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We consider the convergence characteristics of a perceptron learning algorithm, taking into account the decay
of photorefractive holograms during the process of interconnection weight changes. As a result of the hologram
erasure, the convergence of the learning process is dependent on the exposure time during the weight changes.
A mathematical proof of the conditional convergence,
perceptrons, is presented and discussed.

as well as computer simulations of the photorefractive

It is well known that the iterations in the percep-
tron learning algorithm will converge, leading to a
final weight vector (or matrix), provided that such
a solution exists.1 Recently the perceptron learn-
ing algorithm was implemented by optical intercon-
nection with photorefractive holograms.2-5 In the
optical implementation, the weight vector w is rep-
resented by the holograms in photorefractive crystals
(e.g., LiNbO3). The weight vector can be modified
by addition or subtraction of hologram components
according to the learning algorithm. Holograms pre-
viously stored in photorefractive media are subject to
erasure during the training cycles. Thus the percep-
tron learning algorithm in photorefractive media is
modified as

w(k + 1) = w(k)exp[-Ior(k)Jt/r]

of the photorefractive perceptron and present what
is to our knowledge the first theoretical proof of the
conditional convergence. We discover that the pho-
torefractive perceptron learning algorithm according
to Eq. (1) will converge, provided that the exposure
time is sufficiently small relative to the hologram
decay time constant. In addition to the theoretical
proof of the conditional convergence, we also present
and discuss the results of our computer simulation.

To prove the conditional convergence, we redefine
the set of training patterns as

x E C1

x E C2
(3)

With this definition, the training algorithm of Eq. (1)
becomes

+ 0r(k)[1 - exp(-t/T)] * x(k), (1)

where t is the exposure time, T is the hologram decay
time constant, k is an integer registering the number
of interrogations, x(k) is the kth input vector, and
oY(k) is given by

if x(k) is correctly classified

if x(k) E Cl but w(k) * x(k) < 6,

if x(k) E C2 but w(k) * x(k) > 6

(2)

where 6 is the threshold value and C1 (or C2) repre-
sents the category of the patterns whose outputs are
1 (or -1).

It is interesting to note that the existing inter-
connection weight w(k) is reduced by a hologram
decay factor exp(-t/r) because of the illumination of
light during each of the weight changes. It is clear
that the exposure time t plays an important role in
determining the magnitude of the incremental weight
change as well as the decay of the weight vector.
Although there have been several previous studies
in the implementation of perceptron in photorefrac-
tive media, there is to our knowledge no theoretical
groundwork on the issue of convergence. In this
Letter we consider the convergence characteristics

w(p + 1) = w(p)exp(-t/T) + [1 - exp(-t/r)] * y(p).
(4)

We note that p is an integer registering the number of
weight changes. Assuming that the initial condition
is 0, i.e., w(l) = 0, we obtain, according to Eq. (4),

w(p + 1) = [1 - exp(-t/T)] Y. y(k)exp[-(p - k)t/l].
k=1

(5)

Following the analysis used in the convergence proof
of the conventional perceptron6 and carrying out the
summation of the exponential terms, we obtain

(6)Iw(p + 1) 12> [1 - exp(-pt/r)]2 . /2,
JWI2

where we have assumed that there exists a solution
w and that /3 is given by

/ = min w * y(k).
1:sksM

(7)

Using w(l) = 0 and following similar steps, we also
obtain

Iw(p + 1)12 < [1 - exp(-t/r)]2 a [1 - exp(-2pt/r)]
[1 - exp(-2t/,r)]

(8)
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a = max IY(k)|.
1~sk~sM

(9)

more steps (or training cycles) to achieve the solution
w. When the exposure time is too long, such that

(t/2,r)Pimax > 1, (15)
Combining Eqs. (6) and (8), we obtain the following
condition for the number of iterations p:

tanh(pt/2T)
tanh(t/2,r) <3 2 zimax. I

where Pima. is the upper bound of the number of
weight changes to reach convergence for the con-
ventional perceptron. In practice, it is not easy for
one to determine Pima,, from analytic solutions since
there are infinite numbers of w. Using the training
set and the exposure time, we can obtain only a
rough range of the minimum of Pimax by computer
simulation. It provides a guideline for determining
the proper exposure time for optical implementations.

Before the discussion of the convergence, let us
first understand the meaning of inequality (10).
We recall that the weight is modified only when
w y < 0 (i.e., when misclassification occurs).
Based on the definition, the total number of weight
changes will reach a definite value p when the
system is fully trained. This number p must satisfy
inequality (10). If we can find some number po,
from a purely mathematical point of view, such that

tanh(pot/2r)_ aJwI2

tanh(t/2r) --/32 -Pimax 1

then po is the upper bound for the total number of
weight changes. When either the hologram decay
time constant is very long or the exposure time is very
short, i.e., t/2r is near zero, inequality (10) reduces to
the well-known result of the conventional perceptron,

P < Pimax . (12)

In this case, Pimax is the upper bound for the total
number of weight changes.

In Fig. 1 we plot both sides of inequalities (10) and
(12) as a function of p. For inequality (10) the left-
hand side is a hyperbolic-tangent function, and for
inequality (12) it is a straight line at 45° (y = p).
The right-hand side of each formula is a horizontal
line at y = Pimax. For the case of a conventional per-
ceptron, this line will always intersect the 450 line at
Pimax. For the case of a photorefractive perceptron,
the intersection exists only when

tanh(t/2r)Pimax < 1. (13)

For t/2r << 1, the condition becomes

(t/2T)Pimax < 1. (14)

In other words, the photorefractive perceptron will
converge, provided that tanh(t/2T)Pimax < 1. Let the
intersection be at po; we find that the maximum num-
ber of steps for convergence is greater than that for
the conventional perceptron (i.e., Pimax < po). This
is consistent with the fact that the holograms are
decaying during the weight changes. It will take

Eq. (11) has no solution. In other words, there is no
upper bound for the number of weight changes, and
the photorefractive perceptron learning algorithm
may not converge to a solution.

We now discuss the results of our computer sim-
ulation. Figure 2 shows our set of training pat-
terns. The three roman letters are specified as class
C1, and the three arabic numbers are specified as
class C2. We first train the classifier by using the
conventional perceptron algorithm. For the input
vectors shown in Fig. 2, it takes three training cycles
with six weight changes (i.e., p = 6) for the training
processing to be completed. The simulation results
indicate that these six training patterns are lin-
early separable. We then simulate the photorefrac-
tive perceptron according to the learning algorithm
given by Eq. (1). The simulation results are shown
in Fig. 3. The figure shows the number of weight
changes p as well as the number of training cycles
as functions of the normalized exposure time tir.
We note that when tir << 1 the number of weight
changes and the number of training cycles are nearly
constant and are identical to those of the conventional
perceptron. This confirms our previous statement
that the convergence behavior is similar to that of
the conventional perceptron if the hologram decay is
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Fig. 1. Graphic method for finding solutions of inequal-
ity (10). Intersection occurs only when the condition of
inequality (13) is satisfied.

Fig. 2. Pictures of our training patterns. The sampling
grid of the computer simulation is 32 x 32.
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Fig. 3. Number of steps (open circles, number of weight
changes; filled circles, number of training cycles) for pho-
torefractive perceptron convergence as functions of the
normalized exposure time t/'T.

Table 1. Computer Simulation of Photorefractive
Perceptrons with Different t/r Values

No. of Weight
tIr Pimax Pi max tanh(t/2Tr) Changes

0.0005 37.01 9.25 x 10-3 6
0.001 37.28 1.86 x 10-2 6
0.005 39.51 9.88 x 10-2 6
0.01 42.56 0.213 6
0.05 84.88 2.12 6
0.1 300.07 14.991 6
0.125 830.27 51.824 6
0.167 8.1 -x 108 6.75 x 107 6
0.182 3011.2 273.265 9
0.2 6.7 x 107 6.68 x 103 9
0.21 79 8.265 11
0.222 874.2 96.64 15
0.25 5.15 x 104 6.4 X 103 15
0.263 2.79 x 104 3.65 x 103 17
0.286 367.5 52.197 21
0.333 - - -
0.5 - _ _

negligible. We also note that when the normalized
exposure time t/r is greater than 0.16 the num-
ber of steps for convergence increases significantly.
This is in agreement with the fact that the pho-
torefractive perceptron will need to take more steps
(training cycles) to converge in order to overcome the

decay of the holograms. In the simulation when the
normalized exposure time tIr is greater than 0.3,
the error rate remains 100% for all training cycles,
and the system does not converge. Again, this is
in agreement with our earlier prediction that the
perceptron may not converge when the exposure time
does not satisfy inequality (13). Table 1 summarizes
the results of our computer simulation for various
exposure times. We note that there are many so-
lutions for the weight vector. Each of these weight
vectors corresponds to an upper bound Pimax. In the
table, Pimax is evaluated by the definition of inequality
(10) with w = w(p + 1). The table also tests the
convergence condition of inequality (10). We recall
that inequality (13) gives a sufficient condition for
convergence only. Violation of the condition does not
constitute divergence. This explains the convergent
cases in which tanh(t/2r)Pim,, > 1 in Table 1.

In summary, we have described the conditional
convergence of the photorefractive perceptron. To
our knowledge, this is the first mathematical proof
of the conditional convergence of photorefractive per-
ceptrons. We find that the convergence of photore-
fractive perceptron learning depends on the exposure
time during each of the weight changes. In addition,
we also provide results of our computer simulations.
The simulation results are in excellent agreement
with the mathematical proof.

This research is supported by a grant from the
National Science Council of Taiwan under contract
NSC 82-0416-E-009-195. P. Yeh acknowledges sup-
port from the K. T. Lee and K. Y. Chin Foundation.
The authors are grateful for the helpful comments
from one of the reviewers.

*Permanent address, Department of Electrical En-
gineering, University of California, Santa Barbara,
Santa Barbara, California 93106.

References

1. R. 0. Duda and P. E. Hart, Pattern Classification
and Scene Analysis (Wiley, New York, 1973), Chap. 5,
p. 142.

2. D. Psaltis, D. Brady, and K. Wagner, Appl. Opt. 27,
1752 (1988).

3. J. Hong, S. Campbell, and P. Yeh, Appl. Opt. 29, 3019
(1990).

4. K. Y. Hsu, S. H. Lin, C. J. Cheng, T. C. Hsieh, and
P. Yeh, Int. J. Opt. Comput. (to be published).

5. E. G. Paek, J. R. Wullert II, and J. S. Patel, Opt. Lett.
14, 1303 (1989).

6. See, for example, P. Yeh, Introduction to Photorefrac-
tive Nonlinear Optics (Wiley, New York, 1993), App. A,
pp. 392-393.


