x > 1

x �16 x6 1

�1 x < �1

8><
>: ð3Þ

The second stage is error backpropagation and adjust-

ment of the network weights. The training process ap-

plies the system error function to monitor the learning

performance of the network. This system error function

is defined as
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E ¼ 1

2P

XP
p¼1

XN
n¼1

ðdpn � opnÞ2 ð4Þ
where P denotes the number of instances in the training

set, while dpn and opn represent the desired and calculated

output of the nth output node for the pth instance, re-

spectively. The standard BP algorithm employs a gra-

dient descent approach with a constant step length

(learning ratio g) to train the network.

Wij;kþ1 ¼ Wij;k þ DWij;k ;

DWij;k ¼ �g
oE

oWij;k
¼ �ggk ð5; 6Þ
The suffix index k denotes the kth learning iteration.

However, BP supervised neural network learning models

always take a long time to learn. Moreover, the con-

vergence of a BP neural network is highly dependent

upon the use of a learning rate ðgÞ. Consequently, sev-
eral different approaches are developed herein to en-

hance the learning performance of the BP learning

algorithm [3].

Hung and Lin [13] developed amore effective adaptive

limited memory Broyden–Fletcher–Goldfarb–Shanno

(L-BFGS) learning algorithm based on the approach of

a L-BFGS quasi-Newton second-order method [14,15]

with an inexact line search algorithm. This algorithm

achieved a superior convergence rate to the BP learning

algorithm by using second-order derivatives of the sys-

tem error function with respect to the network weights.

In a quasi-Newton method, the Hessian matrix, con-

taining the second-order derivatives of the system error

function with respect to the network weights o2E
owiowj

, has

to be calculated first. Then, the inverse of the Hessian

matrix must be obtained to determine the search direc-

tion. Quasi-Newton, or variable-metric, methods deter-

mine the search direction dk by multiplying the gradient

of the function E, gk , by the inverse of a matrix that

approximates the Hessian matrix of E at Wk :

dk ¼ �H�1
k gk ð7Þ
For the purpose of computational efficiency, a suitable

approximation is made and Hk is updated during every

learning iteration by a correction of the form. Also, the

matrix Hk must remain symmetric and positive definite,

and the quasi-Newton condition. The most common

method of update approach is BFGS-update and the

approximation Hkþ1 to the inverse Hessian matrix of

function EðWÞ is updated by

Hkþ1 ¼ ðI� qksky
T
k ÞHkðI� qkyks

T
k Þ þ qksks

T
k

� VTHkVk þ qksks
T ð8Þ
k k
where

qk ¼ 1=yTk sk ; Vk ¼ I� qkyks
T
k ;

sk ¼ Wkþ1 �Wk ; yk ¼ gkþ1 � gk ;

and gk ¼
oE
oW

ð9�13Þ

Instead of forming the matrix Hk with the BFGS

method, the vectors sk and yk are saved. These vectors

first define and then implicitly and dynamically update

the Hessian approximation using information from the

last few iterations, referred to herein as m. Therefore, the
final stage of the adjustment of the weights in a BP-

based ANN is modified as follows:

Wkþ1 ¼ Wk þ akdk ð14Þ

The search direction is given by

dk ¼ �Hkgk þ bkdk�1 ð15Þ

where

bk ¼
yTðk�1ÞHðk�1Þgðk�1Þ

yTðk�1Þdðk�1Þ
ð16Þ

The step length, ak , is adapted during the learning pro-

cess through a mathematical approach: the inexact line

search algorithm. This approach is used in the L-BFGS

learning algorithm instead of a constant learning ratio

[13]. The inexact line search algorithm is based on three

sequential approaches: bracketing, sectioning, and in-

terpolation. The bracketing approach brackets the po-

tential step length, a, between two points, through a

series of function evaluations. The sectioning approach

then uses the two points of the bracket as the initial

points, reducing the step size piecemeal, and locating the

minimum between points, such as, a1 and a2, to a

specified degree of accuracy. Finally, the quadratic in-

terpolation approach uses the three points, a1, a2 and

ða1 þ a2Þ=2, to fit a parabola to determine the step

length, ak . The problem of selecting a learning ratio

through trial and error in the BP algorithm is thus cir-

cumvented in the adaptive L-BFGS learning algorithm.
3. Damage detection strategy

This study presents a neural network-based approach

for detecting changes in the characteristics of structure-

unknown systems. This approach, as shown in Fig. 1,

involves two steps. The first step, system identification,

uses neural system identification networks (NSINs) to

identify the undamaged and damaged states of a struc-

tural system. The second step, structural damage de-

tection, uses the aforementioned trained NSINs to

generate free vibration responses with the same initial

condition or impulsive force. Comparing the periods
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Fig. 1. Schematic diagram of the proposed approach.
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and amplitudes of the free vibration response of the

damaged and undamaged states can reveal the extent of

changes. The following presents the details of the above

approaches.

3.1. Neural system identification networks

ANN models have been extensively applied to iden-

tify dynamic systems. Cybenko [16] and Funahashai [17]

rigorously demonstrated that, even with only one hidden

layer, neural networks can uniformly approximate any

continuous function. Consequently, this theoretical ba-

sis for modeling linear or nonlinear systems by neural

networks is sound. Making some mild assumptions, a

discrete-time multivariable linear or nonlinear time-

invariant structural system with r inputs (external exci-

tations) and m outputs (including relative displacements,

velocities and accelerations) can be represented by the

following equation:
yðkÞ ¼ gðyðk � 1Þ; . . . ; yðk � nyÞ; pðkÞ; . . . ; pðk � npÞÞ
ð17Þ

where

pðkÞ ¼ p1ðkÞ � � � prðkÞ½ �T ð18Þ
and

yðkÞ ¼ y1ðkÞ � � � ymðkÞ½ �T ð19Þ
¼ d1ðkÞ v1ðkÞ a1ðkÞ � � � dmðkÞ vmðkÞ amðkÞ½ �T

ð20Þ

are the system input and output vectors, respectively; np
and ny denote the maximum lags in the input and out-

put, respectively; index k represents an integer number;

k ¼ 0; 1; 2; . . . ;N ; dðkÞ, vðkÞ and aðkÞ are, respectively,

the relative displacement, velocity and acceleration

vectors of the system at time t ¼ kDt, where Dt is the

length of the sampling period; and g denotes some

vector-valued linear or nonlinear function.



 
  

 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

  

  

  

  

 

Fig. 2. The architecture of the neural structural identification network.
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Function g in Eq. (17) can be approximated with the

ANN, called the neural system identification network

(NSIN), as illustrated in Fig. 2. The inputs of theNSIN are

relative displacements, velocities, and accelerations in

(k � 1) back-to (k � ny) time steps, and external excitations

in k back-to (k � np) time steps. These inputs are denoted

as d1ðk � 1Þ; . . . ; dmðk � 1Þ; . . . ; d1ðk � nyÞ; . . . ; dmðk� nyÞ
for relative displacements, v1ðk � 1Þ; . . . ; vmðk � 1Þ; . . . ;
v1ðk � nyÞ; . . . ; vmðk � nyÞ for relative velocities, a1ðk�
1Þ; . . . ; amðk � 1Þ; . . . ; a1ðk � nyÞ; . . . ; amðk � nyÞ for rela-
tive accelerations, and p1ðkÞ; . . . ; prðkÞ; . . . ; p1ðk � npÞ; . . . ;
prðk � npÞ for external excitations.Meanwhile, the outputs

of the NSIN are relative displacements, velocities, and

accelerations in the kth time step and denoted as

d1ðkÞ; . . . ; dmðkÞ, v1ðkÞ; . . . ; vmðkÞ and a1ðkÞ; . . . ; amðkÞ, re-
spectively. Notably, approximation by the NSIN in a

discrete linear system is analogous to identifying the mass,

damping and stiffness coefficients in the equation of mo-

tion. The NSIN is implemented herein through an adap-

tive L-BFGS neural network model.

3.2. Generating a free vibration response using the trained

NSIN

The periods and amplitudes of a structural free

vibration response contain information on structural

properties, meaning it is feasible to detect structural
damage from changes in the periods and amplitudes of

the structural free vibration response. However, gener-

ating a structural free vibration is difficult if the struc-

tural properties are unknown. Recently, Hung et al. [18]

have developed a method for simulating the seismic re-

sponse of a nonlinear hysteretic structure using the ap-

proximating ANN. This approach can be used to

generate the free vibration response of a structure-

unknown system. The generation on a free vibration

response using the trained NSIN which identifies the

undamaged or damaged state of the system is as follows:

(1) Provide an initial input vector (initial condition or

impulsive force) to the trained NSIN.

(2) Feed forward the initial input vector in step (1)

through the trained NSIN to compute the output

vector.

(3) Feed back this computed output vector to the input

layer of the trained NSIN as the next input vector.

(4) Feed forward the next input vector in step (3)

through the trained NSIN to compute the next out-

put vector.

(5) Return to step (3) and repeat until the maximal

number of iterations is reached.

The free vibration response generated by the NSIN

which identifies the undamaged state and is compared to
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that generated by the NSIN which identifies the damaged

state. If the network has been well trained, and if the

system characteristics have not changed, the periods and

amplitudes of both free vibration responses will match.

On the other hand, if the system has changed, the above

statement will no longer stand. The deviations between

the periods and amplitudes of the two free vibration re-

sponses provide a quantitative measure of the changes in

the physical system relative to its ‘‘healthy’’ condition.
4. Illustrative examples

4.1. Example 1: The numerical example

In this example, a five-story shear building was

chosen to demonstrate the feasibility of using the pro-

posed approach to detect the damage of linear MDOF

structure systems. The structural properties of the

building are assumed to be as follows: floor mass

m ¼ 8� 104 kg, floor stiffness k ¼ 4� 107 N/m, and

floor damping c ¼ 1:5� 106 N s/m for all floors. EL-

Centro earthquake was used as the external excitation.

The sampling period Dt is 0.01 second. In this example,

only the relative acceleration time histories of the five

floors, computed by state space procedure (SSP), were

used as measured responses of the structure.

First, relations between the changes of structural

properties (floor stiffness and damping) and those of the

periods and amplitudes of the structural free vibration

response were discussed. Fig. 3 shows the comparison of

the free vibration responses (relative accelerations), with

initial ground acceleration 0.01g, of three cases (floor

stiffness reduction varies from 0% to 40% every 20%)

between 0.5 and 6.5 s. It shows that the more the floor

stiffness reduction, the longer the periods of the free

vibration response. Fig. 4 shows the comparison of the

free vibration responses, with initial ground acceleration

0.01g, of the three cases (floor damping increase varies

from 0% to 40% every 20%) between 0.5 and 6.5 s. It

shows that the more the floor damping increase, the

smaller the amplitudes of the free vibration response.

Second, the undamaged case was used to compare

the free vibration response generated by the trained

NSIN with the numerical solution (computed by SSP).

The training data set of the NSIN is the 2000 records of

EL-Centro Earthquake. The NSIN consists of 301, 0,

and 5 nodes in input layer, hidden layer, and output

layer, respectively, and denoted as NSIN_L-BFGS(301-

0-5). The 301 input data are 250 the structural relative

accelerations of the five floors in (k � 1) back-to (k � 50)

time steps, and 51 external excitations in k back-to

(k � 50) time steps. The five outputs are the structural

relative accelerations of the five floors at time k. The
complete off-line training process took 1000 cycles and

the system error converges to 1.2085 · 10�18. After
training, the NSIN was used to generate free vibration

responses of the building system. Fig. 5 is the compari-

son of the two free vibration responses (between 0.5 and

6.5 s) with initial ground acceleration 0.01g, which

shows the excellent correspondence between the nu-

merical solutions and the generated free vibration re-

sponses from the trained NSIN for the five floors.

In order to verify the computational efficiency of

L-BFGS learning algorithm, NSIN_BP(301-0-5) with

the same topology and training data of NSIN_L-

BFGS(301-0-5) was also used to identify the undamaged

case. NSIN_BP(301-0-5) was implemented using stan-

dard BP learning algorithm with a constant learning

ratio g ¼ 0:5. The complete off-line training process of

NSIN_BP(301-0-5) took 200,000 cycles and the system

error converges to 3.6109· 10�9. The CPU (Intel(R)

Pentium(R) 4 Mobile CPU 1.60 GHz) times spent by

NSIN_L-BFGS(301-0-5) and NSIN_BP(301-0-5) are

3496.6 and 22343.0 s, respectively. Results show that L-

BFGS learning algorithm converges much faster than

standard BP learning algorithm.

4.2. Example 2: The experimental example

In this example, the dynamic responses of a five-story

steel frame, subjected to various strengths of the Kobe

earthquake in shaking table tests, were processed to

demonstrate the applicability of the proposed method.

This series shaking table tests were undertaken by The

National Center for Research in Earthquake Engineer-

ing in Taiwan on a 3 m long, 2 m wide, and 6.5 m high

steel frame [19] (Fig. 6) to generate a set of earthquake

response data for a five-story steel structure. Lead

blocks were piled on each floor such that the mass of

each floor was approximately 3664 kg. The frames were

subjected to the base excitation of the Kobe earthquake,

weakened by various levels. The displacements, velocity,

and acceleration response histories of each floor were

recorded during the shaking table tests. Additionally,

some strain gauges were also installed in one of the

columns and near the first floor. The sampling rate of

the raw data was 1000 Hz.

Notably, it is reported [19] that the frame responded

linearly when it subjected to 8%, 10%, 20%, 40%, and

52% of the strength of the Kobe earthquake. Measured

strains and visual inspection revealed that 60% of the

strength of the Kobe earthquake input caused the steel

columns near the first floor to yield.

4.2.1. NSINs training

In the following, only the responses (relative accel-

erations) and inputs in the long span direction were

addressed. The significant responses between 4.5 and

12.5 s were used to train ANNs and thus, to some extent,

reduce the noise effect. Five NSINs were used to identify

the following five states.
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Fig. 3. Comparison of the free vibration responses, with initial ground acceleration 0.01g, of three cases (floor stiffness reduction varies

from 0% to 40% every 20%).
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• State 1: The frame was subjected to 10% Kobe earth-

quake.

• State 2: The frame was subjected to 20% Kobe earth-

quake.

• State 3: The frame was subjected to 40% Kobe earth-

quake.

• State 4: The frame was subjected to 52% Kobe earth-

quake.
• State 5: The frame was subjected to 60% Kobe earth-

quake.

Networks with the same topology of the previous

example were employed in this example. That is, the

topology of each NSIN is NSIN_L-BFGS(301-0-5). The

301 inputs and the five outputs are the same as that in

the previous example. The complete off-line training
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Fig. 4. Comparison of the free vibration responses, with initial ground acceleration 0.01g, of the three cases (floor damping increase

varies from 0% to 40% every 20%).
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process took 3000 cycles and the system errors of the five

NSINs were listed in Table 1.

4.2.2. Detection of structural damage

After training, the five NSINs were used to generate

free vibration responses to investigate the changes of the

structural properties with excitation magnitude. First,
the comparison of the free vibration responses of state 1,

state 2, and state 3, with initial ground acceleration

0.01g, is shown in Fig. 7. It reveals that the periods of

the three free vibration responses were almost identical,

but the amplitude becomes smaller and smaller with the

increasing of excitation magnitude. According to results

of Example 1, it shows that the stiffness values of the
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Fig. 5. Comparison of the numerical solutions and generated free vibration responses, with initial ground acceleration 0.01g, from the

trained NSIN.
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three states were almost the same, and the damping

values increase with the increasing of excitation magni-

tude. Second, the comparison of the free vibration re-

sponses of state 3 and state 4, with initial ground

acceleration 0.01g, is shown in Fig. 8. It displays that the

periods of the free vibration of state 4 were slightly
longer than that of state 3, and the amplitudes of the two

free vibration responses were almost the same. Accord-

ing to results of example 1, it exposes that the stiffness

values of state 4 were a little smaller than those of state

3, but the damping values of the two states were almost

the same. Finally, the comparison of the free vibration



Fig. 6. Simple sketch of a five-story steel frame.

Table 1

System errors of the five states

State System error

1 1.72· 10�7

2 6.08· 10�7

3 5.68· 10�5

4 6.22· 10�5

5 1.72· 10�4
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responses of state 4 and state 5, with initial ground ac-

celeration 0.01g, is shown in Fig. 9. It reveals that the

periods of the free vibration of state 5 were longer than

those of state 4, and the amplitudes of the free vibration

of state 5 were larger than those of state 4. Based on

results of example 1, the stiffness and damping values of

state 5 were smaller than those of state 4. In addition, it

has to be pointed out that the free vibration response of

the fifth floor of state 5 obviously deviates the cen-

tral line (relative acceleration¼ 0), which may be a

message that some elements of the frame were yield

under such strong excitation magnitude. The result

completely corresponds with the evidence investigated in

the lab.
5. Conclusions

This study presented a novel neural network-based

approach for detecting structural damage. Noteworthy,

the proposed approach is practically feasible for struc-

tural damage detection. The practical feasibility of the

proposed approach is supported by the following two

reasons. First, ANNs are a promising tool for damage

detection of real-world structures. Second, the results of

numerical and experimental examples prove the practi-

cal feasibility of the proposed approach for structural

damage detection. The following important conclusions

can be drawn from the results presented in this research.

1. Changes on structural properties (stiffness and dam-

ping) cause changes on periods and amplitudes of

the free vibration of the structure system. Therefore,

periods and amplitudes of the free vibration are use-

ful indices to reflect changes of structural properties.

2. The proposed approach makes it easy to accurately

generate a free vibration response of a structure-un-

known system using neural networks.

3. The proposed approach has the ability to detect

changes of structural properties. Especially, this ap-

proach can reveal clear message when some structure

elements were yield, which cannot be achieved by

other analytical methods.

Some limitations expected to be complemented in

future studies were summarized as follows:

1. A drawback of proposed approach is the accumula-

tion of simulation error. Since the accumulated simu-

lation error was not obvious in results of illustrative

examples, this problem was not discussed in this pa-

per. In fact, Hung et al. had addressed a sensitivity

analysis method to decrease the accumulated simula-

tion error (in Appendix A). Nevertheless, this inter-

esting topic could be further researched.

2. Future investigations should apply the proposed ap-

proach to measurements in the field to examine its ca-

pacity to deal with incomplete measurements and

noise corruption. Furthermore, the ability of the pro-

posed approach to detect the location of damage

should be further researched.
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Fig. 7. Comparison of the free vibration responses of state 1, state 2 and state 3, with initial ground acceleration 0.01g.
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Appendix A

The steps of the method developed by Hung et al. [18]

for simulating the seismic response of a nonlinear hys-

teretic structure using the approximating ANN are the

same as those described in section ‘‘Generating a free

vibration response using the trained NSIN’’. The only

difference is that the external excitation p is zero (except
in initial input vector) when generating a free vibration

using the trained NSIN, while p is the measured data

when simulating the seismic response of a structure us-

ing NSIN.

A drawback of this approach is the accumulation of

simulation error. Hung et al. had addressed a sensitivity

analysis method, as described in the following section, to

decrease the accumulated simulation error.
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Fig. 8. Comparison of the free vibration responses of state 3 and state 4, with initial ground acceleration 0.01g.
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A.1. Sensitivity analysis

After an ANN is successfully trained, the rela-

tive strength of effect for input element on output

data can be derived based on the weights stored in

the network. This work adopted a sensitivity index,

Sik , to express the degree of sensitivity for each input
parameter xi on one of data in output ok . The

process of sensitivity analysis was summarized as fol-

lows:

1. After an ANN is successfully trained, the computed

output for any node then can be yielded through

the network and expressed as
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Fig. 9. Comparison of the free vibration responses of state 4 and state 5, with initial ground acceleration 0.01g.
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ok ¼ f ðnetkÞ; netk ¼
X
jn

ojnWjn ;k þ hk ðA:1Þ

ojn ¼ f ðnetjnÞ; netjn ¼
X
jn�1

ojn�1
Wjn�1 ;jn þ hjn ðA:2Þ

oj1 ¼ f ðnetj1Þ; netj1 ¼
X
i

xiWi;j1 þ hj1 ðA:3Þ
where xi is ith input parameter; and ok , ojn , and oj1
denote the computed output for output node k, node
jn of nth hidden layer, and node j1 of first hidden

layer, respectively.

2. The variance of output with the change of each input

parameter can be derived. The variance is represented

by the following equation:
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ook
oxi

¼
X
jn

X
jn�1

� � �
X
j1

Wjn ;kf
0ðnetkÞWjn�1;jn f

0ðnetjnÞ � � �

Wi;j1f
0ðnetj1Þ ðA:4Þ

where jn; jn�1; . . ., and j1 denote hidden nodes in the

nth, ðn� 1Þth,. . ., and first hidden layer, respectively;

Wjn ;k denotes weight between the kth output node and

hidden node jn; Wjn�1 ;jn denotes weight between the

hidden nodes jn�1 and jn; Wi;j1 denotes weight between

the ith input node and the hidden node j1; netj, netjn
and netj1 denote weighted sums of kth output node,

the hidden node jn and j1 respectively; and f 0 denotes

differential function of the activation function f .
3. Sensitivity index, Sik , is expressed as the average of

the total variance of training instances.

Sik ¼
1

M

X
m

ook
oxi

� �
m

ðA:5Þ

where m denotes mth training instances, and M is the

total number of training instances.

4. After computing Sik , the importance index, Ii, to ex-

press the importance of input i to outputs can be

computed. Ii is defined as follows:

Ii ¼
X
k

Sik ðA:6Þ

Obviously, a large value of Ii indicates that input i has
more effect on the output data. On the other hand, a

small value indicates that input i has small effect on

the output data.

5. After computing Ii, the trivial input i of the NSIN is

deleted (delete a trivial input at a time) to reduce the

number of inputs and enhance the learning speed and

accuracy of the NSIN. The trivial input i is defined as

follows:

Ii < Ij for j ¼ 1 � N and j 6¼ i
Sik < Sjk for j ¼ 1 � N and j 6¼ i; k ¼ 1 � K

�

ðA:7Þ
where N and K are the number of inputs and outputs

of the NSIN, respectively.

6. After deleting the trivial input of the NSIN, the

NSIN is retrained. Sensitivity and importance indices

are computed after no trivial input exists. Finally, the

seismic response of the structure is simulated using

the NSIN with no trivial input.
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