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The Power Grid Transient Simulation in Linear Time
Based on 3-D Alternating-Direction-Implicit Method

Yu-Min Lee and Charlie Chung-Ping Chen

Abstract—The rising power consumption and clock frequency of
very large scale integration technology demand robust and stable power
delivery. Extensive transient simulations on large-scale power delivery
structures are required to analyze power delivery fluctuation caused by
dynamic IR drop and Ldi/dt drop as well as package and on-chip reso-
nance. In this paper, we develop a novel and efficient transient simulation
algorithm for the power distribution networks. Our algorithm, three-di-
mensional (3-D) transmission-line-modeling alternating-direction-implicit
(TLM-ADI) method, first models the power delivery structure as 3-D
transmission line shunt-node structure and transfer those equations to
the telegraph equation. Finally, we solve it by the alternating direction
implicit method. The 3-D TLM-ADI method, with linear runtime and
memory requirement, is also unconditionally stable, which ensures that
the time steps are not limited by any stability requirement. Extensive
numerical simulation results show that the proposed algorithm is not only
over 300 000 times faster than SPICE but also extremely memory saving
and accurate.

Index Terms—Alternating direction implicit, power/ground, simulation,
transmission-line-modeling.

I. INTRODUCTION

Due to the ever-increasing clock frequency and the aggressively
shrinking feature sizes of the very large scale integration (VLSI)
technology, robust power distribution network is crucial to ensure the
quality of power delivery of VLSI chips. This makes the issues of the
design and verification of the power grid analysis more important. The
improper design of power grids can degrade the circuit performance
and the reliability. To obtain a robust design, numerous researchers
studied the impact and proposed solutions of this problem [1]–[5].

There are many sources of power fluctuation such as IR drop, Ldi/dt
drop, and resonance issues. Although the IR drop can be simply ex-
amined by the dc analysis, the Ldi/dt drop issues need to be analyzed
by the transient simulation due to the differentiation nature of Ldi/dt
drop. Hence, extensive transient simulations are required during the de-
sign process to ensure the design quality of power delivery. Reference
[6] decoupled the power delivery structure, and transistors simulation
to enhance the simulation speed. However, owing to the tremendous
amount of the power delivery elements, general purpose circuit simu-
lators such as SPICE [7] require long runtime and memory consump-
tion. Therefore, it is crucial to develop efficient power grid transient
simulation engines.

Several techniques [8]–[10] have been developed to speed up the
analysis. Reference [8] presented the transmission matrix method to
reduce the memory usage and CPU time for analysis. The method is
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based on a multiinput, multioutput transfer function which enables the
entire power distribution network to be computed as the product of
several small individual sparse square matrices. The transmission ma-
trix method is 7–13 times faster than SPICE and saves memory re-
quirements. Reference [9] developed an efficient modified nodal anal-
ysis (MNA) solver to speed up the dc and transient simulation of the
power delivery circuits. This MNA solver is based on the precondi-
tioned Krylov subspace-iterative method, which has been shown to be
significantly faster than traditional iterative methods without precondi-
tioning. It is about 20–50 times faster than the SPICE, requires less than
70% memory space, and the solution is exactly the same as SPICE’s.

Recently,EE Timesreported one of the most promising methods, the
TLM-ADI method, which was proposed by Lee and Chen [10]. They
proposed to use the transmission line modeling (TLM) [11] method to
perform the time-domain simulation. TLM is closely related to the fi-
nite-difference time-domain (FDTD) method, which is one of the most
popular and powerful computational electromagnetic techniques in the
microwave simulation field [12]–[14]. The TLM method differs from
FDTD in the sense that it utilizes transmission line cells to model the
structure and directly solves the voltage and current quantities while
FDTD uses Yee cell structure to obtain electric and magnetic fields.
Since voltages and currents are the major focus of the VLSI power de-
livery analysis, TLM method can be applied directly to perform power
delivery transient simulation. The TLM method has been successfully
applied to analyze the two-dimensional (2-D) LC networks by Gwarek
[15]. Unfortunately, the time-step size is restricted by the minimum
grid cell size (Courant stability condition as the standard FDTD method
[14]).

Lee and Chen [10] tried to directly solve the KCL and KVL
equations by utilizing the transmission line equations. Although their
method is an unconditionally stable alternating-direction-implicit [16]
(ADI) scheme for the 2-D power grid networks, it cannot be directly
extended to the three-dimensional (3-D) power grids. In this paper,
instead of solving the KCL and KVL equations, we first set up the
transmission line equations of the 3-D power grid networks. Then,
we transfer those equations to the telegraph equation, and develop an
unconditionally stable ADI algorithm, which relaxes the time-step
constraint. With this new method, the upper bound of the time step
is only limited by the accuracy requirement rather than the stability
requirement. Thus, it greatly lightens the computational load due to
the reduction of number of time steps. Furthermore, the runtime and
memory is linear with the number of total nodesN since the method
only solves aroundN2=3 tridiagonalmatrix equations with dimension
N

1=3
� N

1=3 at each time step. Extensive experimental results show
that our algorithm is not only orders of magnitude faster than SPICE
but also extremely memory saving and accurate.

The remainder of the paper is organized as follows. First, the review
of the finite-difference algorithm, and the relation between the modi-
fied nodal analysis (MNA), transmission line equations (TLE), and the
telegraph equation will be studied in Section II. Then, the derivation of
the 3-D TLM-ADI algorithm with its two main features, unconditional
stability and linear runtime, will be presented in Section III. Finally,
the numerical experiments and conclusion of this paper will be given
in Sections IV and V.

II. POWER GRID MODELING AND SIMULATION WITH THE FINITE

DIFFERENCEMETHOD

The power distribution networks are modeled by a 3-D shunt-node
structure of the transmission line grids as illustrated in Fig. 1. Since
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Fig. 1. Power grids modeling.

Fig. 2. KCL and KVL for a cell.

the structures of the ground and power networks are the same, Fig. 1
only shows the power delivery networks. This model results in identical
formulations for both the analysis of the power and ground networks.
For simplicity, in the remainder of this paper, the analysis of the power
distribution network is assumed. For each cell as shown in Fig. 2, the
wire segments are represented by resistors and inductors connected in
series inx andy directions with a capacitor connected to the ground
networks, and the vias are modeled as resistors and inductors connected
in series inz direction. The parametersr; l, andc are resistance per unit
length, inductance per unit length, and capacitance per unit length, re-
spectively. Once the circuit model has been set up, the system matrices
are created by using the transient nodal analysis. First, the KCL at the
center nodeOi;j;k, and the KVL along thex, y, andz directions of
the center node are applied to each cell, as shown in Fig. 2. The KCL
and KVL equations for a nodeOi;j;k at position(xi; yj ; zk) can be
written as follows (the independent current sources have been ignored
for simplicity):

~Cijk
@

@t
xijk = � ~Gijkxijk : (1)

Then, assembling the KVL and KCL equations for each cell, the full
system equations can be represented as

~C
@

@t
x+ ~Gx = 0 (2)

wherex is the vector of nodal voltages and branch currents. The above
system equations are equivalent to the modified nodal analysis (MNA)
equations.

1) Connection Between MNA and Transmission Line Equa-
tions: Multiplying both sides of (1) by the inverse of~Cijk, and
approaching�x;�y;�z, and�l to zeros with the uniform internodal
distance assumption(�x = �y = �z = �l), leads to the following:

@v

@y
t =

1

3c
�@ix

@x
� @iy

@y
� @iz

@z
(3)

@ix
@t

=
1

l
�@v

@x
� rix (4)

@iy
@t

=
1

l
�@v

@y
� riy (5)

@iz
@t

=
1

l
�@v

@z
� riz : (6)

The above equations are the general transmission line equations
which can be solved by the related techniques such as TLM
and FDTD methods [12]. The procedures and concepts of the
general finite-difference methods for solving the 3-D TLE are
quite simple. First, the domain (x�y�z�t planes) of the solu-
tion is discretized by a net with a finite number of mesh points
(xi; yj ; zk; tn) = (i4x; j4y; k4z; n4t), which is denoted as�ni;j;k.
Then the derivatives at each mesh point are replaced by the finite
difference. There are many ways to perform the finite difference,
such as forward, backward, or central difference. For example,
by using the central difference, the@v(xi; xj ; zk; t)=@tn+1=2 and
@ix(x; yj ; zk; tn+1=2)=@xi can be approximated as

@v(xi; yj ; zk; t)

@tn+1=2
� �vni;j;k + vn+1i;j;k

4t
(7)

@ix(x; yj ; zk; tn+1=2)

@xi
� �i

n+1=2
x + i

n+1=2
x

4x
: (8)

The @ix=@t; @iy=@t; @iz=@t; @iy=@y; @iz=@z; @v=@x; @v=@y, and
@v=@z also can be approximated by the similar way. The branch
current,ix, can be approximated by the central-time-average

ix(xi+1=2; yj ; zk; tn) �
i
n�1=2
x + i

n+1=2
x

2
: (9)

The iy, andiz can also be approximated in a similar way. Plugging
the above approximations into (3)–(6), we can get a simple explicit
finite-difference updating scheme, which is an extension of the 2-D
circuit [15]. Each nodal voltage and branch current at each time step
can be easily solved, since only one unknown variable appears in each
difference equation. This scheme suffers on the Courant stability con-
straint, [12], [13] which is

4t � 1

1p
lc

1
(4x)

+ 1
(4y)

+ 1
(4z)

: (10)

As the feature size of VLSI technology is decreasing to 0.1�m, and
with 1=

p
lc being one-half of lightspeed, the Courant limit is close to

0.3838 fs. Thus, it needs around 2.57� 106 time steps to simulate a
1-ns period.

2) Connection Between TLE and Telegraph Equation:In order to
solve (3)–(6), we can first differentiate (3)–(6) with respect tot; x; y,
andz, then combine the results with (3). This leads to a second order
partial differential equation as follows:

3lc
@2v

@t2
+ 3rc

@v

@t
� @2v

@x2
+

@2v

@y2
+

@2v

@z2
= 0: (11)
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After that both sides of (11) are divided by3lc to give the telegraph
equation

@2v

@t2
+ a

@v

@t
� b

@2v

@x2
+

@2v

@y2
+

@2v

@z2
= 0 (12)

wherea = r=l, andb = 1=3lc.
Hence, we can solve the telegraph equation (12) instead of solving

the transmission line (3)–(6). Extending the one-dimensional (1-D)
simple implicit FDTD method [17] of the telegraph equation to the
above 3-D telegraph equation, (12) becomes

vn+1i;j;k � 2vni;j;k + vn�1i;j;k

(4t)2
+ a

vn+1i;j;k � vn�1i;j;k

24t

� b
vn+1i+1;j;k � 2vn+1i;j;k + vn+1i�1;j;k

(4x)2

+
vn+1i;j+1;k � 2vn+1i;j;k + vn+1i;j�1;k

(4y)2

+
vn+1i;j;k+1 � 2vn+1i;j;k + vn+1i;j;k�1

(4z)2
= 0: (13)

Although this simple implicit scheme is unconditionally stable, we
need to solve a heptadiagonal system of algebraic equations at each
time step. Therefore, the computational time is extremely huge.

III. T HE 3-D TLM-ADI M ETHOD

In this section, we will derive the 3-D TLM-ADI scheme of the
simple implicit FDTD method (13) by using an general ADI procedure
[18]. After the derivation, the two main features of the 3-D TLM-ADI
algorithm, unconditional stability and linear runtime, will be addressed.
Finally, we will extend our proposed method to the power grids with
nonuniform internodal distances.

The ADI method is a well-known method for solving the partial dif-
ferential equation (PDE). The main feature of ADI is to sweep direc-
tions alternately. In contrast to the standard finite-difference formula-
tion with only one iteration to advance from thenth to (n+ 1)th time
step, the formulation of the ADI method requires multilevel interme-
diate steps to advance from thenth to (n+ 1)th time step.

Equation (13) can be rewritten as

I +

3

m=1

Am vn+1i;j;k � 2c0v
n
i;j;k + c1v

n�1
i;j;k = 0 (14)

where the operators ofI; Ams, and the constants ofc0; c1 are defined
as

Ivni;j;k
4

= vni;j;k (15)

A1v
n
i;j;k

4

= ��x vni+1;j;k � 2vni;j;k + vni�1;j;k (16)

A2v
n
i;j;k

4

= ��y vni;j+1;k � 2vni;j;k + vni;j�1;k (17)

A3v
n
i;j;k

4

= ��z vni;j;k+1 � 2vni;j;k + vni;j;k�1 (18)

c0
4

=
1

(4t)2
1

(4t)2
+

a

24t
(19)

c1
4

=
1

(4t)2
� a

24t

1

(4t)2
+

a

24t
(20)

the constants of�x; �y , and�z are

�x =
b

(4x)2
1

(4t)2
+

a

24t
(21)

�y =
b

(4y)2
1

(4t)2
+

a

24t
(22)

�z =
b

(4z)2
1

(4t)2
+

a

24t
(23)

TABLE I
THE 3-D TLM-ADI A LGORITHM

and set

v
n+1(�)
i;j;k = 2vni;j;k � vn�1i;j;k (24)

which is a prediction ofvn+1i;j;k by the extrapolation method.
Then splitting (14) by using an ADI procedure as in [18], we get a

set of recursion relations as follows:

(I + A1)v
n+1(1)
i;j;k = �(A2 + A3)v

n+1(�)
i;j;k

+ 2c0v
n
i;j;k � c1v

n�1
i;j;k (25)

(I + A2)v
n+1(2)
i;j;k = v

n+1(1)
i;j;k + A2v

n+1(�)
i;j;k (26)

(I + A3)v
n+1(3)
i;j;k = v

n+1(2)
i;j;k + A3v

n+1(�)
i;j;k (27)

wherevn+1(1)i;j;k ; v
n+1(2)
i;j;k are the intermediate solutions and the desired

solution isvn+1i;j;k = v
n+1(3)
i;j;k .

Finally, expandingA1; A2, andA3 on the left side of (25)–(27), we
get the 3-D TLM-ADI algorithm as in Table I.

A. Unconditional Stability

The general way to verify the stability of a finite-difference kind
algorithm is to put a elemental solution into the algorithm and make
sure that the amplitude of the propagation gain is no more than one. By
applying the Von Neumann analysis [13], we can analytically prove
that our 3-D TLM-ADI method is unconditionally stable. Consider the
elemental solution of (12)

vni;j;k = KneI(ik 4x+jk 4y+kk 4z) (28)

wherekx; ky , andkz are the wave numbers along thex, y, andz di-
rection, respectively, andK is propagation gain. Putting this elemental
solution into the 3-D TLM-ADI algorithm, and with some manipula-
tions, we get

K2 � 2(RxRy +RyRz +RzRx +RxRyRz + c0)

(1 +Rx)(1 +Ry)(1 +Rz)
K

+
RxRy +RyRz +RzRx +RxRyRz + c1

(1 +Rx)(1 +Ry)(1 +Rz)
= 0 (29)

where

Rx = 4�x sin
2(kx4x=2) (30)

Ry = 4�y sin
2(ky4y=2) (31)

Rz = 4�z sin
2(kz4z=2): (32)

The solutions of (29) are equal to

K =
�+ c0 �

p
D

(1 +Rx)(1 +Ry)(1 +Rz)
(33)
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where

D = (�+ c0)2 � (1 +Rx)(1 +Ry)(1 +Rz)(�+ c1)

� = RxRy +RyRz +RzRx +RxRyRz:

By examining the amplitude ofK, we are able to prove that the 3-D
TLM-ADI algorithm is unconditionally stable in the following the-
orem.

Theorem 1: The 3-D TLM-ADI algorithm is unconditionally stable.
Proof: To prove that the 3-D TLM-ADI method is uncondition-

ally stable, we need to show the amplitude of the gain factorK is less
than or equal to one. Let us consider the following two cases.

• Case 1:D � 0:
From (19) and (30)–(32), we know that� + c0 is greater or

equal to zero. Hence

jKj � �+ c0 +
pD

(1 +Rx)(1 +Ry)(1 +Rz)

=
�+ c0 +

pD
�+ c0 +Rx +Ry +Rz + c0 � c1

:

We only need to proveD � (Rx +Ry +Rz + c0 � c1)
2, since

c0 � c1 is also greater than zero

D � (Rx +Ry +Rz + c0 � c1)
2

= �(Rx +Ry +Rz)(1 +Rx)(1 +Ry)(1 +Rz)

� 0:

Therefore,jKj � 1.
• Case 2:D � 0:

jKj2 = �+ c1

(1 +Rx)(1 +Ry)(1 +Rz)

=

�+
�

+

�+ 1 +Rx +Ry +Rz

� 1:

Therefore, the 3-D TLM-ADI method is unconditionally stable from
the above derivations. }

B. Linear Runtime

There are three subiterations need to be performed for each time step.
By analyzing the runtime of each subiteration as shown in Table I, we
are able to prove the computational load of the 3-D TLM-ADI algo-
rithm is linear time at each time step in the following theorem.

Theorem 2: The runtime of 3-D TLM-ADI algorithm isO(N) at
each time step, whereN = Nx � Ny � Nz is the number of total
nodes.

Proof: Let us consider Subiteration 1 in Table I. We can divide
the set of theseN nodes byNy�Nz subsets with each one containing
Nx points in thex direction, as illustrated in Fig. 3. Since only three
unknown variables need to be solved in the updating equation with each
(i; j; k), the coefficient matrix�j;k associated with updatingv0�;j;k s
is a tridiagonal matrix as (34) at each subset. Therefore, the runtime of
updatingv0�;j;ks is linear withO(Nx). There areNy � Nz subsets in
Subiteration 1. Hence, the computational load of the Subiteration 1 is
O(Nx � Ny � Nz) at each time step.

Fig. 3. Mesh points.

Fig. 4. Nonuniform internodal distance cell.

The runtime of Subiterations 2 and 3 is alsoO(N) in a similar way.
Hence, the total runtime of the 3-D TLM-ADI algorithm isO(N) at
each time step. }

�j;k =

� � 0 � � � 0

� � � . . .
...

0 � . . .
. . . 0

...
. . .

. . . � �
0 � � � 0 � �

: (34)

C. Nonuniform Grids

Generally, the internodal distance (�x;�y, and�z) may be dif-
ferent for different cells in the power grids. Hence, we are going to ex-
tend the 3-D TLM-ADI method to handle this situation, as illustrated in
Fig. 4. The parametersr andl are resistance per unit length, and induc-
tance per unit length, respectively.Ci;j;k is the equivalent capacitance,
and4xi�1=2;j;k;4yi;j�1=2;k, and4zi;j;k�1=2 are the internodal dis-
tances in thex, y, andz directions for a cell for which the center point
is Oi;j;k, respectively.
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Fig. 6. Linear runtime for the 3-D TLM-ADI method.

Fig. 5. Comparison of the (a) runtime and (b) memory usages between the 3-D
TLM-ADI, MNA solver, and SPICE.

We first set up the KCL and KVL equations for this cell, and apply
the similar derivation of (11)–(13). The 3-D simple implicit FDTD
method of the telegraph equation becomes

vn+1i;j;k � 2vni;j;k + vn�1i;j;k

(�t)2
+ a

vn+1i;j;k � vn�1i;j;k

2�t

� bi;j;k
vn+1i�1;j;k � vn+1i;j;k

�xi�1=2;j;k
�

vn+1i;j;k � vn+1i+1;j;k

�xi+1=2;j;k

+
vn+1i;j�1;k � vn+1i;j;k

�yi;j�1=2;k
�

vn+1i;j;k � vn+1i;j+1;k

�yi;j+1=2;k

+
vn+1i;j;k�1 � vn+1i;j;k

�zi;j;k�1=2
�

vn+1i;j;k � vn+1i;j;k+1

�zi;j;k+1=2
= 0 (35)

wherea = r=l, andbi;j;k = 1=lCi;j;k.
After utilizing the same procedure as in Section III, the recursion

relations of the 3-D TLM-ADI method for the nonuniform internodal
distance case have the same form as (25)–(27) except for the definition
of the operatorsAms (see Appendix A).

IV. EXPERIMENTAL RESULTS

The 3-D TLM-ADI algorithm is implemented in C language and per-
formed on a Pentium IV 1.2 GHZ machine. The values ofr; l, andc are
equal to 0.03
/�m, 1.26 pH/�m, and 0.024 fF/�m, respectively. The
length of each wire segment is between 15 and 100�m, and the resis-
tance of via is 3
. Numerical results are also carried out by using the
MNA solver developed by [9] and the general circuit simulator SPICE.

The comparison of runtime and memory usages is shown in Fig. 5
with ten time-step periods. The power grid model introduced in Sec-
tion II is used to construct the test sets. The size of the test circuits starts
from 1350 nodes (15� 15� 6) to 1 008 600 nodes (410� 410� 6).

Fig. 7. DC transient response comparison between SPICE and the 3-D
TLM-ADI method.

Fig. 8. DC transient response of the 3-D TLM-ADI method with different time
steps.

Fig. 5(a) and (b) show that the 3-D TLM-ADI method is not only about
455 times faster than the MNA solver [9] and over 11 000 times faster
than SPICE, even though the grid size is only around 30 000 nodes
(70� 70� 6), but also extremely memory saving. The same tendency
that the speedup increases with larger circuit size is also shown in
Fig. 5(a). In Figs. 5(b) and 6, we demonstrate that the memory require-
ment and runtime for the 3-D TLM-ADI are both linear with the total
number of nodes. To present the accuracy of the 3-D TLM-ADI algo-
rithm, we simulate anRLC circuit with 900 (15� 15� 4) nodes and
0.1-ps time step. The Courant stability constraint is 0.317 49 ps in this
case. Fig. 7 shows that the waveform of the 3-D TLM-ADI method
agrees well with SPICE’s at an arbitrary node in the power grids.

The unconditional stability of the 3-D TLM-ADI method is demon-
strated in Fig. 8 with a 75-nodeRLCcircuit. The Courant stability con-
straint is 1.5874 ps in this case. Fig. 8 shows that the time step of the
3-D TLM-ADI method is not limited by the above stability constraint
but only limited by the accuracy requirement.

V. CONCLUSION

We have developed and implemented an efficient ADI algorithm for
the transient power grids simulation, and proved its unconditional sta-
bility and linear runtime. The numerical experimental results also show
that the 3-D TLM-ADI algorithm not only speeds up orders of magni-
tude over the SPICE but also reduces lots of the memory requirements,
and the results agree well with SPICE’s.
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APPENDIX A

A1v
n
i;j;k

4

= ��i;j;k
vni�1;j;k � vni;j;k

�xi�1=2;j;k
�

vni;j;k � vni+1;j;k

�xi+1=2;j;k
(36)

A2v
n
i;j;k

4

= ��i;j;k
vni;j�1;k � vni;j;k

�yi;j�1=2;k
�

vni;j;k � vni;j+1;k

�yi;j+1=2;k
(37)

A3v
n
i;j;k

4

= ��i;j;k
vni;j;k�1 � vni;j;k

�zi;j;k�1=2
�

vni;j;k � vni;j;k+1

�zi;j;k+1=2
(38)

�i;j;k = bi;j;k
1

(4t)2
+

a

24t
: (39)
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Hierarchical Whitespace Allocation in
Top-Down Placement

Andrew E. Caldwell, Member, IEEE,
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Abstract—Increased transistor density in modern commercial ICs
typically originates in new manufacturing and defect prevention technolo-
gies [15], [16]. Additionally, better utilization of such low-level transistor
density may result from improved software that makes fewer assumptions
about physical layout in order to reliably automate the design process.
In particular, recent layouts tend to have large amounts of whitespace,
which is not handled properly by older tools. We observe that a major
computational difficulty arises in partitioning-driven top-down placement
when regions of a chip lack whitespace. This tightens balance constraints
for min-cut partitioning and hampers move-based local-search heuristics
such as Fiduccia–Mattheyses. However, the local lack of whitespace is often
caused by very unbalanced distribution of whitespace during previous
partitioning, and this concern is emphasized in chips with large overall
whitespace.

This paper focuses on accurate computation of tolerances to ensure
smooth operation of common move-based iterative partitioners, while
avoiding cell overlaps. We propose a mathematical model of hierarchical
whitespace allocation in placement, which results in a simple computation
of partitioning tolerance purely from relative whitespace in the block and
the number of rows in the block. Partitioning tolerance slowly increases as
the placer descends to lower levels, and relative whitespace in all blocks
is limited from below (unless partitioners return “illegal” solutions), thus
preventing cell overlaps. This facilitates good use of whitespace when it is
scarce and prevents very dense regions when large amounts of whitespace
are available.

Our approach improves the use of the available whitespace during global
placement, thus leading to smaller whitespace requirements. Existing tech-
niques, particularly those based on simulated annealing [21], [10], can be
applied after global placement to bias whitespace with respect to particular
concerns, such as routing congestion, heat dissipation, crosstalk noise and
DSM yield improvement.

Index Terms—Algorithms, design automation, integrated circuit layout.

I. INTRODUCTION

The progression of Moore’s law [18], [15] for commercial ICs
has been so far maintained by steady increases in device densities
as a result of innovations in manufacturing and defect prevention
technologies [16]. At the same time, device density for a given process
generation is also limited by the capabilities of EDA software and
the assumptions made by software developers.

Historically, utilization rates increased (i.e., whitespace decreased)
steadily with the introduction of three-layer, four-layer, and even
five-layer metal technologies. In contrast with the preceding two-layer
metal regime, three or more layers of metal brought the following
changes: 1) the need for routing channels disappeared; 2) double-back
(shared power and ground rail) standard-cell styles removed all

Manuscript received July 15, 2002; revised January 13, 2003.
A. E. Caldwell was with the University of California, Los Angeles, CA 90095

USA. He is now with Everychip Inc., Mountain View, CA 94041 USA (e-mail:
andy@everychip.com).

A. B. Kahng was with the University of California, Los Angeles, CA 90095
USA. He is now with the Departments of Computer Science and Engineering
and Electrical and Computer Engineering, University of California, San Diego,
La Jolla, CA 92093-0114 USA (e-mail: abk@ucsd.edu).

I. L. Markov was with the University of California, Los Angeles, CA
90095 USA. He is now with the Department of Electrical Engineering and
Computer Science, Univ. of Michigan, Ann Arbor, MI 48109-2122 USA
(e-mail: imarkov@umich.edu).

Digital Object Identifier 10.1109/TCAD.2003.818375

0278-0070/03$17.00 © 2003 IEEE


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


