
Quality & Quantity 37: 443–453, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

443

Note

Distributional and Inferential Properties of the
Estimated Precision Cp Based on Multiple Samples

W. L. PEARN1� and Y. S. YANG2

1Department of Industrial Engineering & Management, National Chiao Tung University;
2Department of Industrial Engineering, Da-Yeh University, Taiwan ROC

Abstract. Process precision index Cp has been widely used in the manufacturing industry to provide
numerical measures on process potential. Pearn et al. (1998) considered an unbiased estimator of Cp

for one single sample. They showed that the unbiased estimator is the UMVUE. They also proposed
an efficient test for Cp based on one single sample, and showed that the test is the UMP test. In this
paper, we consider an unbiased estimator of Cp for multiple samples. We show that the unbiased
estimator is the UMVUE of Cp, which is asymptotically efficient. We also consider an efficient test
for Cp, and show that the test is the UMP test for multiple samples. The practitioners can use the
proposed test on their in-plant applications to obtain reliable decisions.
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test, p-value, power.

1. Introduction

Process capability indices, which establish the relationships between the actual
process performance and the manufacturing specifications, have been the focus of
recent research in quality assurance and process capability analysis. Those cap-
ability indices, quantifying process potential and performance, are important for
any successful quality improvement activities and quality program implementation.
The first process capability index appeared in the literature is the precision index
Cp, which is defined by Kane (1986) as:

Cp = USL − LSL

6σ
,

where USL is the upper specification limit, LSL is the lower specification limit,
and σ is the process standard deviation. The numerator of Cp gives the range over
which the process measurements are allowable. The denominator gives the range
over which the process is actually varying. The index Cp was designed to measure
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the magnitude of the overall process variation relative to the manufacturing toler-
ance, which is to be used for processes with data that are normal, independent, and
in statistical control. Clearly, the index only measures the potential of a process (the
potential to reproduce acceptable product), and does not take into account whether
the process is centered. The use of the capability indices was first explored within
the automotive industry. Ford Motor Company (1986) has used Cp to keep track
of the process performance and to reduce process variation. Recently, the manu-
facturing industries have been making an extensive effort to implement statistical
process control (SPC) in their plants and supply bases. Capability indices derived
from SPC have received increasing usage not only in capability assessments, but
also in the evaluation of purchasing decisions. Capability indices are becoming
the standard tools for quality report, particularly, at the management level around
the world. Proper understanding and accurate estimating them is essential for the
company to maintain a capable supplier.

2. Estimating Cp based on Multiple Samples

For cases where the data are collected as one single sample, Pearn et al. (1998)
considered an unbiased estimator of Cp. They showed that the unbiased estimator
is the UMVUE (uniformly minimum variance unbiased estimator) of Cp. They
also proposed an efficient test for Cp based on one single sample, and showed
that the test is the UMP test. For cases where the data are collected as multiple
samples, Kirmani et al. (1991) considered m samples each of size n and suggested
the following estimator of Cp, where X̄i is the ith sample mean, and Si is the ith
sample standard deviation:

Ĉ∗
P = USL − LSL)dp

6
,

where

dp =
√

m(n − 1) − 1

m(n − 1)

εm(n−1)−1

Sp

,

εm(n−1)−1 = E

[
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σ

]
= E

[
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�

(
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�

(
m(n − 1) − 1
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noting that the statistic Si/σ is distributed as χm(n−1)−1/[m(n − 1) − 1]1/2. Under
normality assumption, the estimator Ĉ∗

p is distributed as:

Ĉ∗
p ∼

√
m(n − 1) − 1εm(n−1)−1√

χ2
m(n−1)

Cp.

The estimator Ĉ∗
p is unbiased, and its probability density function (PDF) can be

obtained as the following, for y > 0, where k = [m(n−1)−1]C2
pε2

m(n−1)−1, which
is a function of Cp.

g(y) = 2km(n−1)/2

2m(n−1)/2�[m(n − 1)/2]y
−[m(n−1)+1] exp

[
−k

2

(
1

y2

)]
.

The variance of Ĉ∗
p can be calculated as the following (Kirmani et al. (1991)).

Tables I(a)–I(d) display the values of the variance for Cp = 1.00, 1.33, 1.67, 2.00,
m = 10(5)25, and n = 2(1)15. We note that for fixed m × n sample observations,
Var (Ĉ∗

p) for large m and small n is greater than that for small m and large n. For

example, for Cp = 1.00 with m × n = 60 Var (Ĉ∗
p) = 0.0133 for m = 20, n = 3,

Var (Ĉ∗
p) = 0.0117 for m = 15, n = 4, and Var (Ĉ∗

p) = 0.0105 for m = 10, n = 6.

Similarly, for Cp = 1.00 with m × n = 100, Var (Ĉ∗
p) = 0.0068 for m = 25,

n = 4, Var (Ĉ∗
p) = 0.0064 for m = 20, n = 5, and Var (Ĉ∗

p) = 0.0056 for m = 10,
n = 10.

Var (Ĉ∗
p) = E[(Ĉ∗

p)2] − [E(Ĉ∗
p)]2

= (USL − LSL)2ε2
m(n−1)−1

[m(n − 1) − 1]
36m(n − 1)

E

(
1

S2
P

)
− C2

P

= C2
P

{[
m(n − 1) − 1

m(n − 1) − 2

]
ε2
m(n−1)−1 − 1

}

= C2
P

{
1

ε2
m(n−1)−2

− 1

}

In the following, we investigate some other statistical properties of Ĉ∗
p. We show

that Ĉ∗
p is the UMVUE of Cp, which is also asymptotically efficient. Under regular

conditions, an estimator θ̂n is said to be asymptotically efficient if the asymptotic
efficiency, limn→∞ e(θ̂n) = limn→∞[1/I (θ)Var (θ̂n)] = 1, where 1/I (θ) is the
Cramer–Rao lower bound.

THEOREM 1. If the process characteristic follows the normal distribution, then
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Table Ia. Variance of Ĉ∗
p for Cp = 1.00, for

m = 10(5)25, and n = 2(1)15.

m n 10 15 20 25

2 0.0643 0.0391 0.0282 0.0220

3 0.0282 0.0180 0.0133 0.0105

4 0.0180 0.0117 0.0087 0.0068

5 0.0133 0.0087 0.0064 0.0050

6 0.0105 0.0068 0.0050 0.0040

7 0.0087 0.0056 0.0042 0.0034

8 0.0074 0.0048 0.0036 0.0028

9 0.0064 0.0042 0.0032 0.0026

10 0.0056 0.0038 0.0028 0.0022

11 0.0050 0.0034 0.0026 0.0020

12 0.0046 0.0030 0.0022 0.0018

13 0.0042 0.0028 0.0020 0.0016

14 0.0040 0.0026 0.0020 0.0016

15 0.0036 00.002 0.0018 0.0014

Table Ib. Variance of Ĉ∗
p for Cp = 1.33, for

m = 10(5)25, and n = 2(1)15.

m n 10 15 20 25

2 0.1138 0.0692 0.0499 0.0388

3 0.0499 0.0319 0.0236 0.0185

4 00.031 0.0207 0.0153 0.0121

5 0.0236 0.0153 0.0114 0.0089

6 0.0185 0.0121 0.0089 0.0071

7 0.0153 0.0099 0.0075 0.0060

8 0.0132 0.0085 0.0064 0.0050

9 0.0114 0.0075 0.0057 0.0046

10 0.0099 0.0067 0.0050 0.0039

11 0.0089 0.0060 0.0046 0.0035

12 0.0082 0.0053 0.0039 0.0032

13 0.0075 0.0050 0.0035 0.0028

14 0.0071 0.0046 0.0035 0.0028

15 0.0064 0.0043 0.0032 0.0025
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Table Ic. Variance of Ĉ∗
p for Cp = 1.67, for

m = 10(5)25, and n = 2(1)15.

m n 10 15 20 25

2 0.1795 0.1091 0.0786 0.0612

3 0.0786 0.0503 0.0372 0.0292

4 0.0503 0.0326 0.0241 0.0191

5 0.0372 0.0241 0.0179 0.0140

6 0.0292 0.0191 0.0140 0.0112

7 0.0241 0.0157 0.0118 0.0095

8 0.0208 0.0134 0.0101 0.0078

9 0.0179 0.0118 0.0089 0.0073

10 0.0157 0.0106 0.0078 0.0061

11 0.0140 0.0095 0.0073 0.0056

12 0.0129 0.0084 0.0061 0.0050

13 0.0118 0.0078 0.0056 0.0045

14 0.0112 0.0073 0.0056 0.0045

15 0.0101 0.0067 0.0050 0.0039

Table Id. Variance of Ĉ∗
p for Cp = 2.00, for

m = 10(5)25, and n = 2(1)15.

m n 10 15 20 25

2 0.2574 0.1564 0.1127 0.0878

3 0.1127 0.0722 0.0533 0.0419

4 0.0722 0.0468 0.0346 0.0273

5 0.0533 0.0346 0.0257 0.0201

6 0.0419 0.0273 0.0201 0.0160

7 0.0346 0.0225 0.0169 0.0136

8 0.0298 0.0193 0.0144 0.0112

9 0.0257 0.0169 0.0128 0.0104

10 0.0225 0.0152 0.0112 0.0088

11 0.0201 0.0136 0.0104 0.0080

12 0.0185 0.0120 0.0088 0.0072

13 0.0169 0.0112 0.0080 0.0064

14 0.0160 0.0104 0.0080 0.0064

15 0.0144 0.0096 0.0072 0.0056
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(a) Ĉ∗
p is the UMVUE of Cp.

(b) (mn)1/2(Ĉ∗
p − Cp) converges to N(0, [Cp]2/2) in distribution.

(c) Ĉ∗
p is asymptotically efficient.

Proof: (a) It is easy to show that the statistics S2
p is a complete sufficient statistic

for Cp since the probability density function of Ĉ∗
p belongs to the exponential

family. Further, since Ĉ∗
p is an unbiased estimator for Cp, which is also a function

of S2
p only, then by Lehmann–Scheffe’s theorem (see Arnold (1990)), Ĉ∗

p is an
UMVUE of Cp.

(b) If the process characteristic is normally distributed, then the statistic
(mn)1/2(S2

p −σ 2) converges to N(0, 2σ 4) in distribution. We define the continuous
function, g(t), as

g(t) = (USL − LSL)/(6t1/2),

and its derivative is

g′(t) = −(USL − LSL)/(12t3/2).

By the Cramer-σ theorem (see Arnold (1990)), we have

√
mn[g(S2

p) − g(σ 2)] → N(0, 2σ 2[g′(σ 2)]2)

in distribution, where [g′(σ 2)]2 = [Cp]2/(4σ 4). The result is obviously equivalent
to

√
mn(d/3SP −Cp) → N(0, C2

p/2) in distribution. Kirmani et al. (1991) proved

that Ĉ∗
p is a consistent estimator of Cp, then Ĉ∗

p converges to Cp in probability.
Thus, by Slutzky’s Theorem (see Arnold (1990)) we have

(mn)1/2(Ĉ∗
p − d/3SP ) → N(0, [Cp]2/2)

in distribution, and so

(mn)1/2(Ĉ∗
p − Cp) → N[0, [Cp]2/2)

in distribution.
(c) Noted that Var (Ĉ∗

p) = [CP ]2{1/ε2
m(n−1)−2−1} by Kirmani (1991). For single

sample of size n, the information for CP is

I1(CP ) = E[−∂2 log f1(x;CP )/∂C2
P ] = 2(n − 1)/C2

P ,

where

f1(x;CP ) = 2
(
√

(n − 1)/2Cp)n−1

�[(n − 1)/2] x−n exp[−(n − 1)(Cp)2(2x2)−1], x > 0
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by Chou and Owen (1989). Therefore, the information for m independent sub-
groups of each size of n I (CP ) = mI1(CP ) = 2m(n − 1)/(CP )2. Next, we
computed the asymptotic efficiency for Ĉ∗

p.

lim
m(n−1)→∞

e(Ĉ∗
P ) = lim

m(n−1)→∞
C2

P /2m(n − 1)C2
P (ε−2

m(n−1)−2 − 1, let k = m(n − 1)

= lim
k→∞ ε2

k−2/2k(1 − ε2
k−2)

= lim
k→∞[1 − (1/2k) + (1/8k2)

+o(1/k2)]/{2k[(1/2k) − (1/8k2) + o(1/k2)]} = 1.

Therefore, Ĉ∗
p is asymptotically efficient.

3. UMP Test for Cp Based on Multiple Samples

For cases with multiple samples, to determine whether a given process meets the
preset requirement and runs under the desired quality condition, we consider the
following testing hypotheses with null hypothesis H0: Cp � C (the process is
incapable), versus the alternative H1: Cp > C (the process is capable). Thus, we
may consider the test φ∗(x) = 1 if Ĉ∗

p > c∗, and φ∗(x) = 0, otherwise. The test φ∗

rejects the null hypothesis if Ĉ∗
p > c∗, with type I error α(c∗) = α, the chance of

incorrectly judging an incapable process as capable. Kirmani et al. (1991) obtained
the critical value c∗, which satisfies the following equation:

P [Ĉ∗
p > c∗ | H0 : Cp ≤ C] = P

[
χ2

m(n−1) <
[m(n − 1) − 1]ε2

m(n−1)−1

c∗ C2

]
= α.

c∗ = C

√√√√ [m(n − 1) − 1]ε2
m(n−1)−1

χ2
m(n−1),α

,

where χ2
m(n−1),α is the lower α-percentage point on the chi-square distribution with

m(n − 1) degrees of freedom. The null hypothesis (Cp � C) is rejected and the
process is declared capable if the value of Ĉ∗

p is greater than c∗.
A test is said to be the uniformly most powerful test (UMP) against the alterna-

tive H1 (but not against another if H0 is simple but H1 is composite) if it is the most
powerful against every simple alternative in H1. As noted by Lindgren (1968),
if the process characteristic X has a distribution in the exponential family, with
f (x; θ) = B(θ)h(x) exp[Q(θ)S(x)], and if Q(θ) is monotone increasing, then the
critical region S(X) > K is uniformly most powerful for θ � θ∗ against θ > θ∗.
Thus, we can show the following:
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THEOREM 2. For the testing hypotheses, H0: Cp � C versus H1: Cp > C, the
test defined as φ∗(x) = 1 if Ĉ∗

p > c∗, and φ∗(x) = 0 otherwise, is the UMP test of
level α.

Proof: Under the assumption of normality, the density function of Ĉ∗
p is given

below, where k = [m(n − 1) − 1]C2
pε2

m(n−1)−1.

f (x) = 2km(n−1)/2

2m(n−1)/2�[m(n − 1)/2]x
−[m(n−1)+1] exp

[
−k

2

(
1

x2

)]
.

We note that the above probability density function belongs to the exponential
family with S(x) = −(x −2), Q(CP ) = (1/2)[m(n−1)−1]C2

pε2
m(n−1)−1, x is real

and Q(CP ) is strictly increasing in CP . Thus, by the theory described in Lindgren
(1968) it is clear that the test φ∗ is the uniformly most powerful. The UMP test
rejects the null hypothesis if, and only if, −x−2 � −(c∗)−2, where P [−x−2 �
−(c∗)−2] = α. Since Ĉ∗

p = [m(n − 1) − 1]−1/2εm(n−1)−1CpK−1/2, where K is
distributed as χ2

m(n−1), and the critical region can be expressed as following:{
C | K

[m(n − 1)]ε2
m(n−1)−1C

2
≤ 1

[c∗]2

}
.

The critical value, c∗, for an α level of significance is derived by satisfying the
equation,

[m(n − 1)]ε2
m(n−1)−1C

2

(c∗)2
≥ χ2

m(n−1),α

(c∗)2 = [m(n − 1)]ε2
m(n−1)−1C

2

χ2
m(n−1),α

.

In the following, we first calculate the p-value (risk for wrongly rejecting the
null hypothesis H0: Cp � C) given an observed value of the statistic. Suppose
the observed value of the statistic Ĉ∗

p = W , then we can calculate p-value as the
following, where K is distributed as χ2

m(n−1).

p-value = P {Ĉ∗
P ≥ W | CP ≤ C}

= P

{√
m(n − 1) − 1εm(n−1)−1C√

K
≥ W | CP ≤ C

}

= P

{ [m(n − 1) − 1]ε2
m(n−1)−1C

2

K
≥ W 2 | CP ≤ C

}

= P

{
χ2

m(n−1) ≤ [m(n − 1) − 1]ε2
m(n−1)−1C

2

W 2
| CP ≤ C

}
.
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The power of the UMP test (probability of correctly rejecting the null hypothesis
Cp � C when the true Cp > C), can also be computed for the given alternative
hypothesis, H1: Cp = CI > C. The power of the test, denoted as π(CP ) can be
computed as the following:

π(CP ) = P {ĈP > c∗ | CP = C1}
= P

{√
m(n − 1) − 1εm(n−1)−1C1√

K
≥ c∗ | CP = C1

}

= P

{ [m(n − 1) − 1]ε2
m(n−1)−1C

2
1

K
≥ c∗2 | CP = C1

}

= P

{
χ2

m(n−1) ≤ [m(n − 1) − 1]ε2
m(n−1)−1C

2
1

c∗2
| CP = C1

}
.

4. An Application

Consider a forging manufacturing process making a specific type of piston rings
for automotive engines. The engineers wish to establish a precision control of the
inside diameter of the piston rings to monitor the process performance, for this par-
ticular type of piston rings, using the process precision index Cp. The specification
limits for the inside diameter of the piston ring are set to the upper specification
limit USL = 74.050 mm, and the lower specification limit LSL = 73.950 mm.

Ten samples, each of size five are taken from the process that is demonstrably
in control (stable). The inside diameter measurement data for the ten samples are
displayed in Table II. The minimal precision requirement of this process is set
to Cp = 1.33 in the factory, which is continuously used within the automotive
industry as a capability benchmark. To test whether the piston ring manufacturing
process meets the precision requirement or not, we use the UMP test developed
for multiple samples for the hypotheses, H0: Cp � 1.33 versus alternative H1:
Cp > 1.33, to obtain a reliable decision making with risk α = 0.05. The calculated
sample mean and the sample variance for the ten samples are tabulated in Table III.
We also run the SAS computer software to obtain the critical value 1.60 for risk
α = 5%. Thus, we have

S2
p = 1

m(n − 1)

m∑
i=1

(n − 1)S2
i = 1

m

m∑
i=1

S2
i = 0.000093,

Ĉ∗
p = 1.69, c∗ = 1.60.

Since calculated Cp from the sample data, 1.69, is greater than the critical value
1.60, then we may conclude, with 95% confidence, that the process meets the
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Table II. The collected sample data (10 samples, a total of 50
observations).

Sample 1 73.995 73.992 74.001 74.011 74.004

Sample 2 73.992 74.007 74.015 73.989 74.014

Sample 3 73.985 74.003 73.993 74.015 73.988

Sample 4 73.988 74.000 73.990 74.007 73.995

Sample 5 73.994 73.998 73.994 73.995 73.990

Sample 6 74.012 74.014 73.998 73.999 74.007

Sample 7 74.006 74.010 74.018 74.003 74.000

Sample 8 73.988 74.001 74.009 74.005 73.996

Sample 9 74.015 74.008 73.993 74.000 74.010

Sample 10 73.982 73.984 73.995 74.017 74.013

Table III. The calculated sample
mean, and the sample variance for
the 10 samples.

Sample 1 74.001 0.000056

Sample 2 74.003 0.000149

Sample 3 73.997 0.000150

Sample 4 73.996 0.000060

Sample 5 73.994 0.000008

Sample 6 74.006 0.000053

Sample 7 74.007 0.000049

Sample 8 74.000 0.000067

Sample 9 74.005 0.000076

Sample 10 73.998 0.000262

precision requirement Cp > 1.33. The probability of wrongly judging an incapable
process as a capable one is 5%.

5. Conclusions

Process precision index Cp has been widely used in the manufacturing industry to
provide numerical measures on process potential. It measures the overall process
variation relative to the specification tolerance. Statistical properties of the estim-
ated Cp based on one single sample, have been investigated extensively. But, the
properties of the estimated Cp based on multiple samples have been comparatively
neglected. In this paper, we considered an estimator of Cp denoted as Ĉ∗

p, based
on multiple random samples with each of size n, and investigated its statistical
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properties. We showed that the estimator Ĉ∗
p is the UMVUE of Cp, which is also

asymptotically efficient. In addition, we showed that the test based on the UMVUE
of Cp is the UMP test. Using this test, the practitioners can make reliable decisions
on whether their processes meet the precision requirement preset in the factory,
with the decision error minimized.
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