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Abstract

The first known equations governing vibrations of preloaded, shear-deformable circular arches are derived according

to a variational principle for dynamic problems concerning an elastic body under equilibrium initial stresses. The

equations are three partial differential equations with variable coefficients. The governing equations are solved for

arches statically preloaded with a uniformly distributed vertical loading, by obtaining a static, closed-form solution and

an analytical dynamic solution from series solutions and dynamic stiffness matrices. Convergence to accurate results is

obtained by increasing the number of elements or by increasing both the number of terms in the series solution and the

number of terms in the Taylor expansion of the variable coefficients. Graphs of non-dimensional frequencies and

buckling loads are presented for preloaded clamped arches. They clarify the effects of opening angle and thickness-

to-radius ratio on vibration frequencies and buckling loads. The effects of static deformations on vibration frequencies

are also investigated. This work also compares the results obtained from the proposed governing equations with those

obtained from the classical theory neglecting shear deformation.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Curved beam structures have been extensively used in civil, mechanical, and aerospace engineering ap-

plications, including for example, arch bridges, springs, and stiffeners in aircraft structures. Research into

the vibrations of curved beams began in the 19th century (Love, 1944), and over 500 references can be

found in review articles (Markus and Nanasi, 1981; Laura and Maurizi, 1987; Chidamparam and Leissa,

1993), which reveal that most of the research addresses the vibrations in unloaded arches and rings. Even in
the past decade, studies of arch vibrations focused on unloaded cases but with complicating effects. For

example, Kawakami et al. (1995), Huang et al. (1998) and Oh et al. (1999) considered arches with variable

curvature or cross-sections; Qatu (1993a,b) and Tseng et al. (2000) studied composite arches. Rather few
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publications address the vibrations of loaded arches and rings, even though dynamic analyses of loaded

arches are frequently required for a wide range of engineering applications.

For simplicity, most studies on the vibrations and stability of loaded circular arches consider cases with

an inextensible centerline and no shear deformation. For example, Timoshenko and Gere (1961) obtained
closed-form solutions for the buckling loads of pin-ended and fixed circular arches with uniformly dis-

tributed radial loading. Wempner and Kesti (1962) provided an analytical solution for the buckling load of

a clamped circular arch under a uniform hydrostatic pressure, constant directional pressure or a centrally

directed pressure. Gjelsvik and Bodner (1962) applied an energy-based method to evaluate the stability of a

clamped arch under center point loading, while Schreyer and Masur (1966) exactly solved the non-linear

equilibrium equations for an arch under a uniform load. Wasserman (1977) developed exact and ap-

proximate formulas for determining the lowest natural frequencies and critical loads of arches with flexibly

supported ends. Plaut and Johnson (1981) investigated the effects of an elastic foundation and a sinusoi-
dally distributed load on the natural frequencies of simply supported shallow arches, while Perkins (1990)

correlated experimental results with theoretical analysis considering vibrations of an elastica arch under a

large axial load. Both works considered the vibration about the deformed equilibrium state caused by a

static load. Kang et al. (1996) used the differential quadrature method to determine the critical loads of

circular arches.

Centerline extensibility is known to affect substantially the vibrations of rotating thick rings (Lin and

Soedel, 1988). Chidamparam and Leissa (1995) applied the Ritz method to elucidate how centerline ex-

tensibility influences the in-plane free vibrations of loaded circular arches. However, they assumed an in-
extensible centerline when determining the initial axial force distribution along a circular arch under a

static, distributed vertical load. Matsunaga (1996) developed a one-dimensional higher-order theory for

arches with constant initial axial forces and used Fourier series expansion to determine the critical loads of

simply-supported circular arches subjected to constant axial forces. Nieh et al. (2003) analytically solved the

vibration and stability of a loaded elliptical arch, using a series solution along with dynamic stiffness matrix

method. These studies ignored not only shear deformation but also static deformation.

Shear deformation must be considered for thick beams. The aforementioned studies indicate a need to

develop equations that govern the free vibrations of a loaded circular arch that is shear-deformable. This
work develops the governing equations using the variational form introduced by Washizu (1982) for the

dynamical problems concerning an elastic body under initial stresses. The developed governing equations

include not only the effect of the initial axial force but also the effects of other initial stress resultants, such as

shear force and moment due to initial loading. The study also elucidates the effects of static deformations.

These equations are employed primarily to investigate free vibration and buckling analyses of a circular

arch under uniform vertical loading. Developing analytical solutions involves two main steps. First, the static

solution for the circular arch under loading is obtained in closed form. The vibration frequencies and buckling

loads are then determined using the dynamic stiffness matrix method. A dynamic stiffness matrix is established
by a series solution of the governing equations. The proposed solution is applied to elucidate the effects of the

opening angle and the thickness-to-radius ratio on the vibration frequencies and buckling loads of loaded

circular arches. The extent to which the magnitude of a uniformly distributed static load affects vibration

frequencies is also considered. The effects of shear deformation on vibration frequencies and buckling loads

are demonstrated by comparing the present results with the published data obtained by ignoring shear

deformation. The effects of the static deformations on the vibration frequencies are also clarified.
2. Equations governing loaded free vibrations

Consider a part of a circular arch, as depicted in Fig. 1, with a centroidal radius R, and a thickness h.
Polar coordinates r and h specify a point on the arch. The arch is initially subjected to static loading cðhÞ.
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Fig. 1. A sketch of a loaded circular arch.
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The cross-section of the arch is assumed to have at least one axis of symmetry so that in-plane motion is not

coupled with out-of-plane motion. The ratio of h to R is assumed to be sufficiently small. A static load is

assumed to induce initial stresses of rð0Þ
ij at equilibrium. The dynamic tangential and radial displacements of

a point during the in-plane free vibration of a loaded arch are represented by v and w, respectively. Fig. 1
also presents the sign convention for positive dynamic displacement components, bending moment ðMÞ,
shear force ðQÞ, and axial force ðNÞ.

This section presents three sets of governing equations for vibrations of loaded arches according to

different assumptions. These equations can be classified by (1) the nature of the initial static equilibrium

state, and (2) the influence of shear deformation. Three different theories for vibrations of a preloaded arch

are presented below.
2.1. Shear deformable theory with initial shape (SDTIS)

In this theory, the arch under consideration is shear-deformable and deformations caused by static

loading are assumed to be sufficiently small that their effect on the deformed curvature can be ignored. As in

Timoshenko first-order beam theory, the in-plane displacement components of an arch can be assumed to

be
vðr; h; tÞ ¼ vðh; tÞ � zwðh; tÞ; wðr; h; tÞ ¼ wðh; tÞ; ð1Þ
where v and w represent the tangential and radial displacements of the centroidal axis, respectively, and w is

the angle of rotation of the centroidal axis due to bending only. The coordinate z refers to the distance of a

point from the centroidal axis, such that z ¼ r � R and �h=26 z6 h=2. Under the displacement field de-

scribed by Eq. (1), the non-zero dynamic strain components are ehh and erh, which are related to the dis-

placement components by the following equations.
ehh ¼ eðLÞhh þ eðHÞ
hh ; ð2aÞ

erh ¼ eðLÞrh þ eðHÞ
rh ; ð2bÞ

eðLÞhh ¼ 1

r
ov
oh

�
� zow

oh
þ w

�
; ð2cÞ
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eðHÞ
hh ¼ 1

2r2
ov
oh

�"
� zow

oh
þ w

�2

þ ow
oh

�
� vþ zw

�2
#
; ð2dÞ

eðLÞrh ¼ 1

2

1

r
ow
oh

��
� vþ zw

�
� w

�
; ð2eÞ

eðHÞ
rh ¼ 1

2r
ov
oh

�
þ w� zow

oh

�
ð�wÞ; ð2fÞ
where the superscript ‘‘L’’ represents infinitesimal strain parts, while the superscript ‘‘H ’’ denotes high-order
terms.

In the following derivation, the dynamic deformation is assumed to be infinitesimal and the material is

assumed to be elastic and isotropic. Hence, the dynamic stresses, rij, are related to eðLÞij by Hooke�s law for

plane strain. The equations governing the free vibration of a loaded circular arch and the associated

boundary conditions will be developed according to the following variational principle given by Washizu

(1982) for solving the dynamic problem of an elastic body with equilibrium initial stresses.
d
Z t2

t1

T

8<: � U �
ZZZ
V

rð0Þ
ij e

ðHÞ
ij dV

9=;dt ¼ 0; ð3Þ
where T and U are the kinetic and strain energies, given by,
T ¼
ZZZ
V

1

2
qð _vv2 þ _ww2ÞdV ; ð4aÞ

U ¼
ZZZ
V

1

2
rije

ðLÞ
ij dV ; ð4bÞ
q is the material density, and the dots denote the derivative with respect to time. The term with rð0Þ
ij rep-

resents the additional strain energy contributed by the initial static stresses.

Introduce the following definition of stress resultants:
ðN ;MÞ ¼
Z
A
rhhð1; zÞdA; ð5aÞ

Q ¼
Z
A
rrh dA; ð5bÞ

ðN ð0Þ;M ð0Þ; P ð0ÞÞ ¼
Z
A
rð0Þ
hh ð1; z; z2ÞdA; ð5cÞ

ðQð0Þ; T ð0ÞÞ ¼
Z
A
rð0Þ
rh ð1; zÞdA: ð5dÞ
The relationships between the stress resultants and the displacement components for an arch with h=R
sufficiently less than unity are,
N ¼ EA
ov
oS

�
þ w

R

�
; M ¼ EI

ow
oS

; Q ¼ jGA
ow
oS

�
� v
R
� w

�
; ð6Þ
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P ¼ EI
ov
oS

�
þ w

R

�
; and T ¼ jGI

w
R

where S is the arc length coordinate (see Fig. 1); E and G are elastic and shear moduli, respectively; A and I
are the area and moment of inertia of the cross-section, respectively, and j is the correction factor for the

shear force and equals 0.85 for a rectangular cross-section. Notably, in deriving the expression of P in terms

of displacement components, it is assumed that the cross-section is symmetric about the line of z ¼ 0.

By performing the variation as indicated in Eq. (3), the governing equations for the free vibrations of a

statically loaded arch with the displacement field specified by Eq. (1) are obtained and expressed as
N 0 þ Q
R
þ N ð0Þv0
�

þM ð0Þw0 þ N ð0Þ

R
w� Qð0Þw

�0

þ N ð0Þ

R
w0 � 1

R2
ðN ð0ÞvþM ð0ÞwÞ ¼ qA€vv; ð7aÞ
Q0 � N
R
þ N ð0Þw0
�

� N ð0Þ

R
v�M ð0Þ

R
w

�0

� N ð0Þ

R
v0 �M ð0Þ

R
w0 þ Qð0Þ w

R
� N ð0Þ

R2
w ¼ qA€ww; ð7bÞ
M 0 þ Qþ M ð0Þv0
�

þM ð0Þ

R
wþ P ð0Þw0

�0

þM ð0Þ

R
w0 þ Qð0Þ v0

�
þ w

R

�
�M ð0Þ

R2
v� P ð0Þ

R2
wþ ðT ð0ÞÞ0w ¼ qI €ww;

ð7cÞ
and the associated boundary conditions are,
v ¼ 0 or � N � N ð0Þv0 �M ð0Þw0 � N ð0Þw
R

þ Qð0Þw ¼ 0; ð8aÞ
w ¼ 0 or � Q� N ð0Þw0 þ N ð0Þv
R

þM ð0Þw
R

¼ 0; ð8bÞ
w ¼ 0 or �M �M ð0Þv0 �M ð0Þw
R

� P ð0Þw0 � T ð0Þw ¼ 0; ð8cÞ
where the primes denote derivatives with respect to S.
2.2. Shear deformable theory with deformed state (SDTDS)

This theory considers a shear-deformable arch under a static loading, and vibrations of the arch about

the statically deformed state. Restated, this theory additionally considers the effects of static deformations

on the vibrations of the preloaded arch. The static deformations will cause changes in the initial circular
shape of the arch, resulting in a change of the radius of the centroidal axis. Let R� denote the radius of the

statically deformed centroidal axis, and is no longer a constant but a function of S, determined from the

static deformations by,
1

R� ¼
1

R
� ðwð0ÞÞ0
�

� vð0Þ

R

�0

; ð9Þ
where wð0Þ and vð0Þ are the static radial and tangential displacements, respectively.
Since Eqs. (6),(7a)–(7c), and (8a)–(8c) are expressed in terms of the independent variable S, these

equations also apply in this theory, except that R in these equations is replaced by R�.
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2.3. Classical theory neglecting shear deformation (CTNSD)

This theory neglects shear deformation and rotary inertia and further considers a moderately small

rotation in eðHÞ
hh , such that eðHÞ

hh in Eq. (2d) becomes
eðHÞ
hh ¼ 1

2r2
ow
oh

�
� v

�2

: ð10Þ
Static deformations are also neglected. Hence, the corresponding governing equations can be derived

following the procedure presented in Section 2.1:
�M 0

R
þ N 0 þ N ð0Þ

R
w0

�
� v
R

�
¼ qA€vv; ð11aÞ

�M 00 � N
R
þ N ð0Þ w0

�h
� v
R

�i0
¼ qA€ww: ð11bÞ
Eqs. (11a) and (11b) are identical to those obtained by Chidamparam (1993), who used a perturbation

technique. These two equations, unlike Eqs. (7a)–(7c), involve only the initial axial forces. Notably, Eqs.
(11a) and (11b) cannot be directly deduced from Eqs. (7a)–(7c).

Two important differences exist between the shear deformable theory with initial shape (SDTIS) (Eqs.

(7a)–(7c)) and this classical theory (Eqs. (11a) and (11b)). In computing static initial stress resultants, the

former but not the latter considers shear deformation, so that N ð0Þ in Eqs. (7a)–(7c) may differ considerably

from those in Eqs. (11a) and (11b) in some cases. In determining dynamic responses, the proposed theory

addresses the effects of shear deformation, rotary inertia, and all initial stress resultants, while the classical

theory considers only the effect of the initial axial force.
3. Solution

An analytical solution for the free vibration and stability of a circular arch with a rectangular cross-

section, subjected to uniform vertical loading, is presented. This section will demonstrate the procedure of

establishing the solution according to shear deformable theory with the deformed state, using Eqs. (7a)–(7c)

but with R replaced by R�. The solution is obtained in two main steps. The first is to determine the closed-

form, static solution for the arch under uniformly distributed vertical loading (see Fig. 1). Then, the dy-
namic stiffness matrix approach, in conjunction with a series solution, is applied to determine the vibration

frequencies of the arch.
3.1. Static solution

The equilibrium equations for a circular arch under uniform vertical loading, as depicted in Fig. 1, are
ðN ð0ÞÞ0 þ Qð0Þ

R
¼ c cos h; ð12aÞ

ðQð0ÞÞ0 � N ð0Þ

R
¼ c sin h; ð12bÞ

ðM ð0ÞÞ0 þ Qð0Þ ¼ 0: ð12cÞ
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The general solutions for the stress resultants can be easily obtained by directly integrating the above

equations with some mathematic manipulation (Yang, 2002):
Qð0Þ ¼ C1 cos hþ C2 sin hþ Rch sin h; ð13aÞ

N ð0Þ ¼ �C1 sin hþ C2 cos hþ Rch cos h; ð13bÞ

M ð0Þ ¼ �C1R sin hþ C2R cos h� R2cðsin h� h cos hÞ þ C3; ð13cÞ
where the coefficients C1;C2 and C3 are to be determined by the specified boundary conditions. The rela-

tionships between the stress resultants and the displacement components, following direct integration, yield
vð0Þ ¼ �C3

R2h
EI

þ C4 cos hþ C5 sin h� C6Rþ d1h cos hþ d2h sin hþ d3h
2 cos h; ð14aÞ

wð0Þ ¼
�
� C1

R
EA

þ C4 � d2

�
sin hþ C2

R
EA

�
� C5 � d1

�
cos hþ C3

R2

EI
þ R2c

EA

�
� d2 � 2d3

�
h cos h

þ d3h
2 sin hþ d1h sin h; ð14bÞ

wð0Þ ¼ R
EI

fC1R cos hþ C2R sin hþ R2cð2 cos hþ h sin hÞ þ C3hg þ C6; ð14cÞ
where
d1 ¼
R
2E

1

A

�
þ E
jGA

þ R2

I

�
C2; ð15aÞ

d2 ¼
1

2

�
� R
E

1

A

�
þ E
jGA

þ R2

I

�
C1 þ

R2c
E

1

A

�
� 2R2

I

��
� d3; ð15bÞ

d3 ¼
R2c
4E

1

A

�
þ E
jGA

þ R2

I

�
: ð15cÞ
Coefficients C4;C5 and C6 are also to be determined by the specified boundary conditions. The definitions of

P ð0Þ and T ð0Þ and Eqs. (14a)–(14c) lead to
P ð0Þ ¼ I
A
ð�C1 sin hþ C2 cos hþ Rch cos hÞ; ð16aÞ

T ð0Þ ¼ jG
E

fC1R cos hþ C2R sin hþ C3hþ R2cð2 cos hþ h sin hÞg þ C6

jGI
R

: ð16bÞ
3.2. Dynamic solution

Substituting Eq. (6) into Eqs. (7a)–(7c) with R replaced by R�, introducing non-dimensional displacement

components ~vv ¼ v=R and ~ww ¼ w=R, and letting
~vvðh; tÞ ¼ V ðhÞeixt; ~wwðh; tÞ ¼ W ðhÞeixt and wðh; tÞ ¼ WðhÞeixt; ð17Þ
in which x is the natural frequency, yields the following equations in terms of vibratory displacement

components:
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o2V

oh2
þ a1

oV
oh

þ a2V þ a3
oW
oh

þ a4W þ a5
o2W

oh2
þ a6

oW
oh

þ a7W ¼ 0; ð18aÞ
o2W

oh2
þ b1

oW
oh

þ b2W þ b3

oV
oh

þ b4V þ b5

oW
oh

þ b6W ¼ 0; ð18bÞ
o2W

oh2
þ c1

oW
oh

þ c2Wþ c3
o2V

oh2
þ c4

oV
oh

þ c5V þ c6
oW
oh

þ c7W ¼ 0; ð18cÞ
where
a1 ¼
1

n
on
oh

þ 1

EAþ N ð0Þ

� �
oN ð0Þ

oh
; a2 ¼

�N ð0Þ � kGA

n2R
2ðEAþ N ð0ÞÞ

þ R2x2qA

n2ðEAþ N ð0ÞÞ
;

a3 ¼
EAþ kGAþ 2N ð0Þ

nRðEAþ N ð0ÞÞ
; a4 ¼ � 1

nR
2

oR
oh

þ
oN ð0Þ

oh

nRðEAþ N ð0ÞÞ
; a5 ¼

M ð0Þ

RðEAþ N ð0ÞÞ ;

a6 ¼
1

nRðEAþ N ð0ÞÞ n
oM ð0Þ

oh

�
� RQð0Þ þ on

oh
M ð0Þ

�
;

a7 ¼
1

nRðEAþ N ð0ÞÞ

�
� R

oQð0Þ

oh
� kGA

n
�M ð0Þ

nRR

�
; b1 ¼

1

n
on
oh

þ 1

jGAþ N ð0Þ

� �
oN ð0Þ

oh
;

b2 ¼
ð�N ð0Þ � EAÞ

n2R
2ðkGAþ N ð0ÞÞ

þ R2x2qA

n2ðkGAþ N ð0ÞÞ
; b3 ¼ �EAþ kGAþ 2N ð0Þ

nRðjGAþ N ð0ÞÞ
;

b4 ¼
1

nR
2

oR
oh

� 1

nRðkGAþ N ð0ÞÞ
oN ð0Þ

oh

� �
; b5 ¼

�1

nðkGAþ N ð0ÞÞ kGA
�

þ 2M ð0Þ

RR

�
;

b6 ¼
1

nRRðjGAþ N ð0ÞÞ

�
� oM ð0Þ

oh
þ oR

oh
M ð0Þ

R
þ R

n
Qð0Þ

�
; c1 ¼

1

n
on
oh

þ 1

EI þ P ð0Þ
oP ð0Þ

oh

� �
;

c2 ¼
1

n2ðEI þ P ð0ÞÞ

�
� P ð0Þ

R
2
� R2kGAþ nR

oT ð0Þ

oh
þ R2x2qI

�
; c3 ¼

RM ð0Þ

EI þ P ð0Þ ;

c4 ¼
R n oM ð0Þ

oh þ RQð0Þ þ on
ohM

ð0Þ
� �

nðEI þ P ð0ÞÞ ; c5 ¼
�R2RkGA� RM ð0Þ

n2R
2ðEI þ P ð0ÞÞ

;

c6 ¼
R2RkGAþ 2RM ð0Þ

nRðEI þ P ð0ÞÞ
; c7 ¼

1

nRðEI þ P ð0ÞÞ
R
oM ð0Þ

oh

�
þ R2Qð0Þ

n
� RM ð0Þ

R

oR
oh

�
:

ð19Þ
In Eq. (19), R ¼ R�=R and n ¼ R oh
oS. Equations (18a)–(18c) are a set of ordinary differential equations with

variable coefficients. The Frobenius method yields an analytical solution of these equations.

To construct a series solution to Eqs. (18a)–(18c), one has to express each variable coefficient as a Taylor
series about a point on the arch, g. The variable coefficients are simply expressed as,
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a1 ¼
XK
k¼0

Akðh� gÞk; a2 ¼
XK
k¼0

Bkðh� gÞk; a3 ¼
XK
k¼0

Ckðh� gÞk;

a4 ¼
XK
k¼0

Dkðh� gÞk; a5 ¼
XK
k¼0

Ekðh� gÞk; a6 ¼
XK
k¼0

F kðh� gÞk; a7 ¼
XK
k¼0

Gkðh� gÞk;

b1 ¼
XK
k¼0

ÂAkðh� gÞk; b2 ¼
XK
k¼0

B̂Bkðh� gÞk; b3 ¼
XK
k¼0

ĈCkðh� gÞk;

b4 ¼
XK
k¼0

D̂Dkðh� gÞk; b5 ¼
XK
k¼0

ÊEkðh� gÞk; b6 ¼
XK
k¼0

F̂Fkðh� gÞk;

c1 ¼
XK
k¼0

~AAkðh� gÞk; c2 ¼
XK
k¼0

~BBkðh� gÞk; c3 ¼
XK
k¼0

~CCkðh� gÞk; c4 ¼
XK
k¼0

~DDkðh� gÞk;

c5 ¼
XK
k¼0

~EEkðh� gÞk; c6 ¼
XK
k¼0

F̂Fkðh� gÞk; c7 ¼
XK
k¼0

~GGkðh� gÞk:

ð20Þ
Once the static stress resultants have been determined as described in the preceding section, the coefficients
in Eq. (20) are obtained using the commercial symbolic logic computer package, Mathematica. Conse-

quently, the solution of Eqs. (18a)–(18c) is,
V ¼
XJ

j¼0

Ajðh� gÞj; W ¼
XJ

j¼0

Bjðh� gÞj; and W ¼
XJ

j¼0

Djðh� gÞj: ð21Þ
Substituting Eqs. (20) and (21) into Eqs. (18a)–(18c) with careful arrangement and satisfying Eqs. (18a)–

(18c) yield the following recursive formulae among coefficients Ai, Bi and Di.
Aiþ2 ¼
�1

ðiþ 1Þðiþ 2Þ
Xi

k¼0

½ðk
(

þ 1ÞAi�kAkþ1 þ Bi�kAk þ ðk þ 1ÞCi�kBkþ1 þ Di�kBk

þ ðk þ 1Þðk þ 2ÞEi�kDkþ2 þ ðk þ 1ÞF i�kDkþ1 þ Gi�kDk�
)
; ð22aÞ
Biþ2 ¼
�1

ðiþ 1Þðiþ 2Þ
Xi

k¼0

½ðk
(

þ 1Þ ÂAi�kBkþ1 þ B̂Bi�kBk þ ðk þ 1ÞĈCi�kAkþ1 þ D̂Di�kAk

þ ðk þ 1ÞÊEi�kDkþ1 þ F̂Fi�kDk�
)
; ð22bÞ
Diþ2 ¼
�1

ðiþ 1Þðiþ 2Þ
Xi

k¼0

½ðk
(

þ 1Þ ~AAi�kDkþ1 þ ~BBi�kDk þ ðk þ 1Þðk þ 2Þ ~CCi�kAkþ2

þ ðk þ 1Þ ~DDi�kAkþ1 þ ~EEi�kAk þ ðk þ 1ÞeFFi�kBkþ1 þ ~GGi�kBk�
)
; ð22cÞ
where i ¼ 0; 1; 2; . . . Notably, the coefficients A0;A1;B0;B1;D0 and D1 are to be determined from the

boundary conditions. As a result, the solution can be simply represented as,
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V ðhÞ
W ðhÞ
WðhÞ

8<:
9=; ¼ ½S�

A0

A1

B0

B1

D0

D1

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
; ð23Þ
where
½S� ¼
v0ðhÞ v1ðhÞ v2ðhÞ v3ðhÞ v4ðhÞ v5ðhÞ
w0ðhÞ w1ðhÞ w2ðhÞ w3ðhÞ w4ðhÞ w5ðhÞ
w0ðhÞ w1ðhÞ w2ðhÞ w3ðhÞ w4ðhÞ w5ðhÞ

24 35; ð24Þ
and vj, wj, and wj ðj ¼ 0; 1; 2; . . . ; 5Þ are polynomials whose coefficients are determined from Eq. (22).
Theoretically, Eqs. (23) and (24) can be used to determine the natural frequencies x, satisfying the

prescribed boundary conditions. Sufficiently large K and J must be used in Eqs. (20) and (21), respectively,

to yield accurate results. However, determining the coefficients in Eq. (20) for high orders of ðh� gÞ is very
difficult. Moreover, using very high order polynomials in Eq. (21) typically causes numerical difficulties.

The convergence problem concerning the series solution also arises when the convergence radius of the

solution can not cover the entire range of under consideration.

The dynamic stiffness matrix approach is introduced into the method of the series solution to overcome

the above difficulties. As in a finite element approach, the arch under consideration is decomposed into
numerous arch elements. The end displacements of the nth element (see Fig. 2) are determined from Eqs.

(23) and (24) and expressed as,
V n

W n

Wn

V nþ1

W nþ1

Wnþ1

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼ ½b�n

A0

A1

B0

B1

D0

D1

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
n

; ð25Þ
where ½b�n is specified in Appendix A. Then, combining Eqs. (23)–(25) yields,
1+nV

1+nWnW

nV
nΨ

1+Ψn

1+nN

1+nM

1+nQ

nM

nQ

nN

Fig. 2. Element of arch member with sign convention.
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V ðhÞ
W ðhÞ
WðhÞ

8<:
9=; ¼ ½S�n

V n

W n

Wn

V nþ1

W nþ1

Wnþ1

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
; ð26Þ
where ½S�n ¼ ½S�½b��1

n is a matrix that is comprised of frequency dependent shape functions for the nth ele-

ment.

As for Eq. (17), let
Nðh; tÞ ¼ NðhÞeixt; Qðh; tÞ ¼ QðhÞeixt; and Mðh; tÞ ¼ MðhÞeixt: ð27Þ
From the relationship between the stress resultants and the displacement components, the end vibratory

stress resultants of the nth element (see Fig. 2) are expressed in terms of end vibratory displacement

components as,
Nn

Qn

Mn

Nnþ1

Qnþ1

Mnþ1

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
¼ ½K�n

V n

W n

Wn

V nþ1

W nþ1

Wnþ1

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
; ð28Þ
where ½K�n ¼ ½a�n½b�
�1

n is the dynamic stiffness matrix for the nth arch element, and ½a�n is also elucidated in
Appendix A.

The continuity conditions of the end displacement components and the stress resultants between the

adjacent elements assemble the relations in Eq. (28) for each element to form
½K�fUg ¼ fF g; ð29Þ
where ½K� represents the assemblage of the dynamic stiffness matrices of all elements and is called the global
dynamic stiffness matrix of the whole arch; fUg is the vector of the end displacement components of

elements, and fF g is a vector having non-zero unknown stress resultants at the end points on boundary.

Eq. (29) can be further rewritten as,
½Kuu� ½Kub�
½Kbu� ½Kbb�

� � fUug
fUbg

� �
¼

f0g
fFbg

� �
; ð30Þ
where fUug corresponds to the unknown nodal displacement components; fUbg are the prescribed dis-

placement components at the boundaries, and fFbg are the unknown stress resultants on the displacement

prescribed boundaries. The natural frequencies of the arch are x�s that yield a zero determinant of ½Kuu�,
since fUbg vanishes in a free vibration problem.

The use of shear deformable theory with initial shape (SDTIS) to find the vibration frequencies of a
loaded circular arch requires only that R� be replaced by R, a constant, and that n ¼ 1 and R ¼ 1 are set in

the foregoing formulations. The terms involving the derivatives of R and n with respect to h should vanish.
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4. Numerical results for vibration frequencies

4.1. Convergence studies

The solution for the vibration frequencies of an arch developed above must converge as the number of

elements or the number of terms in Eqs. (20) and (21) increases to obtain accurate results. Table 1 sum-

marizes the results of a convergence study of non-dimensional vibration frequencies for two clamped

circular arches under no load. The arches have h=R ¼ 0:01 and opening angles of h0 ¼ 100� and h0 ¼ 1 rad,

respectively. Notably, all the numerical results presented in this paper pertain to circular arches with

rectangular cross-sections and a Poisson�s ratio of 0.3. Rapid convergence of the non-dimensional fre-

quency parameters, k ¼ xR2ðqA=EIÞ1=2, to the exact values as the number of elements increases or the

number of series solution terms ðJ þ 1Þ in Eq. (21) increases supports the validity of the proposed solution.
The results of Tseng et al. (1997) shown in Table 1 were obtained from an exact solution for a shear-

deformable arch, while the results of Qatu (1993b) were obtained from the Ritz method and neglecting

the effects of shear deformation.

Table 2 presents the convergence of non-dimensional frequency parameters k for a clamped arch with

h=R ¼ 0:02 and h0 ¼ 40�, subjected to uniformly distributed vertical loading, c, that makes the non-

dimensional loading parameter bð¼ cR3=EIÞ equal to 100. The results were obtained based on the shear

deformable theory with deformed state. As expected, an accurate solution can be obtained either by in-

creasing the number of elements or by increasing the values of both K and J in Eqs. (20) and (21), re-
spectively. Fewer elements must cooperate with greater values of K and J to produce accurate results. For a

specified number of elements, the results may converge to true values in an oscillatory fashion as the values

of K and J increase.
Table 1

Convergence of non-dimensional frequency parameters k for two unloaded, clamped arches with h=R ¼ 0:01

h0 Present solution Published

resultsElement no. Modes Solution terms ðJ þ 1Þ

5 10 15 20

100� 4 1 44.921 17.919 17.916 17.916 17.916�

2 250.17 34.724 34.643 34.643 34.643�

3 292.29 62.970 62.789 62.789 62.789�

4 601.23 96.381 92.677 92.677 92.677�

8 1 18.736 17.916 17.916 17.916

2 35.632 34.643 34.643 34.643

3 63.419 62.790 62.789 62.789

4 91.103 92.685 92.677 92.677

1 rad 2 1 30.747 59.289 59.066 59.066 59.159��

2 173.87 199.05 107.57 107.55 107.85��

3 347.30 293.96 196.06 196.06 196.98��

4 1063.9 303.36 268.46 267.04 268.54��

4 1 63.860 59.066 59.066 59.066

2 203.84 107.63 107.55 107.55

3 347.90 196.23 196.06 196.06

4 397.60 269.29 267.26 267.26

Note: �denotes the results of Tseng et al. (1997); ��denotes the results of Qatu (1993b).



Table 2

Convergence of non-dimensional frequency parameters k for a clamped arch with h=R ¼ 0:02 and h0 ¼ 40� under statically vertical

loading b ¼ 100

Element no. Mode no. ðK þ 1Þ in
Eq. (20)

Solution terms ðJ þ 1Þ in Eq. (21)

5 10 15 20

3 1 2 110.98 83.447 83.342 83.342

4 111.17 83.115 83.065 83.065

6 111.17 83.160 83.120 83.120

2 2 248.58 110.64 110.66 110.66

4 248.60 110.86 110.85 110.85

6 248.60 110.85 110.84 110.84

3 2 461.33 223.10 222.93 222.93

4 461.39 222.85 222.71 222.71

6 461.39 222.87 222.72 222.72

4 2 1237.7 354.20 352.52 352.52

4 1237.8 354.15 352.46 352.46

6 1237.8 354.13 352.45 352.45

6 1 2 93.451 83.121 83.121 83.121

4 93.742 83.118 83.118 83.118

6 93.742 83.119 83.118 83.118

2 2 116.25 110.85 110.85 110.85

4 116.09 110.84 110.84 110.84

6 116.09 110.84 110.84 110.84

3 2 245.03 222.71 222.71 222.71

4 245.17 222.72 222.72 222.72

6 245.17 222.72 222.72 222.72

4 2 398.33 352.41 352.41 352.41

4 398.52 352.46 352.45 352.45

6 398.52 352.46 352.45 352.45
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4.2. Results and discussion

This section provides numerical results on the vibration frequencies of clamped arches with various

opening angles, under uniform vertical static loads. Problems of symmetry are analyzed herein. Various

theories were applied to determine the vibration frequencies. To ensure results with high accuracy, the

numerical results were obtained by decomposing an arch into eight equal-length elements and using K ¼ 12

and J ¼ 19 in Eqs. (20) and (21), respectively, for each element.

Figs. 3–5 plot the variation of k with b for arches with h=R ¼ 0:1 and h0 ¼ 40�, 80� and 120�, respectively.
Figs. 6 and 7 plot the results for arches with h=R ¼ 0:02 and h0 ¼ 40� and 80�, respectively. Three theories
were applied to determine the frequencies – shear deformable theory with deformed state (SDTDS), shear

deformable theory with initial shape (SDTIS), and classical theory neglecting shear deformation (CTNSD).

The results yielded by the classical theory were obtained by implementing the formulation of Huang and

Nieh (2002), who used a series solution along with the dynamic stiffness matrix approach to solve Eqs. (11a)

and (11b). In the legend of these figures, the stress resultants inside parentheses are those considered in Eqs.

(7a)–(7c), while Ai and Si represent the ith anti-symmetric and symmetric modes, respectively. (All) labels

the results obtained by considering all the stress resultants in Eqs. (7a)–(7c). Notably, the range of b for
Figs. 3–5 was determined from the static strain eðLÞhh at z ¼ h=2, shown in Fig. 8. Fig. 8 implies that most
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parts of the arches considered in Figs. 3–5 may yield when b > 30. The range of b in Figs. 6 and 7 was

selected such that the values of b were less than the lowest buckling loads for the arches considered in these

two figures. The buckling loads will be presented in Section 5.2.

The results shown in Figs. 3–7 support various conclusions:

(a) The results based on shear deformable theory indicate that among the initial stress resultants, N ð0Þ has

the most significant effect on the vibration frequencies in the ranges of b considered.

(b) Comparing the results obtained from shear deformable theory with deformed state with those obtained

from shear deformable theory with initial shape indicates that, as expected, static deformation more

strongly affects vibration frequencies when b is larger. However, no certain trend in the effect of static

deformations on vibration frequency is evident. The static deformations may increase or reduce the fre-

quencies, depending on the geometric properties of the arch under consideration, the sign of b, and the

considered mode.
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(c) Comparison of the results based on shear deformable theory with initial shape with those obtained by

classical theory neglecting shear deformation reveals that neglecting the effects of shear deformation

generally increases the vibration frequencies, especially for the arches with small h0 and large h=R, or
for higher modes. The relative differences between the frequencies obtained according to these two

theories may increase as positive b is getting large.
5. Numerical results for buckling loads

The buckling loads determined from the equations governing the vibrations of a statically loaded

arch, such as Eqs. (7a)–(7c), are those loads that make the vibration frequencies vanish (Wasserman,

1977). In finding a buckling load, prebuckling deformations are frequently assumed to be small and ne-
glected. Hence, the shear deformation theory with initial shape and the classical theory neglecting shear
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deformation will be applied to determine the buckling loads, and the results of these two theories will be

compared.
5.1. Convergence studies

Consider a fixed circular arch with h0 ¼ 180� and h=R ¼ 0:01, under a constant directional uniform
pressure that remains normal to the undeformed axis of the arch. The procedure given in Section 3.1 can be

followed to find the static stress resultants presented in Appendix B.

Table 3 lists the convergence of non-dimensional buckling loads obtained by applying shear deformable

theory with initial shape and compares the results with those published results obtained by neglecting shear

deformation effects. Notably, Wempner and Kesti (1962) formulated their governing equation based on a

static approach, and solved it analytically, while Chidamparam (1993) used a perturbation technique to

derive the governing equations for buckling loads and solved them by the Ritz method. Since the distri-

butions of stress resultants are almost uniform for the arch considered here, increasing K in Eq. (20) does
not significantly affect the results. As expected, the effects of shear deformation on buckling loads are not



Table 3

Convergence of non-dimensional buckling loads b for a fixed circular arch with h0 ¼ 180� and h=R ¼ 0:01 under a constant directional

uniform pressure

Element no. ðK þ 1Þ in
Eq. (20)

Solution terms ðJ þ 1Þ in Eq. (21) Published

results10 15 20

Lowest buckling load 2 1 18.470 9.0035 8.9975 9.00�

3 18.470 9.0035 8.9975 9.0003��

4 1 9.0737 8.9975 8.9975

3 9.0738 8.9975 8.9975

Second buckling load 2 1 39.701 14.559 14.271 14.279��

3 39.701 14.559 14.271

4 1 15.339 14.271 14.271

3 15.339 14.271 14.271

Note: �denotes the results of Wempner and Kesti (1962); ��denotes the results of Chidamparam (1993).
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significant for a long and thin arch, so the convergent results obtained by the present approach agree

excellently with the published results, supporting the validity of the present approach.
5.2. Results and discussion

Figs. 9 and 10 plot the buckling loads as a function of opening angle for clamped arches with h=R ¼ 0:1
and 0.02, respectively, under uniform gravity loading. In the figures, S1 and A1 represent the buckling loads

that correspond to the first symmetric and anti-symmetric modes, respectively. The buckling loads were

computed based on classical theory neglecting shear deformation (CTNSD) and shear deformable theory

(SDTIS) along with considering all initial stress resultants or N ð0Þ only. The numerical results were obtained

by decomposing an arch into eight elements of equal length and using K ¼ 12 and J ¼ 19 in Eqs. (20) and

(21), respectively, for each element. The results of the classical theory were obtained using the formulations

given in Huang and Nieh (2002) and Nieh et al. (2003).
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Fig. 9. Variation of buckling loads with h0 for arches with h=R ¼ 0:1: (a) for 30�6 h0 6 90�, (b) for 90�6 h0 6 180�.
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Fig. 9 shows that for h0 between 30� and 180�, the lowest buckling loads for arches with h=R ¼ 0:1
correspond to symmetric modes when h0 is below around 50�, above which they correspond to anti-sym-

metric modes. The differences between the buckling loads obtained by considering all the static stress re-

sultants and those obtained by considering only N ð0Þ generally become more significant as h0 declines. For a
given h0, the differences between the second buckling loads exceed those between the lowest buckling loads.

Comparing the results of shear deformable theory with the results obtained by classical theory reveals that
neglecting the effects of shear deformation leads to considerably larger buckling loads, especially for small

h0. Notably, the strain distributions in Fig. 8 imply that the arches with small h0 may yield before buckling.

Fig. 10 indicates that the lowest buckling loads for h=R ¼ 0:02 correspond to anti-symmetric modes.

Among the initial stress resultants, N ð0Þ dominates the lowest and second bucking loads. Shear deforma-

tions do not significantly affects the bucking loads.
6. Concluding remarks

By applying a variational principle for dynamic problems concerning an elastic body under initial

stresses, this work has derived the first known equations governing vibrations of preloaded circular arches

that are shear-deformable. The proposed governing equations account for the effects of the stress resul-

tants––N ð0Þ;Qð0Þ;M ð0Þ; P ð0Þ and T ð0Þ––due to static preloading. The effects of the static deformations on the

vibrations can also be included. Although the proposed governing equations are more complex than

currently available equations that ignore shear deformation, they can be easily solved.
An analytical solution to the proposed governing equations was developed to analyze the free vibration

and stability of a circular arch under uniformly distributed vertical loading. The static solution for the arch

under vertical loading was determined in closed form. Then, vibration frequencies or buckling loads were

determined by the dynamic stiffness matrix approach combined with series solutions. The solution was

validated by comparing present convergence results with the published data on the vibration frequencies of

a unloaded circular arch and on the buckling loads of a circular arch under a constant directional uniform

pressure.

This study also presents the vibration frequencies and buckling loads for clamped arches with rectan-
gular cross-sections, h=R ¼ 0:02 or 0.1, and various opening angles. These results are compared to those
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published, obtained by neglecting shear deformation. The comparison reveals that shear deformation

markedly affects the vibration frequencies for thick ðh=R ¼ 0:1Þ arches or for higher modes. Shear defor-

mations do not significantly affects the lowest and second bucking loads for arches with h=R ¼ 0:02.
Traditionally, N ð0Þ is considered primarily to affect the vibration frequencies and buckling loads of

loaded arches. Among the static stress resultants, N ð0Þ is indeed the most important factor that influences

the vibration frequencies over the ranges of static loading, b, considered herein. In contrast, this work

shows that the buckling loads of thick and shallow arches obtained by considering only N ð0Þ in the proposed

equations may differ substantially from those determined by considering all initial stress resultants.

Generally, the deformations caused by static loads may significantly affect the vibration behaviors of a

loaded arch. For example, for the arch with h=R ¼ 0:1 and h0 ¼ 40�, static deformations strongly affect the

vibration frequencies for jbjP 10, which is far from the lowest buckling load for the arch. Furthermore,

static deformations may increase or reduce vibration frequencies, depending on the geometric properties of
the arch under consideration, the sign of b, and which mode is considered.

Although only the vibration frequencies and buckling loads were investigated here, the proposed solution

can combine with Laplace transform (Huang et al., 2000) to determine the transient responses of preloaded

circular arches. The solution can also be incorporated with Fourier transform to study stationary random

vibrations of preloaded circular arches. In these cases, the responses of the dynamic stress resultants are

accurately determined because the shape functions for the displacement components in each arch element

follow from an analytical solution to the corresponding governing equations.
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Appendix A. The expression of ½b�n and ½a�n
½b�n ¼

v0ðhnÞ v1ðhnÞ v2ðhnÞ v3ðhnÞ v4ðhnÞ v5ðhnÞ
w0ðhnÞ w1ðhnÞ w2ðhnÞ w3ðhnÞ w4ðhnÞ w5ðhnÞ
w0ðhnÞ w1ðhnÞ w2ðhnÞ w3ðhnÞ w4ðhnÞ w5ðhnÞ
v0ðhnþ1Þ v1ðhnþ1Þ v2ðhnþ1Þ v3ðhnþ1Þ v4ðhnþ1Þ v5ðhnþ1Þ
w0ðhnþ1Þ w1ðhnþ1Þ w2ðhnþ1Þ w3ðhnþ1Þ w4ðhnþ1Þ w5ðhnþ1Þ
w0ðhnþ1Þ w1ðhnþ1Þ w2ðhnþ1Þ w3ðhnþ1Þ w4ðhnþ1Þ w5ðhnþ1Þ

2666666664

3777777775
n

; ðA:1Þ

½a�n ¼ ½a1�n þ ½a2�n þ ½a3�n; ðA:2Þ

½a1�n ¼

�k1v00ðhnÞ �k1v01ðhnÞ �k1v02ðhnÞ �k1v03ðhnÞ �k1v04ðhnÞ �k1v05ðhnÞ
�k2w0

0ðhnÞ �k2w0
1ðhnÞ �k2w0

2ðhnÞ �k2w0
3ðhnÞ �k2w0

4ðhnÞ �k2w0
5ðhnÞ

�k3w
0
0ðhnÞ �k3w

0
1ðhnÞ �k3w

0
2ðhnÞ �k3w

0
3ðhnÞ �k3w

0
4ðhnÞ �k3w

0
5ðhnÞ

~kk1v00ðhnþ1Þ ~kk1v01ðhnþ1Þ ~kk1v02ðhnþ1Þ ~kk1v03ðhnþ1Þ ~kk1v04ðhnþ1Þ ~kk1v05ðhnþ1Þ
~kk2w0

0ðhnþ1Þ ~kk2w0
1ðhnþ1Þ ~kk2w0

2ðhnþ1Þ ~kk2w0
3ðhnþ1Þ ~kk2w0

4ðhnþ1Þ ~kk2w0
5ðhnþ1Þ

~kk3w
0
0ðhnþ1Þ ~kk3w

0
1ðhnþ1Þ ~kk3w

0
2ðhnþ1Þ ~kk3w

0
3ðhnþ1Þ ~kk3w

0
4ðhnþ1Þ ~kk3w

0
5ðhnþ1Þ

26666666664

37777777775
n

; ðA:3Þ
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½a2�n ¼

�k̂k1w0ðhnÞ �k̂k1w1ðhnÞ �k̂k1w2ðhnÞ �k̂k1w3ðhnÞ �k̂k1w4ðhnÞ �k̂k1w5ðhnÞ
k̂k2v0ðhnÞ k̂k2v1ðhnÞ k̂k2v2ðhnÞ k̂k2v3ðhnÞ k̂k2v4ðhnÞ k̂k2v5ðhnÞ

0 0 0 0 0 0

k
^

1w0ðhnþ1Þ k
^

1w1ðhnþ1Þ k
^

1w2ðhnþ1Þ k
^

1w3ðhnþ1Þ k
^

1w4ðhnþ1Þ k
^

1w5ðhnþ1Þ
�k

^

2v0ðhnþ1Þ �k
^

2v1ðhnþ1Þ �k
^

2v2ðhnþ1Þ �k
^

2v3ðhnþ1Þ �k
^

2v4ðhnþ1Þ �k
^

2v5ðhnþ1Þ
0 0 0 0 0 0

266666664

377777775
n

;

ðA:4Þ

½a3�n ¼ EI

0 0 0 0 0 0

w0ðhnÞ w1ðhnÞ w2ðhnÞ w3ðhnÞ w4ðhnÞ w5ðhnÞ
0 0 0 0 0 0

0 0 0 0 0 0

�w0ðhnþ1Þ �w1ðhnþ1Þ �w2ðhnþ1Þ �w3ðhnþ1Þ �w4ðhnþ1Þ �w5ðhnþ1Þ
0 0 0 0 0 0

26666664

37777775
n

; ðA:5Þ
where k1 ¼ EAnðhnÞ, k2 ¼ jGAnðhnÞ, k3 ¼ EInðhnÞ, ~kk1 ¼ EAnðhnþ1Þ, ~kk2 ¼ jGAnðhnþ1Þ, ~kk3 ¼ EInðhnþ1Þ,
k̂k1 ¼ EA=RðhnÞ, k̂k2 ¼ jGA=RðhnÞ, k

^

1 ¼ EA=Rðhnþ1Þ, and k
^

2 ¼ jGA=Rðhnþ1Þ. It should be noted that the

superscript ‘‘0’’ in Eq. (A.3) denotes the derivatives with respect to h.
Appendix B. Initial equilibrium state of a circular arch under constant directional pressure

The equilibrium equations are
ðN ð0ÞÞ0 þ Qð0Þ

R
¼ 0; ðB:1Þ

ðQð0ÞÞ0 � N ð0Þ

R
¼ c; ðB:2Þ

ðM ð0ÞÞ0 þ Qð0Þ ¼ 0: ðB:3Þ

Through direct integration, one can obtain
Qð0Þ ¼ C1 cos hþ C2 sin h; ðB:4Þ

N ð0Þ ¼ �C1 sin hþ C2 cos h� Rc; ðB:5Þ

M ð0Þ ¼ �C1R sin hþ C2R cos hþ C3; ðB:6Þ
By substituting Eqs. (B.4)–(B.6) into the relations between displacement components and stress resultants

and through direct integration again, one can obtain
vð0Þ ¼ �C3

R2h
EI

þ C4 cos hþ C5 sin h� C6Rþ ~dd1h cos hþ ~dd2h sin h ðB:7Þ

wð0Þ ¼
�
� C1

R
EA

þ C4 � ~dd2

�
sin hþ C2

R
EA

�
� C5 � ~dd1

�
cos hþ C3

R2

EI
� ~dd2h cos hþ ~dd1h sin h�

R2c
EA

;

ðB:8Þ
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wð0Þ ¼ R
EI

fC1R cos hþ C2R sin hþ C3hg þ C6; ðB:9Þ
where
~dd1 ¼
R
2E

1

A

�
þ E
jGA

þ R2

I

�
C2; ðB:10Þ

d2 ¼ � R
2E

1

A

�
þ E
jGA

þ R2

I

�
C1; ðB:11Þ
Coefficients C1 � C6 are also to be determined by the specified boundary conditions.
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