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PACS. 74.40.+k – Fluctuations (noise, chaos, nonequilibrium superconductivity, localization,
etc.).

PACS. 67.40.Vs – Vortices and turbulence.

Abstract. – The mesoscopic one-dimensional magnetic texture caused by small Zeeman
coupling in a p-wave superconductor in the magnetic field is found. The field orientation is
opposite on the two sides of the texture and the magnitude can be even smaller than Hc1. The
texture is not built from various singular topological defects, like vortices, as previously found
in the simplest three-component Ginzburg-Landau model of superconductors.

Introduction. – The order parameter in many classes of superconductors including organ-
ics of the type of Bechgaard salts [1], unconventional [2] and multiband superconductors [3]
like heavy fermions or SrRuO, generally has several components. It describes coexisting
condensates of Cooper pairs. The symmetry of the order parameter in unconventional super-
conductors is related to the crystallographic symmetry group of the material, the structure
of the Fermi surface and the nature of the pairing mechanism. Although the number of
charged fields and their transformation properties under rotations are different in any case,
the common feature of theories describing these diverse systems remains the U(1) local gauge
invariance. In systems of this kind, in the presence of an external magnetic field the major
role is played by various topological defects. It is well known that, while in the simplest case,
that of the one-component order parameter, the Abrikosov vortices (AV) are the only kind of
topological defects, in the multicomponent case other types of defects exist.

Machida [4] argued that in the p-wave superconductors with weak spin-orbit coupling the
triplet pairing function can be represented by a three-dimensional complex vector field. The
simplest Ginzburg-Landau model describing heavy fermion UPt3, even subjected to an exter-
nal magnetic field B under condition of negligible Zeeman coupling, has an approximate SO(3)
symmetry making it more amenable (and interesting) to mathematical analysis. This model
was subsequently studied in more detail and various topologically distinct “non-Abrikosov” de-
fects with sophisticated structure were found: coreless magnetic skyrmions [5,6], field-carrying
c© EDP Sciences
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Fig. 1 – The sample subjected to an opposite-directed external magnetic field.

topological textures [7], knot solitons [3] and the “vector vortices” (VV) [8, 9], which have a
complex core more typical of the superfluid 3He rather than of a superconductor.

The Zeeman paramagnetic term responsible for direct interaction between the Cooper
pair spin and the external magnetic field although usually small, might considerably affect
topological solitons. It has not been taken into account in theoretical considerations with an
exception for the case of the skyrmions. In the latter case, a sufficiently strong paramagnetic
effect led to skyrmion’s instability [6], but no qualitatively new effects. In the present com-
munication we consider a new mesoscopic one-dimensional magnetic texture caused by small
Zeeman coupling in the three-component p-wave superconductor. It is not built from the
singular topological defects and can be realized as a p-wave superconducting plate subjected
to an external magnetic field of the configuration shown in fig. 1. The external-magnetic-field
configuration can be created, for example, by currents flowing on the left of the slab in direc-
tion y and on the right of the slab in the opposite direction −y. Note that these currents flow
outside the superconducting slab.

Basic equations. – We start with the Ginzburg-Landau free-energy density describing a
system with a three-component complex vector order parameter ψi:

F = Fpot + Fgrad + FZeeman +
1
8π

B2
j , (1)

where

Fpot = −αψiψ
∗
i +

β1

2
(
ψiψ

∗
i

)2 +
β2

2
|ψiψi|2, (2)

Fgrad =
�

2

2m∗
(
Djψi

)(
Djψi

)∗
, (3)

FZeeman = −µ�S · �B. (4)

Here Dj ≡ (∂j − i2eAj/�c) are covariant derivatives, Bj ≡ (∇× �A)j is the magnetic induction
and µ = ge�/(m∗c) is determined by the dimensionless gyromagnetic ratio g. The average
spin of the Cooper pair at a specific point in space is given by

Si = ψ∗
j (�r )

( − iεijk

)
ψk(�r ). (5)
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Writing the order parameter ψ in the form
�ψ = f(�n cosϕ + i�m sinϕ), (6)

one can easily obtain two different uniform ground-state solutions:

I : β2 > 0, �ψ = f
�n + i�m√

2
, �n ⊥ �m, ϕ =

π

4
, f2 =

α

β1
; (7)

II : β2 < 0, �ψ = feiϕ�n, �n = ±�m, f2 =
α

β1 + β2
. (8)

Here the “length” f > 0, 0 ≤ ϕ ≤ π/2, �n and �m are unit vectors. The spin density is
�S = f2 sin 2ϕ�l, where �l completes the “triad”: �l ≡ �n × �m. While it vanishes for type II,
S = f2 for the type-I ground state.

In the London approximation the length f of the order parameter �ψ is fixed. For type
I substituting the order parameter �ψ from eq. (7) into eqs. (1)-(4), we obtain the London
free-energy density in dimensionless form as

FL =
1
2
(
∂j

�l
)2 + (ai)2 + b2

i − glibi. (9)

For convenience, we express all the physical quantities in dimensionless units as follows:

x ≡ λx̃, F ≡ α2

β1κ2
F̃ , f2 ≡ α

β1
f̃2,

�A ≡ Φ0

2πλ
�a, �B ≡ Φ0

2πλ2
�b, (10)

where the magnetic penetration depth λ ≡ c/e
√

β1m∗/(πα), the coherence length ξ ≡
�/

√
2m∗α, the flux quantum Φ0 ≡ hc/2e, and the Ginzburg-Landau parameter κ ≡ λ/ξ.

The tildes will be omitted hereafter.

Periodic para/diamagnetic structure. – Let us consider the case where a superconducting
sample of size L in the x-direction, and infinite in the y-direction (see fig. 1) is subjected to
an external magnetic field h directed along the z-axis at x = 0, while at x = L it is directed
oppositely (Hext(L) = −h). We also assume that the vector �m is constant in the y-direction.
In this case we obtain from the London energy (9),

FL =
∫ L

0

[
1
2

(
dθ

dx

)2

+ a2 +
(
da

dx

)2

− g cos θ
da

dx

]
dx. (11)

Here θ is the angle between the vector �l and the magnetic field, and a is the y-component of
the vector potential. Variation of the London free energy provides two equations describing
the spatial distribution of both the magnetic induction and the spin direction in the sample:

d2θ

dx2
= g sin θ

da

dx
,

d2a

dx2
− a = −g

2
sin θ

dθ

dx
. (12)

This set of equations should be supplemented by the boundary conditions as follows:

θ(0) = 0, θ(L) = π,
da

dx

∣∣∣∣
x=0

= h,
da

dx

∣∣∣∣
x=L

= −h. (13)

We solved these equations both numerically and approximately analytically for different values
of the dimensionless parameter g.
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Fig. 2 Fig. 3

Fig. 2 – Spatial distribution of the magnetic induction across the sample (g = 1).

Fig. 3 – Magnetic-induction structure across the sample (g = 5).

Numerical results. – The set of equations (12), (13) has been solved numerically using the
Crank-Nickolson method. The numerical results for the angle θ and the magnetic induction b =
da/dx for different values of g are presented in figs. 2-4. One can conclude that for sufficiently
small g (g = 1) there is just the usual Meissner effect, i.e. the magnetic induction decreases
exponentially inside the layer, while if g exceeds some critical value, gc ≈ 2.68, alternating
domains with opposite magnetic induction appear. It should be noted that the maximal
magnitude of the magnetic induction inside the domains is generally different from the values of
the external magnetic field. The domain size strongly depends on the paramagnetic parameter
g and does not depend of the external-magnetic-field strength.

Fig. 4
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Fig. 4 – The angle between the spin direction and the external magnetic field, as a function of x
(g = 5).

Fig. 5 – The free energy as a function of n (here n is the number of domains), for g = 1, 3, 5, 7, 10
(the number beside each line shows the value of g).
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Variational solution. – Motivated by the numerical results we have chosen a trial function
for the angle θ and the effective magnetic induction b inside the sample, in the form

θ = π sin2

(
π

d
x

)
,

b = b0, for md ≤ x < md +
d

4
or md +

3d
4

< x < (m + 1)d,

b = −b0, for md +
d

4
< x < md +

3d
4

, (14)

where m is an integer, while the amplitude of the magnetic induction b0 inside the domain
and the domains size d are considered as variational parameters. Substituting these functions
into the free-energy functional (eq. (11)) and taking into account the boundary conditions
eq. (13), one obtains the following London energy of the sample:

f =
π4(2n + 1)2

16L
+ Lb2

0 +
2L
3

b2
0

(
L

2(2n + 1)

)2

− gLb0
R1

π
, (15)

where

n =
2L − d

2d

and R1 ≈ 2.36. Here n is the number of magnetic domains inside the sample. Minimizing the
free energy (15) with respect to b0, one obtains

∂f

∂b0
=

(
2L +

4L
3

(
L

2(2n + 1)

)2
)

b0 − Lg
1
π

R1 = 0,

b0 =
gR1

2π
[
1 + 2

3 (L/2(2n + 1))2
] . (16)

Combining eqs. (15) and (16), we obtain the London free energy as a function of the variational
parameter n:

f(n) =
π4(2n + 1)2

16L
− L

(
gR1

2π

)2 1
1 + 2

3 (L/2(2n + 1))2
. (17)

The energy f(n) plotted in fig. 5 for various g’s as a function of n has a minimum at n = 0
for g < gc , while for g > gc the energy reaches its minimum at n = 0.

The characteristic sizes of the alternating domains are estimated as (see fig. 6): d � 10λ
for the paramagnetic parameter varying in the range g � 3–10. The dimensionless amplitude
of the magnetic induction as a function of g is presented in fig. 7. The induction inside
domains B0 = (Φ0/2πλ2)b0 is usually smaller than the first critical magnetic field Hc1 =
(Φ0/2πλ2) log(κ) at which Abrikosov vortices enter the sample. The texture therefore has
little to do with Abrikosov vortices, as well as with other single-soliton structures. We believe
therefore that the solution is a stable nontopological soliton. From figs. 6 and 7 one can see
that there is a good agreement between the numerical and the trial function solutions for the
domain size, but there is a small difference for the internal magnetic-induction magnitude.
The difference probably arises due to the fact that the magnetic induction found numerically
has a structure inside the domain, while the trial function is uniform.
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Fig. 6 – The domain size d (in units of λ) as a function of the gyromagnetic ratio g (numeric and
trial function results).

Fig. 7 – The magnetic induction inside the domain b0 vs. the gyromagnetic ratio g (numeric and trial
function results).

Summary and discussion. – The p-wave superconducting layer subjected to a weak exter-
nal magnetic field (h < Hc1) with opposite field directions on the layer edges has a nontrivial
vortex free magnetic structure, consisting of alternating macroscopic para and diamagnetic
domains. Both the magnetic induction inside the domain and the domain size are completely
defined by the paramagnetic parameter g, and not by the strength of the external magnetic
field. It should be noted that the alternating magnetic domains inside the layer appear only
above the critical paramagnetic parameter value gc ≈ 2.68. Both the characteristic size of
the domain d and the internal domain magnetic induction b0 are only slightly affected by the
sample size and almost completely determined by the paramagnetic parameter.

Let us compare and contrast the 1D structure with several similar 1D structures in other
p-wave pairing systems. In the A-phase of rotating liquid-3He the vortex sheet configuration
was found theoretically [10] and observed experimentally [11]. There is a well-known analogy
between the rotating superfluid and a superconductor in the external magnetic field with
the rotation pseudovector Ω in the superfluid playing the role of the magnetic field in a
superconductor. However, one cannot push the analogy too far. The order parameter in the
superfluid (within the London-type approximation in the A-phase) contains two vector fields
d and l, differently from one vector l in the superconductor (within similar approximation).

The configuration we considered corresponds in the superfluid to the rotation of the two
sides of the vessel in opposite directions and is hardly realizable experimentally. On the
contrary, in superconductors there is no experimental obstacle to realize such a configuration.
A superconductor analog of the vortex sheet would have the magnetic field oriented in the
same direction on opposite sides of the junction. However, we note that in the rotating 3He
system due to the coupling between vectors d and l there are two degenerate ground-state
configurations with either parallel or antiparallel directions of d and l. The vortex sheet
configuration interpolates between the two states. In p-wave superconductors there is no
analog of such a coupling or degeneracy and therefore the configuration is topologically trivial.

Kopnin and Burlachkov (KB) [7] found a spin texture in p-wave superconductors subjected
to a homogeneous external magnetic field. It is caused by the anisotropy arising from the spin-
orbit interaction rather than from the Zeeman coupling essential in our manuscript. Zeeman
coupling has been neglected in [7]. It is clear that the alternating domains are essentially
different from those considered in [7]. For example, the magnetic field of the KB domains
does not change its direction (see fig. 1 of [7]), while in our case the alternating magnetic
domains are the essential issue.
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