
Abstract. This paper deals with the cost benefit analysis of series systems with
warm standby components. The time-to-repair and the time-to-failure for
each of the primary and warm standby components is assumed to have the
negative exponential distribution. We develop the explicit expressions for the
mean time-to-failure, MTTF , and the steady-state availability, AT ð1Þ for three
configurations and perform a comparative analysis. Under the cost/benefit
(C/B) criterion, comparisons are made based on assumed numerical values
given to the distribution parameters, and to the cost of the components. The
configurations are ranked based on: MTTF , AT ð1Þ, and C=B where B is either
MTTF or AT ð1Þ.

Key words: Availability, Cost/benefit, Reliability, Series system, Warm
standbys

1 Introduction

Uncertainty is one of the important issues in management decisions. Two of
the most useful uncertainty measures are: system reliability and system
availability. Maintaining a high or required level of reliability and/or avail-
ability is often an essential requisite.

In this paper, we study the reliability, the availability, and the cost/benefit
analysis of three different series system configurations with warm standby
components. These three configurations are compared based on their mean
time-to-failure, MTTF , their steady-state availability, AT ð1Þ, and their cost/
benefit ratio C=B. Benefit is divided into two categories according to whether
the measure utilized is the system reliability given by MTTF or the system
availability given by AT ð1Þ.

Analytical solutions of the Markovian model for the machine repair
problem with warm standbys were first developed by Sivazlian and Wang
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(1989). Wang and Kuo (2000) investigates the cost and probabilistic analysis
of series systems with mixed standby components. The problem considered
in this paper is more general than the works of Galikowsky et al. (1996).
This paper accomplishes three objectives. The first one is to provide a
systematic methodology to develop the explicit expressions for the mean
time-to-failure, MTTFi, and the steady-state availability, ATið1Þ, for config-
uration i, where i ¼ 1; 2; 3. The second one is to perform a parametric
investigation which provides numerical results to show the effects of various
values of system parameters to the cost/benefit ratios. The third one is to
rank three configurations for the MTTF , the AT ð1Þ, and the C/B, based on
specific values of distribution parameters, as well as of the costs of the
components.

2 Description of the system

For the sake of discussion, we consider the requirements of a 10 MW power
plant. We assume that generators are available in units of both 10 MW and
5 MW. We also assume that standby generators are allowed to fail while
inactive before they are put into full operation, and that the standby gener-
ators are continuously monitored by a fault detecting device in order to
identify if they fail or not. Let us assume that all switch over times are
instantaneous and switching is perfect, e.g. never fails and never does any
damage. Primary components and standby components can be considered to
be repairable. Each of the primary components fails independently of the
state of the others and has an exponential time-to-failure distribution with
parameter k. Whenever one of these components fails, it is immediately re-
placed by a standby component if one is available. We assume that each of
the available standby components fails independently of the state of all the
others and has an exponential time-to-failure distribution with parameter
a ð0 < a < kÞ. Whenever a primary component or a standby component fails,
it is immediately repaired in the order of breakdowns with a time-to-repair
which is exponentially distributed with parameter l. Once a component is
repaired, it is as good as new. Further, failure times and repair times are
independently distributed random variables.

The following configurations are considered. The first configuration is a
serial system of one primary 10 MW component with two standby 10 MW
components (Figure 1). The second configuration is a serial system of
two primary 5 MW components and one standby 5 MW component
(Figure 2). The standby unit can replace either one of the initially working
units in case of failure. The last configuration is a serial system of two
primary 5 MW components with two interchangeable standby 5 MW com-
ponents. (Figure 3). Each standby unit can replace either one of the failed
components. If necessary, a standby unit can also replace the first used
standby unit in case of failure.

2.1 Cost-benefit factor

We assume that the size-proportional costs for the primary components and
warm standby components are given in Table 1. With this, we calculate the
costs for each configuration i ði ¼ 1; 2; 3Þ shown in Table 2. Let Ci be the cost
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of the configuration i, and Bi be the benefit of the configuration i, where Bi
may either be the MTTFi (for system reliability), or the ATið1Þ (for system
availability), where i ¼ 1; 2; 3.

3 Problem solutions

3.1 Calculations for configuration 1

3.1.1 MTTF as benefit

For configuration 1, let PnðtÞ be the probability that exactly n components are
working at time t ðt � 0Þ. If we let P(t) denote the probability row vector at
time t, then the initial conditions for this problem are

Fig. 1. Configuration 1: one 10 MW component with two standby components

Fig. 2. Configuration 2: two 5 MW components with one standby component
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Pð0Þ ¼ ½P3ð0Þ; P2ð0Þ; P1ð0Þ; P0ð0Þ� ¼ ½1; 0; 0; 0�: ð1Þ
Omitting the argument t in PnðtÞ so that PnðtÞ � Pn, we obtain the following
differential equations:

dP3

dt
¼ �ðkþ 2aÞP3 þ lP2;

dP2

dt
¼ ðkþ 2aÞP3 � ðkþ aþ lÞP2 þ 2lP1;

dP1

dt
¼ ðkþ aÞP2 � ðkþ 2lÞP1;

dP0

dt
¼ kP1:

Table 1. The size-proportional cost for the primary and warm standby components

Component Cost (in $)

Primary 10 MW 10� 106

Primary 5 MW 5� 106

Warm standby 10 MW 6� 106

Warm standby 5 MW 3� 106

Fig. 3. Configuration 3: two 5 MW components with two standby components

Table 2. The costs for each configuration i, i = 1, 2, 3

Configuration Cost (in $)

Configuration 1 22� 106

Configuration 2 13� 106

Configuration 3 16� 106
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This can be written in matrix form as

_PP ¼ QP;

where

Q ¼

�k� 2a l 0 0

kþ 2a �k� a� l 2l 0

0 kþ a �k� 2l 0

0 0 k 0

0
BBB@

1
CCCA:

Without deriving the transient solutions, I propose the simple procedure
to develop the explicit expression for the MTTF . To derive the MTTF , we take
the transpose matrix of Q and delete the rows and columns for the absorbing
state (s). The new matrix is called A. The expected times to reach an
absorbing state is obtained from

E½TPð0Þ!P ðabsorbingÞ� ¼ Pð0Þð�A�1Þ
1

1

1

0
B@

1
CA; ð2Þ

where

A ¼
�k� 2a kþ 2a 0

l �k� a� l kþ a

0 2l �k� 2l

0
B@

1
CA:

This method is successful because of the following relations

E½TPð0Þ!P ðabsorbingÞ� ¼ Pð0Þ
Z1

0

eAtdt: ð3Þ

and

Z1

0

eAtdt ¼ �A�1: ð4Þ

For configuration 1, we obtain the following explicit expression for the
MTTF1:

E½TPð0Þ!P ðabsorbingÞ� ¼ MTTF1 ¼
3kðkþ 2aþ lÞ þ 2ðaþ lÞ2

kðkþ aÞðkþ 2aÞ : ð5Þ

3.1.2 Availability as benefit

For the availability case of configuration 1, the initial conditions for this
problem are the same as for the reliability case:

Pð0Þ ¼ ½P3ð0Þ; P2ð0Þ; P1ð0Þ; P0ð0Þ� ¼ ½1; 0; 0; 0�: ð6Þ
For this case, the following differential equations written in matrix form can
be obtained:
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_PP3

_PP2

_PP1

_PP0

0
BBB@

1
CCCA ¼

�k� 2a l 0 0

kþ 2a �k� a� l 2l 0

0 kþ a �k� 2l 3l

0 0 k �3l

0
BBB@

1
CCCA

P3

P2

P1

P0

0
BBB@

1
CCCA:

Let T1 denote the time-to-failure of the system for configuration 1. To
obtain the steady-state availability, we utilise the following procedure. In the
steady-state, the derivatives of the state probabilities become zero. That
allows us to calculate the steady-state probabilities with

AT1
ð1Þ ¼ 1� P0ð1Þ; ð7Þ

and

QPð1Þ ¼ 0;

or, in matrix form:

�k� 2a l 0 0

kþ 2a �k� a� l 2l 0

0 kþ a �k� 2l 3l

0 0 k �3l

0
BBB@

1
CCCA

P3ð1Þ
P2ð1Þ
P1ð1Þ
P0ð1Þ

0
BBB@

1
CCCA ¼

0

0

0

0

0
BBB@

1
CCCA: ð8Þ

Using the following normalizing condition

X3
i¼0

Pið1Þ ¼ 1; ð9Þ

we substitute (9) in any one of the redundant rows in (8) to yield

�k� 2a l 0 0

kþ 2a �k� a� l 2l 0

0 kþ a �k� 2l 3l

1 1 1 1

0
BBB@

1
CCCA

P3ð1Þ
P2ð1Þ
P1ð1Þ
P0ð1Þ

0
BBB@

1
CCCA ¼

0

0

0

1

0
BBB@

1
CCCA: ð10Þ

The solution of (10) provides the steady-state probabilities in the availabil-
ity case. For configuration 1, the explicit expression for the AT1

ð1Þ is given
by

AT1
ð1Þ ¼

3l
�
ðkþ 2aÞðkþ aþ 2lÞ þ 2l2

�

kðkþ aÞðkþ 2aÞ þ 3l
�
ðkþ 2aÞðkþ aþ 2lÞ þ 2l2

� : ð11Þ

3.2 Calculations for configuration 2

3.2.1 MTTF as benefit

For configuration 2. The initial conditions are

Pð0Þ ¼ ½P3ð0Þ; P2ð0Þ; P1ð0Þ� ¼ ½1; 0; 0�: ð12Þ
The differential equations written in matrix form are given by

_PP ¼ QP;
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where

Q ¼
�2k� a l 0

2kþ a �2k� l 0

0 2k 0

0
B@

1
CA:

It may be difficult to derive the transient solution. We use the above
procedure shown in configuration 1. The expected times to reach an
absorbing state is calculated from

E½TPð0Þ!P ðabsorbingÞ� ¼ Pð0Þð�A�1Þ 1
1

� �
;

where

A ¼ �2k� a 2kþ a
l �2k� l

� �
:

For configuration 2, the explicit expression for the MTTF2 is given by

E½TPð0Þ!P ðabsorbingÞ� ¼ MTTF2 ¼
4kþ aþ l
2kð2kþ aÞ : ð13Þ

3.2.2 Availability as benefit

For the availability case of configuration 2, the initial conditions are the same
as for the reliability case:

Pð0Þ ¼ ½P3ð0Þ; P2ð0Þ; P1ð0Þ� ¼ ½1; 0; 0�: ð14Þ

The differential equations are given by

_PP3

_PP2

_PP1

0
B@

1
CA ¼

�2k� a l 0

2kþ a �2k� l 2l

0 2k �2l

0
B@

1
CA

P3

P2

P1

0
B@

1
CA:

Let T2 represent the time-to-failure of the system for configuration 2.
In steady-state, the derivatives of the state probabilities become zero. We
calculate the steady-state availability with

AT2
ð1Þ ¼ 1� P1ð1Þ: ð15Þ

and

QPð1Þ ¼ 0;

or, in matrix form:

�2k� a l 0

2kþ a �2k� l 2l

0 2k �2l

0
B@

1
CA

P3ð1Þ
P2ð1Þ
P1ð1Þ

0
B@

1
CA ¼

0

0

0

0
B@

1
CA: ð16Þ
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To obtain P1ð1Þ, we solve (16) and use the following normalizing con-
dition:

X3
i¼1

Pið1Þ ¼ 1:

For configuration 2, we obtain the explicit expression for the AT2
ð1Þ

AT2
ð1Þ ¼ lð2kþ aþ lÞ

kð2kþ aÞ þ lð2kþ aþ lÞ : ð17Þ

3.3 Calculations for configuration 3

3.3.1 MTTF as benefit

For configuration 3, The initial conditions are

Pð0Þ ¼ ½P4ð0Þ; P3ð0Þ; P2ð0Þ; P1ð0Þ� ¼ ½1; 0; 0; 0�: ð18Þ
The differential equations written in matrix form are expressed as:

_PP ¼ QP;

where

Q ¼

�2k� 2a l 0 0

2kþ 2a �2k� a� l 2l 0

0 2kþ a �2k� 2l 0

0 0 2k 0

0
BBB@

1
CCCA:

Again, it is extremely difficult to develop the transient solution. We use the
above procedure shown in configuration 1. The expected times to reach an
absorbing state is evaluated from

E½TPð0Þ!P ðabsorbingÞ� ¼ Pð0Þð�A�1Þ
1
1
1

0
@

1
A;

where

A ¼
�2k� 2a 2kþ 2a 0

l �2k� a� l 2kþ a

0 2l �2k� 2l

0
@

1
A:

For configuration 3, we get the explicit expression for the MTTF3

E½TPð0Þ!P ðabsorbingÞ� ¼ MTTF3 ¼
3kð2kþ 2aþ lÞ þ ðaþ lÞ2

2kðkþ aÞð2kþ aÞ : ð19Þ

3.3.2 Availability as benefit

For the availability case of configuration 3, the initial conditions are

Pð0Þ ¼ ½1; 0; 0; 0�: ð20Þ
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The steady-state equations are given by

�2k� 2a l 0 0

2kþ 2a �2k� a� l 2l 0

0 2kþ a �2k� 2l 3l

0 0 2k �3l

0
BBBB@

1
CCCCA

P4ð1Þ
P3ð1Þ
P2ð1Þ
P1ð1Þ

0
BBBB@

1
CCCCA
¼

0

0

0

0

0
BBBB@

1
CCCCA
:

Let T3 represent the time-to-failure of the system for configuration 3. The
steady-state availability for configuration 3 is

AT3
ð1Þ ¼ 1� P1ð1Þ: ð21Þ

Solving (21) and using the following normalizing condition:

X4
i¼1

Pið1Þ ¼ 1;

we obtain P1ð1Þ.
For configuration 3, the explicit expression for the AT3

ð1Þ yields

AT3
ð1Þ ¼

3l
�
ðkþ aÞð2kþ aþ 2lÞ þ l2

�

2kðkþ aÞð2kþ aÞ þ 3l
�
ðkþ aÞð2kþ aþ 2lÞ þ l2

� : ð22Þ

Fig. 4. C=MTTFi versus failure rate k
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4 Comparison of the three configurations

4.1 Comparison of all configurations

In this section we compare the three configurations in terms of their MTTFi
and their ATið1Þ, where i ¼ 1; 2; 3.

We first perform a comparison of the MTTF for the configurations 1, 2,
and 3. Using the algebraic manipulations, it can be shown that the following
results hold for all choices of k, a, and l.

MTTF1 > MTTF3 > MTTF2: ð23Þ
Next, using the computer software MALAB, the comparison of the AT ð1Þ for
the configurations 1, 2, and 3, are given by:

AT1
ð1Þ > AT3

ð1Þ > AT2
ð1Þ: ð24Þ

4.2 Comparison of all configurations based on their cost/benefit ratios

We consider that the various configurations may have different costs when
comparing all configurations. From Table 2, the cost ðCiÞ of the configura-
tion i ði ¼ 1; 2; 3Þ are listed in the following:

C1 ¼ $22� 106; C2 ¼ $13� 106; C3 ¼ $16� 106:

Fig. 5. C=ATi ð1Þ versus failure rate k
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We first fix a ¼ 0:05, l ¼ 1:0, and vary the values of k from 0.1 to 1.2. The
results of the cost/benefit ðCi=BiÞ ratios, namely, Ci=MTTFi and Ci=ATið1Þ for
each configuration i ði ¼ 1; 2; 3Þ are depicted in Figure 4 and Figure 5,
respectively. Figure 4 and Figure 5 show that the Ci=MTTFi and the Ci=ATið1Þ
increase as k increases for any configuration. One observes from Figure 4 that
the optimal configuration using the Ci=MTTF value is configuration 1. We
observe from Figure 5 that the optimal configuration using the Ci=AT ð1Þ
value depends on the value of k. When k < 0:7, the optimal configuration is
configuration 2, but when k � 0:7, the optimal configuration is configuration 3.

Next, we fix a ¼ 0:05, k ¼ 0:6, and vary the values of l from 0.1 to 1.2.
The results of the cost/benefit ðCi=BiÞ ratios, namely, Ci=MTTFi and
Ci=ATið1Þ for each configuration i ði ¼ 1; 2; 3Þ are depicted in Figure 6 and
Figure 7, respectively. We can easily see Figures 6 and 7 that the Ci=MTTFi
and the Ci=ATið1Þ decrease as l decreases for any configuration. Figure 6
shows that the optimal configuration using the Ci=MTTF value is configura-
tion 1. One sees from Figure 7 that the optimal configuration using the
Ci=AT ð1Þ value is configuration 2.

5 Conclusions

The primary objectives of this paper have been:

(1) to model three different series system configurations with warm standby
components;

Fig. 6. C=MTTFi versus failure rate l

Cost benefit analysis of series systems with warm standby components 257



(2) to present cost/benefit analysis of three configurations under uncertainty;
(3) to develop explicit expressions for the MTTF , the AT ð1Þ, and the C=B, for

three configurations and perform comparisons;
(4) to rank three configurations based on the MTTF , the AT ð1Þ, and the C=B,

where B is either MTTF or AT ð1Þ.
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