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Abstract: An output sliding mode control method to produce a stable flying height for a pickup
head in a near-field optical disk drive is presented. When the optical disks have a large amplitude
vibration that makes a stable flying height difficult to attain, a piezoelectric bender is used to
complement an air bearing at the head/disk interface. Control simulation for an identified model
using measured vibration data of an optical disk is performed to demonstrate the robustness of the
proposed method.

1 Introduction

Optical disks are popular due to their large data storage
capacity, and as such they find extensive use in audio and
video media. The need for a large data storage capacity and
high quality recording media has resulted in high data
storage density requirements for optical disks [1, 2].
However, due to light wave diffraction in a far-field optical
environment, the optical pickup device cannot further
reduce the light spot size to access a smaller data track
width and thereby accomplish a higher data recording
density. The application of near-field optics to avoid the
diffraction limitation requires the near-field optical disk
drives to adopt the structure of a magnetic disk drive but
with the magnetic pickup being replaced by a near-field
optical pickup head. This allows the disk drive to maintain
the space between the pickup head and disk within the near-
field focusing length. Thus, the recording density can be
increased by means of an improvement in the optical
resolution. Additionally, optical disks are generally made
out of a plastic-based material due to its low cost. Hence, the
optical disk vibration magnitude will be larger than that in
an aluminum-substrate hard disk. Therefore, the passive air
bearing flying height mechanism barely attains the focusing
performance requirement in the presence of severe disk
vibration. In order to circumvent the problem and achieve a
satisfactory performance in flying height control, we attach
a multi-layer piezoelectric bender (PZT) to the suspension
arm to serve as an active flying height controller. Similar
designs have been widely used in hard disk drives to achieve
head-disk spacing control and fine track following control
[3, 4].

We aim to apply an output feedback sliding mode
controller for flying height control by using a PZT bender.
The sliding mode control method is popular due to its

properties of robustness and insensitivity to matched
disturbance and model uncertainty [5, 6]. Conventional
sliding mode control is based on a state-space design, where
information on the system states is needed when construct-
ing the sliding surface and controller. However, system
states are not measurable in the current study; hence, an
output feedback sliding mode control method that solely
uses the output error is developed. An output feedback
sliding mode controller is developed first to validate the
performance of the flying height control. The first and
second derivatives of the flying height error are needed in
the controller. However, this may result in difficulties in
practice due to measurement noise. Therefore, a high-order
sliding mode control method [7] with robust differentiators
[8] is used to reduce the number of required output
derivatives and to avoid the influence of measurement
noise. In addition, a high-order sliding mode controller helps
to reduce chattering with appropriate order design [7, 9].
Simulations on an identified model using measured
vibration data of an optical disk will be presented to
demonstrate the controller effectiveness.

2 Flying height control mechanism

To enable the active flying height control capability,
a modified flying head with a PZT actuator is fixed to
a suspension arm, as shown in Fig. 1. The PZT serves as the
flying height actuator for the flying head in a near-field
optical disk drive. This approach has been used as a fine
actuator in high density data storage disk drives, since its
response performance is sufficient to achieve a fast and
precise movement. With a laser Doppler vibrometer in the
system identification, a PZT transfer function that relates the
control voltage U in volts to the PZT bending displacement
Y in nanometres in the vertical direction is:

YðsÞ
UðsÞ¼ð3:188�1015ðs2þ19:85sþ1:096�107ÞÞ

.
ððsþ2:545�104Þðs2þ141:2sþ4:797�106Þ
�ðs2þ534:9sþ1:068�108ÞÞ ð1Þ

As a result, a Bode diagram and an open-loop step response
are shown in Figs. 2 and 3, respectively. Considering the
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open-loop step response shown in Fig. 3, there is an obvious
oscillation in the transient response which results in a long
settling time. Hence, a closed-loop controller is required to
eliminate the flying height oscillation and obtain a fast and
stable response.

3 Output feedback sliding mode control

The flying head is required to undergo a desired displace-
ment, qd; in the vertical direction in order to maintain a
constant flying height between the vibratory optical disk and
the optical flying head. The trajectory of the desired
displacement qd generally will be the optical disk vibration
waveform plus a constant flying height. In view of
uncertainties and disturbances in the current system,
a sliding mode control method is applied.

The PZT plant model in (1) can be rewritten in state-
variable form as:

_xx ¼ AxþBuþ dðx; tÞ

¼

a1 a2 a3 a4 a5

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

2
6666664

3
7777775

x1

x2

x3

x4

x5

2
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3
7777775
þ

b1

0

0

0

0

2
6666664

3
7777775

uþ

d1

d2

d3

d4

d5

2
6666664

3
7777775

y ¼ Hx

¼ 0 0 h3 h4 h5½ �x ð2Þ

where yðtÞ 2 R is the flying height, uðtÞ 2 R is the control
input voltage, and the system state vector xðtÞ 2 R5: Addi-
tionally, the disturbance vector dðx; tÞ 2 R5 caused by
system uncertainty and external noise is bounded by:

kdðx; tÞk 
 �ðx; tÞ ð3Þ

and �ðx; tÞ is a known boundary function.
In near-field optical disk drives, the only feedback

information about the flying head generally will be either
the displacement or the velocity. Not all system states are
available and we assume that only the output displacement
error can be obtained. As a consequence, the control design
method using system states can not be used and thus an
output feedback sliding mode control will be developed.

The flying height error is defined as:

e ¼ y � qd ð4Þ

Since the relative degree of the system is three according to
(1), the twice differentiation term €ee is incorporated in the
sliding surface design. Hence, a sliding surface s(e) is
prescribed in terms of error terms:

sðeÞ ¼ Ce ¼ ½ 1 L G �
€ee

_ee

e

2
4

3
5 ¼ €ee þ L_ee þ Ge

ð5Þ

where coefficients L and G come from the sliding mode
conjugate poles p1 ¼ �aþ bj and p2 ¼ �a� bj as:

C ¼ ½ 1 L G � ¼ ½ 1 2a a2 þ b2 þ 2ab � ð6Þ

As long as a sliding mode of the system trajectory exists on
a sliding surface sðeÞ ¼ 0; a continuous control ueq called
‘equivalent control’ [5] and [6] can replace the undefined
discontinuous control on the discontinuity boundary to
make the system trajectory continuous along the surface
sðeÞ ¼ 0 [6]. Since the system trajectory in the sliding
mode is continuous, the sliding function sðeÞ represented in
(5) must be differentiable. This means that the time
derivative of sðeÞ in (5) is equal to zero; i.e.:

_ssðeÞju¼ueq
¼ eð3Þ þ L€ee þ G_ee ¼ 0 ð7Þ

Assuming the desired displacement qd is a constant and
taking the triple differentiation of (4), leads to:

eð3Þ ¼ yð3Þ � q
ð3Þ
d ¼ yð3Þ ð8Þ

Substituting (8) into (7) yields:

_ssðeÞju¼ueq
¼ yð3Þ þ L€ee þ G_ee ¼ 0 ð9Þ

Further, substituting the state equation from (2) into (9)
yields:
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_ssðeÞju¼ueq
¼ d3

dt3
ðh3x3 þ h4x4 þ h5x5Þ þL€eeþG_ee

¼ d2

dt2
ðh3x2 þ h4x3 þ h5x4 þ h3d3 þ h4d4 þ h5d5Þ

þL€eeþG_ee

¼ d

dt
ðh3x1 þ h4x2 þ h5x3 þ h3d2 þ h4d3 þ h5d4

þ h3d3 þ h4d4 þ h5d5Þ þL€eeþG_ee

¼ h3ða1x1 þ a2x2 þ a3x3 þ a4x4 þ a5x5 þ uþ d1Þ
þ h4x1 þ h5x2 þ h4d2 þ h5d3 þ h3

_dd2

þ ðh4 þ h3Þ_dd3 þ ðh5 þ h4Þ_dd4 þ h5
_dd5 þL€eeþG_ee

¼ 0

ð10Þ
It follows from (10) that the equivalent control ueq can be
written as:

u ¼ ueq

¼ � a1x1 þ a2x2 þ a3x3 þ a4x4 þ a5x5 þ
h4

h3

x1 þ
h5

h3

x2

� 	

� 1

h3

df �
L
h3

€ee � G
h3

_ee

ð11Þ
where df ¼ h3d1 þ h4d2 þ h5d3 þ h3

_dd2 þ ðh4 þ h3Þ_dd3 þ
ðh5 þ h4Þ_dd4 þ h5

_dd5; and hence, it depends on the disturb-
ance terms.

Sliding mode control has to enable a system to move
towards and stay on a sliding surface; i.e. satisfy the
reaching and sliding condition [6]:

s_ss < �kjsj ð12Þ
where k is a positive constant, so that the system trajectory
reaches the sliding surface in a finite time. Therefore, based
on (11), for output feedback sliding mode control we define
the control input u as:

u ¼ � a1x1 þ a2x2 þ a3x3 þ a4x4 þ a5x5 þ
h4

h3

x1






�

þ h5

h3

x2 þ
1

h3

df






max

þk
	
sgnðsÞ � L

h3

€ee � G
h3

_ee

¼ � ðj f ðxÞ þ kdf jmax þ kÞsgn sð Þ � kL€ee � kG_ee

¼ � Q sgnðsÞ � kL€ee � kG_ee ð13Þ

where

sgnðsÞ ¼
þ1 if s > 0

0 if s ¼ 0

�1 if s < 0

8<
:

ð14Þ

f ðxÞ ¼ a1x1 þ a2x2 þ a3x3 þ a4x4 þ a5x5 þ
h4

h3

x1 þ
h5

h3

x2;

1 > k ¼ 1

h3

> 0

Q ¼ ðj f ðxÞ þ kdf jmax þ kÞ > 0

ð15Þ

Proof: Substituting (10) and (13) into the reaching and
sliding condition in (12) yields

s_ss ¼ s½h3ða1x1 þ a2x2 þ a3x3 þ a4x4 þ a5x5 þ u þ h1d1Þ
þ h4x1 þ h5x2 þ h4d1 þ h5d2 þ h3

_dd1 þ h4
_dd2 þ h3

_dd2

þ h5
_dd3 þ h4

_dd3 þ h5
_dd4 þ L€ee þ G _ee�

¼ s½h3f ðxÞ þ df þ h3u þ L€ee þ G_ee�

¼ s h3 f ðxÞ þ df � h3 f ðxÞ þ 1

h3

df











max

þk
� 	

sgnðsÞ
� �

¼ h3 f ðxÞ þ 1

h3

df

� 	
s � h3 f ðxÞ þ 1

h3

df











max

jsj � h3kjsj

ð16Þ
However:

f ðxÞ þ 1

h3

df

� 	
s < f ðxÞ þ 1

h3

df











max

jsj

and from (15), one has h3 > 1; hence, (16) yields
s_ss < �kjsj: This proves the reaching and sliding
condition in (12) for the proposed output feedback
sliding mode controller. A

Since the control law given in (13) is discontinuous across
the sliding surface, it gives rise to chattering in a trajectory
tracking process. Therefore, a saturation function satðsÞ with
a sliding layer " is adopted to replace the switching function
sgnðsÞ defined in (14), i.e.:

satðsÞ ¼
sgnðsÞ jsj > "

s

"
jsj 
 "

(
ð17Þ

The controller in (13) can thus be written as:

u ¼ �Q satðsÞ � kL€ee � kG_ee ð18Þ
The closed-loop block diagram with output feedback sliding
mode control is shown in Fig. 4. Since the maximum
boundary of the system states function f ðxÞ and disturbances
�ðx; tÞ is usually unknown or inaccurate. The design
parameter Q in (18) can be adjusted based on an energy
function expressed by:

EðeÞ ¼
Z

e2dt ð19Þ

in order to minimise the control error.

4 Output feedback high-order sliding mode
control

The sliding surface in (5) adopts ë and ė in order to construct
an output feedback sliding mode controller. Since only
flying height error can be measured in practice, the first and
second differentiation of e are used instead of direct
measurements of ė and ë. Hence, a high-order sliding mode
controller with robust differentiators is presented for the
flying height control. Using high-order sliding mode
reduces the number of output derivatives required and the
robust differentiator yields exact differentiation with finite-
time convergence.
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Fig. 4 Block diagram of closed-loop sliding mode control system
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4.1 Third-order sliding mode controller

Considering the system in (1) of relative degree three, a
third-order sliding mode controller design is adopted. The
control purpose is to eliminate the flying height error, hence,
the sliding surface is defined as:

� ¼ e ¼ y � qd ð20Þ
With the sliding surface, a general form of relay type third-
order sliding mode control for a relative degree three system
can be written as [7]:

u ¼ �A3 sgn €��þ 2 j _��j3 þ �2
� �1=6

sgn _��þ j�j2=3sgn �
� �h i

ð21Þ
where A3 is a positive constant. Accordingly, to use (21)
only knowledge of the relative degree of the system is
needed in advance while the exact plant model is not
required. Thus, the information needed is simply the current
value of �. In (21), the required time derivatives of � can be
evaluated by various differentiators [10] and [11]. To
modify (21), define sliding functions as [12]:

S0 ¼ � ð22Þ

S1 ¼ _SS0 þ A1jS0j2=3sgnðS0Þ ð23Þ
where A1 is a positive constant. Using (22) and (23), then
(21) becomes an output feedback third-order sliding mode
controller expressed by:

u ¼ �A3sgnf_SS1 þ A2jS1j1=6sgn½_SS0 þ A1jS0j2=3sgnðS0Þ�g
ð24Þ

where A2 is a positive constant. Further, (24) can be
rewritten as:

u ¼ �A3sgnðS2Þ ð25Þ
where

S2 ¼ _SS1 þ A2jS1j1=6sgnðS1Þ ð26Þ

4.2 Robust differentiator

To implement the above controller in (24) we require
information on the successive derivatives _SS0 and _SS1: Hence,
a robust differentiator is adopted to evaluate exact derivative
values. A general form of arbitrary order robust differ-
entiator can be applied as [13]:

_zz0 ¼ � k0jz0 � f ðtÞjn=ðnþ1Þsgnðz0 � f ðtÞÞ þ z1

. . .

_zzi ¼ � kijz0 � f ðtÞjðn�iÞ=nþ1sgnðz0 � f ðtÞÞ þ ziþ1

i ¼ 1; . . . ; n � 1

_zzn ¼ � kn sgnðz0 � f ðtÞÞ ð27Þ

where z0; z1; . . . ; zn are estimations of input f ðtÞ; _ff ðtÞ; . . . ;
f ðnÞðtÞ and k0; . . . ; kn are positive constants. Using (27),
the control input in (24) can be rewritten as:

u ¼ �A3sgn 	1 þ A2j	0j1=6sgn m1 þ A1jm0j2=3sgnðm0Þ
h in o

ð28Þ
with the robust differentiators being written as:

_mm0 ¼ � �kk0jm0 � S0j1=2sgnðm0 � S0Þ þ m1

_mm1 ¼ � �kk1sgnðm0 � S0Þ ð29Þ

and

_		0 ¼ � ~kk0j	0 � S1j1=2sgnð	0 � S1Þ þ 	1

_	1	1 ¼ � ~kk1 sgnð	0 � S1Þ ð30Þ

where the value of the sliding function S1 was evaluated by:

S1 ¼ m1 þ A1jm0j2=3sgnðm0Þ ð31Þ

4.3 Fourth-order sliding mode control

In order to eliminate chattering, it was proved by [7] that
introducing successive time derivatives u; _uu; . . . ; uðr�k�1Þ as
new auxiliary variables and uðr�kÞ as a new control input
achieves different modifications of each rth order sliding
mode controller with a system relative degree of
k ¼ 1; 2; . . . ; r: The resulting control input is a ðr � k � 1Þ
smooth function of time when k < r; a Lipschitz function
when k ¼ r � 1; and a bounded infinite-frequency switch-
ing function when k ¼ r: Accordingly, in order to generate a
control input that is smoother than an infinite-frequency
switching one, a fourth-order sliding mode control is
designed by modifying the original system in (2) as:

_xx ¼ Ax þ Bu

y ¼ Hx

_uu ¼ t ð32Þ

where the actual control input u of the original system is
treated as a new auxiliary variable of the higher relative
degree system in (32) and t is the new control input of the
fourth-order sliding mode control written as:

t ¼ � A4sgn
�
_SS2 þ A3jS2j1=12 þ sgn

�
_SS1 þ A2jS1j1=6_

� sgn½_SS0 þ A1jS0j2=3sgnðS0Þ�
��

¼ � A4sgnðS3Þ ð33Þ

where

S0 ¼ �

S1 ¼ _SS0 þ A1jS0j2=3sgnðS0Þ
S2 ¼ _SS1 þ A2jS1j1=6sgnðS1Þ
S3 ¼ _SS2 þ A3jS2j1=12sgnðS2Þ ð34Þ

The robust differentiators in (27) can be applied here in a
manner similar to Section 4.2 that deals with the third-order
sliding mode controller.

5 Flying height control simulation

5.1 Output feedback sliding mode control

With the plant model in (1), Figs. 5a and 5b compare
simulation results of the output feedback sliding mode
controller with a switching function sgnðsÞ in (13) and a
saturation function satðsÞ in (18). The 1000 nm step
responses and sliding surfaces are shown in Figs. 5a and
5b, respectively. It is demonstrated that the saturation
function indeed eliminates chattering. Figures 6a and 6b
respectively compare 10 nm step responses and control
inputs with and without white noise in the control input. The
mean and variance of the white noise are 0.0475 and 3.2526,
respectively. As a result, the flying height is not affected,
although the control input is accompanied by white noise.
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5.2 Third-order sliding mode control with
robust differentiators

The use of robust differentiators i.e. (29) and (30) in the
third-order sliding mode controller, (28), leads to the step
response and sliding functions, depicted in Fig. 7a and
Figs. 7b to 7d respectively. It can be found that the sliding
functions, as defined in (20), (22), (23) and (26), indeed
converge to zero. The tracking capability does not degrade
at all when using robust differentiators for derivative values.

In order to verify the robustness of the present controller
with robust differentiators, a white noise is introduced into
the measured flying height error signal. The mean and
variance of the white noise are 0.0001 and 0.1001,
respectively. Figure 8 compares the step responses of the
third-order sliding mode controller with and without the
robust differentiator. As a result, the controller perform-
ances with the presented differentiator does not degrade at
all, whereas the other one becomes unstable.

5.3 Fourth-order sliding mode control

Figure 9a depicts the step response and Fig. 9b the actual
control input u created by the modified plant model in (32)
and the output feedback fourth-order sliding mode con-
troller of (33). The derivatives of S0; S1 and S2 are directly
calculated. The control input in Fig. 9b shows that high-
order sliding mode control can achieve a smooth control
input and reduce chattering.

5.4 Flying height control with measured disk
vibration waveform

To validate the proposed controller, we performed a
flying height control simulation for the PZT model of (1)
using vibration displacement data vðtÞ of a near-field
optical disk. The vibration data is measured by using a
dual-beam laser Doppler vibrometer for a polycarbonate-
substrate-based near-field optical disk at a constant speed
of 5400 rpm. The dominant frequency of the disk
vibration is 90 Hz synchronous with the spindle motor
speed. The applied PZT bender is model PL122.251 made
by Physik Instrumente. Its displacement in the bending
direction is 0–250mm corresponding to an input voltage
of 0–60 V.

In order to maintain a constant flying height in the
presence of disk vibration, the flying height control can
be treated as a trajectory tracking control task dealing
with a disk vibration waveform vðtÞ between approximate
^60mm, as shown in Fig. 10a, so as to control the flying
head height equal to the sum of the disk vibration
amplitude and a constant flying height hf ; i.e. the
focusing depth for a near-field optical disk as
depicted in Fig. 1. Hence, the reference input can be
expressed as:

rðtÞ ¼ vðtÞ þ hf ð35Þ

Using the third-order sliding mode controller with robust
differentiators, the flying height error in tracking the disk
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vibration waveform is shown in Fig. 10b. The tracking
control error reduces from the initial value of �242 nm to
lie within ^30 nm after 1 ms. The initial large tracking
error of up to 93 nm comes from the initial estimation
error of the robust differentiator.

6 Conclusions

An output feedback sliding mode flying height controller
with a PZT actuator has been developed for flying height
control for near-field optical disk drives accompanied by a
severe and uncertain disk vibration. In order to reduce the
number of required output derivatives and avoid chattering,
a high-order sliding mode controller with a robust
differentiator has been presented for application in the
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a Step response of the third-order sliding mode controller with robust
differentiators
b Sliding function S0 of the third-order sliding mode controller with robust
differentiators
c Sliding function S1 of the third-order sliding mode controller with robust
differentiators
d Sliding function S2 of the third-order sliding mode controller with robust
differentiators

IEE Proc.-Control Theory Appl., Vol. 150, No. 6, November 2003634



flying height control. Simulation results demonstrate the
effectiveness of the proposed mechanism and control
method.
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