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Fabric evolution of granular assembly under
K0 loading/unloading
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SUMMARY

This study attempted to investigate the fabric evolution in K0 loading/unloading. The work made use of a
field simulator to control K0 loading/unloading in large specimens prepared by air-pluviation. In each
loading stage, wave velocities along various propagation directions were measured. On the basis of the
theories of micro-mechanics and wave propagation, the microscopic parameters of the granular assembly
were back calculated to investigate the fabric evolution of granular soil during K0 loading/unloading.
In this study, the Geometric fabric was modelled by fabric tensors of ranks 2 and 4. The comparison of

calibrated results using ranks 2 and 4 revealed the advantage of the usage of rank-4 fabric tensor in
modelling fabric evolution in spite of its complexity.
By comparing relative magnitudes of vertical and horizontal components of geometric fabric, it was

demonstrated that relative constraint in lateral directions increased during K0-unloading in order to
maintain a K0 condition. It revealed that fabric evolution was responsible for a higher K0 in unloading than
K0 in loading. Copyright # 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The packing or microscopic structures of a granular material determine its mechanical
behaviour. The packing state of a granular assembly has been named ‘structure’ or ‘fabric’ in
various references, and can be described by void ratio and contact normal distribution. Void
ratio is a scalar state quantity; it can reflect the average contact number (coordination number).
On the other hand, the contact normal distribution is a directional data. Although general fabric
should include void ration and the contact normal distribution, the latter is the primary concern
of the fabric of a granular material.
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Many researchers have adopted the micro-mechanics theory to investigate the mechanical
behaviour of a granular assembly from a microscopic viewpoint [1–7]. Various factors can affect
the mechanical behaviour of a granular assembly; these factors may include particle properties,
fabric and stress state. For given particle properties, fabric and stress state of a granular
assembly dominate its mechanical behaviour. Since both fabric and stress state are directional
data, they also control the anisotropy in mechanical behaviour. Fabric and stress state,
respectively, can be regarded as the internal index and the external index for determining the
mechanical behaviour of a granular assembly.

Fabric evolution of a granular assembly subjected to loading can help understand the
mechanism of its mechanical behaviour during loadings. The techniques for estimating fabric of a
granular assembly can be categorized into direct and indirect methods in general [3, 8–14]. Pan and
Dong [14] discussed the capability and limitation of these techniques. The direct methods can
measure two-dimensional fabric, but might find it difficult to reconstruct three-dimensional fabric.
Some indirect methods may be used to evaluate three-dimensional fabric by means of the
incorporation of certain quantitative model. Among various indirect methods, it is possible to
make use of wave-velocity measurement technique on the basis of micro-mechanics theory to
estimate both the geometric fabric and the contact-force fabric of a granular material such as sand.

The elastic stiffness for a granular material is a function of its microscopic parameters and
stress state. While the wave velocities for a granular material depend on its elastic stiffness, it is
reasonable to infer that the wave velocity of a granular assembly is also a function of its stress
state and microscopic parameters, including the fabric and the state parameters related to inter-
particle contact state.

The present work made use of a servo-controlled axis-symmetric simulator [15] to carry out a
series of K0 loading tests for specimens with various relative densities. In this work, a specimen
was subjected to stress paths in K0 loading and unloading. During various loading/unloading
stages, the wave velocities in various directions were measured by means of miniature
geophones. On the basis of theories including wave propagation, micro-mechanics, and
optimization, the microscopic parameters of the granular assembly were back calculated to
investigate the fabric evolution of granular soil during K0 loading/unloading. The following
context includes the theoretical background, experimental set-up, results, discussions and
conclusions.

2. THEORETICAL BACKGROUND

The presented approach estimated fabric parameters from measured anisotropic wave velocities
and stress state; this approach involved an analytical procedure similar to the one proposed by
Pan and Dong [14]. Figure 1 outlines the conceptual procedure.

This section will briefly discuss the relevant theoretical background of the present study
including fabric description and an outline of micro-mechanics of granular assembly, an-
isotropic wave propagation and optimization.

2.1. Fabric description

The distribution of directional data, such as the contact normal of a granular assembly, can be
described in tensor forms [16], a Fourier series [17], or a spherical harmonics expansion [18].
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This study adopted fabric tensors of the third kind to describe the distribution density of contact
normal as the following expression:

EðnÞ ¼ CðDþ Dijninj þ Dijklninjnknl þ � � �Þ ð1Þ

Equation (1) is a spherical harmonics expansion. The notation ‘n’ denotes a unit directional
vector. Since EðnÞ represents a density function of directional data,

R
EðnÞ � dn ¼ 1 must be

satisfied, thus C is equal to 1=2p and 1=4p for the case of two and three dimensions, respectively.
The coefficient tensor Di1���in is called the ‘fabric tensor of the third kind’ of rank n: The
coefficient tensor D; i.e. the fabric tensor of the third kind of rank 0, must be 1. The coefficient
tensors in the three-dimensional case are as follows:

D ¼ 1 ð2Þ

Dij ¼ 15
2
Nij � 1

3
dij

� �
ð3Þ

Dijkl ¼ 315
8

Nijkl � 6
7
dðijNklÞ þ 3

35
dðijdklÞ

h i
..
.

ð4Þ

in which dij is Kronecker delta tensor, Ni1;i2���in is called the ‘fabric tensor of the first kind’ of rank
n which represents the average of their tensor product, i.e.

Ni1i2���in ¼
Z

ni1 � � � ninEðnÞ � dn

A granular assembly prepared by pluviation may behave as transversely isotropic material.
Figure 2 shows the co-ordinate system of a transversely isotropic material: axis 3 is the direction
of pluviation and plane 1–2 is the plane of transverse isotropy. The coefficient tensors Dij of a

Wave velocity of granular material 

Elastic stiffness tensor 

Geometric and kinetic fabrics 

Optimization

Anisotropic elastic wave propagation theory 

Stress-dependent micromechanics elastic model 

Figure 1. Analytical procedure for determining geometric and kinetic fabrics of a granular
material from measured wave velocity [14].

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2003; 27:1099–1122

FABRIC EVOLUTION OF GRANULAR ASSEMBLY 1101



transversely isotropic material must satisfy D11 ¼ D22; and D12 ¼ D21 ¼ D13 ¼ D31 ¼ D23 ¼
D32 ¼ 0 due to axis-symmetry. The condition

R
EðnÞ � dn ¼ 1 yields.

D11 ¼ D22 ¼ �D33=2 ð5Þ

If the distribution of directional data is approximated by a fabric tensor of rank 2, Equation
(1) is reduced to EðnÞ ¼ ð1þ DijninjÞ=4p: Then, the independent unknown coefficient is solely
D33: A positive D33 implies that directional data is distributed more densely along the axis-3
direction than other directions, and vice versa. For a complete isotropic condition, all coefficient
tensors of rank 2 are zero; thus Equation (1) is reduced to EðnÞ ¼ 1=4p:

For fabric tensor of rank 4, the coefficient tensors Dijkl must satisfy D1111 ¼ D2222 ¼ 3D1122

and D1133 ¼ D2233 due to transverse isotropy. Since Equation (3) must be satisfied, we can obtain
three equations, i.e. D1111 þ D1122 þ D1133 ¼ 0; D2222 þ D1122 þ D2233 ¼ 0 and D3333 þ D1133 þ
D2233 ¼ 0: As a result,

D1111 ¼ D2222 ¼ 3D1122 ¼ 3D3333=8 ð6Þ

D1133 ¼ D2233 ¼ �D3333=2 ð7Þ

If the distribution of directional data is approximated by a fabric tensor of rank 4, Equation (1)
is reduced to EðnÞ ¼ ð1þ Dijninj þ DijklninjnknlÞ=4p: The two independent unknown coefficient
tensors are D33 and D3333: The other components of fabric tensors are D11 ¼ D22 ¼ �D33=2;
D1111 ¼ D2222 ¼ 3D1122 ¼ 3D3333=8; D1133 ¼ D2233 ¼ �D3333=2 and the rest of the coefficients
are all zero. The fabric tensor of rank 4 will reduce to rank 2 if the coefficient tensor D3333 is
equal to 0.

In this work, fabric tensors of ranks 2 and 4 were adopted to represent the contact-normal
distribution. The fabric tensor of a higher rank usually is able to describe the shape of
directional data distribution more closely.

Figure 2. Spherical co-ordinate system.
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2.2. Micro-mechanics theory of granular materials

It is possible to obtain the elastic stiffness of a granular assembly from its states of fabric and
stress on the basis of micro-mechanics. An outline appears subsequently.

2.2.1. Elastic stiffness of a granular assembly. Chang and Misra [18] derived the elastic stiffness
Cijkl of a granular assembly composed of equal-sized spherical particles. Cijkl is a function of
contact stiffness and contact normal distribution, and can be expressed as follows

Cijkl ¼
1

V

XM
c

‘ci k
c
jl‘

c
k ¼

M
V

Z
O
4r2nikcjlnkEðnÞ � dO ð8Þ

in which V is a representative volume, M is the contact number in V ; ‘ci ¼ ‘ � n *ll
i ¼ 2 � r � nci is the

branch-vector connecting two adjacent particles’ centroids in the cth contact point, r is the
radius of the spherical particles, ‘ is the branch-vector-length and n *ll

i is the unit branch-vector
identical with the contact normal nci for an idealized granular assembly. The term kcjl ¼
kcnn

c
jn

c
l þ kcs s

c
js

c
l þ kct t

c
j t
c
l is the local contact stiffness. The components kcn; k

c
s and kct ; respectively,

are the contact stiffness along the directions of n; s and t; which are the three base vectors of the
local co-ordinate system shown in Figure 2. The term EðnÞ stands for the density function of the
contact normal in the n direction. The terms EðnÞ can be expressed as Eðo; yÞ; dO ¼ sin y do dy
in a spherical co-ordinate system, where o and y are defined in Figure 2, with the ranges
04o42p and 04y4p: Pan and Dong [14] further derived the derivation of Cijkl of a granular
assembly composed of graded spherical particles.

2.2.2. Contact stiffness. Using the Hertz–Mindlin theory, the normal contact stiffness knðnÞ and
shear contact stiffness krðnÞ can be expressed as Equations (9) and (10), respectively.

knðnÞ ¼ C1ðfnðnÞÞ
1�2a ð9Þ

krðnÞ ¼ C2 1�
frðnÞ

fnðnÞtan fm

 !b
� knðnÞ ð10Þ

in which fnðnÞ and frðnÞ are the normal and shear contact forces, respectively; fm is the inter-
particle frictional angle; and C1 and C2 are constants relating to particle property.

2.2.3. Contact force. The contact forces in Equations (9) and (10) can be estimated using a
localized procedure of stresses and can be expressed as follows:

f c
j ¼ sijAiknck ð11Þ

in which f c
j is the contact force, sij is the stress tensor and Aik is a tensor relating to geometric

fabric of the granular assembly.

2.3. Theory of elastic wave propagation for anisotropic material

If axis-3 is the symmetrical axis of a transversely isotropic granular assembly, five elastic
constants, E11; E33; E12; E23 and E66; are independent. All other elastic constants can be related
to these five constants according to the following relations: E22 ¼ E11; E13 ¼ E23; E55 ¼
E66; E44 ¼ ðE11 � E12Þ=2 and the rest of elastic constants are zero. The elastic wave-velocity of
a transversely isotropic material is dependent of the elastic constant and the angle y between
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the rotation-symmetry axis and the wave-propagation direction. The primary wave velocity Vp�y

and shear-wave velocities, Vsh�y and Vsv�y; of elastic body wave can be expressed as follows [14]

Vsh�y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE66 cos2yþ E44 sin

2yÞ=rd

q
ð12Þ

Vp�y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4c

p
Þ=2rd

q
ð13Þ

Vsv�y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4c

p
Þ=2rd

q
ð14Þ

in which b ¼ �ðE11 sin
2yþ E33 cos

2yþ E66Þ; c ¼ ðE11 sin
2yþ E66 cos

2yÞðE66 sin
2yþ E33 cos

2yÞ �
ðE12 þ E66Þ

2 cos2y sin2y; Vp; Vsh�y; Vsv�y and y are defined in Figure 3. In the remaining section,
granular materials are assumed transversely isotropic.

2.4. Optimization method

Optimization aims to search for the optimized value of a non-linear object function Ffxg: In this
study, Ffxg is defined as a non-linear ‘error square’ function, which is the square sum of the
differences between ‘n’ (model) calculated data, UiðfxgÞ; ði ¼ 1; nÞ and ‘n’ measured data of
wave-velocity, Vi; ði ¼ 1; nÞ as follows.

Ffxg ¼
Xn
i¼1

½UiðfxgÞ � Vi�2 ð15Þ

in which fxg represents a vector containing the undetermined parameters; in this work, fxg
contains a; b and D33 for fabric tensors of rank 2, and contains a;b;D33; and D3333 for fabric

Figure 3. Directions of primary and shear wave propagation and polarization
through a transversely isotropic material [14].
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tensors of rank 4. The involved non-linear optimization aims to search for a set of fxg
corresponding to a series of UiðfxgÞ; ði ¼ 1; nÞ such that the error square function can be
minimized.

This study made use of a two-step optimization procedure combining the genetic algorithm
[19] with non-linear optimization by the Levenberg-Marquardt method [20] to search for the
most suitable microscopic parameters from a set of measured wave velocities. The optimization
procedure began with the genetic algorithm in order to obtain a number of solutions as
candidates. Subsequently, these candidates were planted as the initial guess of solution in the
non-linear optimization method in order to refine the solution. This combined use of
optimization worked well.

3. EXPERIMENTAL SET-UP AND PROCEDURE

The sample used in the tests was Ottawa Sand (C-109) with the index properties listed in Table I.
A series of laboratory tests made use of a set-up of axis-symmetric field simulator [15] to house
the test specimen and control the K0 loading condition. The simulator is a close-loop system that
is capable of controlling various lateral boundary conditions. Figure 4 shows the layout of the
field simulator. The sand specimen, 790 mm in diameter and up to 910 mm high, is housed in a
stack of 11 rings made of steel; each ring (80:5 mm high) is lined with an inflatable silicone
rubber membrane on the inside to allow circumferential displacement (extensometer)
measurement and stress control (by air pressure). Specimens were prepared by dry pluviation
using a sand-rainer. The relative density of the specimen was controlled by the opening slot size
of the sand-rainer’s base. Specimens of three different relative densities, i.e. Dr ¼ 95% ðe ¼
0:513Þ; Dr ¼ 62:3% ðe ¼ 0:598Þ and Dr ¼ 46:5% ðe ¼ 0:639Þ; were prepared and tested in this
study.

The equipment for measuring wave velocities included a wave generator, an amplifier, and a
series of geophones (served as both the wave activators and the receivers) and a spectrum
analyser. Figure 5 shows the configuration of test equipment. The wave velocity was determined
by dividing the distance between the wave activator and receiver by the travel time between
them. Figure 6 shows the layout of geophones. In each specimen, twenty-two geophones were
installed in five subsequent layers. The pluviation for preparing the specimen proceeded in six
stages. As the specimen reached a specific elevation, the pluviation was halted and the
geophones were installed. Their locations were engineered to measure wave velocity propagating
along various directions.

Table I. Properties of Ottawa Sand (C-109).

Mineral Quartz
Shape Rounded
emax 0.76
emin 0.50
Gs 2.65
D60(mm) 0.36
D10(mm) 0.23
Cu 1.56
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During the whole course of a test (including the air-pluviated preparation of specimen and the
application of loading), the lateral boundary of specimen was maintained at a near K0 condition.
The lateral stress in rings was adjusted to allow the circumferential deformation within
�0:005 mm (corresponding to a strain within �2� 10�6). The threshold deformation was
able to simulate K0 condition and immune from the influence of signal noise.

The vertical loading was applied in a sequence of 0 kPa ! 26:73 kPa ! 51:7 kPa ! 100:05
kPa ! 51:7 kPa ! 26:73 kPa ! 0 kPa while the specimen was maintained in a K0 condition.
In addition to the applied loading, the specimen was subjected to an initial stress from its

Figure 4. Layout of field simulator [15].

Figure 5. Layout of equipments.
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self-weight and the weight of top plate, which made a total of 10:49 kPa for Dr ¼ 46:5%;
10:67 kPa for Dr ¼ 62:3% or 11:08 kPa for Dr ¼ 95%: For each loading stage, the P- and S-wave
velocities between each pair of the source and receiver geophones were measured to obtain wave
velocities along various directions of wave-propagation. The size of the field simulator
inevitably limited the maximum number of installed geophones; a total of ten wave velocities
were measured, including five P-wave velocities, three SH-wave velocities, and two SV-wave
velocities along various wave-propagation directions.

Figure 6. Layout of geophones in a specimen.
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4. RESULTS AND ANALYSIS

4.1. Sample characteristics

The sample used in this study is Ottawa sand composed of nearly pure quartz. The elastic
constants of the particles were assumed as the elastic constants of crystal quartz with
Es ¼ 86:85 GPa} and Gs ¼ 31:14 GPa (see footnote } ), the corresponding Poisson’s ratio, ns; is
0.39. The frictional angle between quartz particles is 268 [21]. Oda [22] concluded that the
average co-ordination number, N ; of a granular assembly had a strong correlation with void
ratio e; and was not affected by the grain-size distribution. Chang et al. [2] collected published
data [22–24] and suggested N can be estimated from void ratio using the following equation:

e ¼ 1:66� 0:125N ð16Þ

This work adopted the empirical equati !oon of Chang et al. [2] to evaluate N :

4.2. Measured wave velocities

In each specimen, P- and S-wave velocities along various directions were measured by means of
geophones embedded in the specimen. Figures 7–12 present the results of wave velocity
measurements. Figures 7–9 show the wave-velocity distributions in loading stages, while Figures
10–12 show the distributions in unloading stages. In these figures, ‘Vp�m’ and ‘Vsh�m’,
respectively, denote the measured P- and SH-wave velocities. The calculated wave-velocity
distributions are also included in these figures for comparison and will be discussed in the latter
context.

4.3. Measured stresses

A stack of eleven rings housed the tested specimen. To minimize the boundary effect, the results
of stress measurements near the top and bottom were ignored. Only the results in the seven
intermediate rings were picked up for the analysis of stresses. Columns 3, 4, and 5 in Table II
compile the applied vertical stress sv; the average (measured) horizontal stress ðshÞave; and the K0

obtained for the specimens of various Dr: The comparison of the measured K0 clearly
demonstrated two trends: (1) a specimen with a higher Dr has a lower K0 and their relation
agrees well with the Jaky’s formula, K0 ¼ 1� sin f0; by taking into account the relation between
Dr and f0; and (2) K0 during unloading is significantly larger than K0 during loading.

5. CALCULATED RESULTS AND DISCUSSION

In the present work, a specimen was maintained in a K0 condition with controlled vertical stress.
The unknown parameters were back calculated from the measured wave velocities and stress
state. Since these unknown parameters describe the contact status of a granular assembly, they
are termed ‘microscopic parameters’ hereafter. These microscopic parameters include D33 (for
fabric tensor of rank 2) or D33=D3333 (for fabric tensor of rank 4), the normal contact stiffness a
and the shear contact stiffness b:

}data from http://www.crystran.co.uk/qutzdata.htm.
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The last four columns in Table II list the calibrated results for various cases. To examine the
adequacy of the calibrated results, the wave velocities calculated with the calibrated parameters
were compared with the measured wave velocities in Figures 7 through 12. For loading stages,
the measured data set altogether were used to calibrate the average microscopic parameters.
Figures 7, 8 and 9, respectively, compare the distributions of the calculated and measured wave
velocities in loading stages for Dr ¼ 95%; Dr ¼ 62:3% and Dr ¼ 46:5%; while Figures 10, 11 and
12, respectively, compare the distributions of the calculated and measured wave velocities in
unloading stages for Dr ¼ 95%; Dr ¼ 62:3% and Dr ¼ 46:5%: In these figures, ‘Vp�c’ and ‘Vsh�c’
denote the calculated P- and SH-wave, respectively; ‘R2’ denotes using fabric tensor of rank 2,
‘R4’ denotes using fabric tensor of rank 4.

Table III lists the average percentages of differences between the measured wave velocities
and the wave velocities calculated with the calibrated parameters. The results’ comparison
indicated that the average percentages of differences using the fabric tensor of rank 4 were less
than those using the fabric tensor of rank 2 in various loading stages for various relative
densities. It clearly demonstrated that the distribution of wave velocities could be better

Figure 7. Comparison of the calculated and measured wave velocity distributions in
various loading stages for Dr ¼ 95%:
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modelled by using fabric tensor of rank 4 than rank 2 for describing the contact normal
distribution.

Discussion on the calibrated results of microscopic parameters follows.

5.1. Normal contact stiffness parameter a

The normal contact stiffness can be expressed in the form of kn ¼ C1 � f g
n : According to the Hertz

contact theory, g equals to 1
3
; while g should equal to 1

2
based on the assumption of cone-to-plane

contact [25]. Considering the contact mechanism of sand particles may be inelastic, non-linear,
roughly contacted, and non-circular, Chang et al. [26] pointed out that the g and C1;
respectively, for sand particles may be somewhat higher and lower, respectively, than what
Hertz-Mindlin theory predicts [27]. Experimental data [28] supports that g actually lies between 1

3

and 1
2
: This study expressed the normal contact stiffness in the form of kn ¼ C1f 1�2a

n ; the
parameter a should be within 1

4
and 1

3
: Hence, for the calibration of a; the upper and lower

bounds were set to 1
3
and 1

4
respectively. All calibrated a were between the upper and the lower

limits.

Figure 8. Comparison of the calculated and measured wave velocity distributions in
various loading stages for Dr ¼ 62:3%:
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5.2. Shear contact stiffness parameter b

Mindlin and Deresiewicz [29] studied the shear contact compliance between two elastically
contacted spheres under varying oblique forces. For a particulate assembly, however, every
particle may contact with several other particles. It seems unlikely that all shear contact stiffness
of particles can satisfy the shear contact relations derived by Mindlin and Deresiewicz [29].
Furthermore, it is difficult to employ the incremental form of shear contact relations practically.
For these concerns, the present work expressed the shear contact stiffness in the following form.

kr ¼ C2 1�
fr

fn tan fm

 !b
kn as fr5fn tan fm ð17Þ

kr ¼ 0 for frvfn tan fm ð18Þ

The shear contact stiffness parameter b should be non-negative; the condition b ¼ 0 implied
there was no local slippage that took place at the contact-point and the shear contact stiffness

Figure 9. Comparison of the calculated and measured wave velocity distributions in
various unloading stages for Dr ¼ 46:5%:
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did not depend on the shear contact-force. Hence, the lower bound of b was set to 0. The
calibrated b of a specimen with a higher Dr appears to be smaller. This is reasonable because a
higher Dr (corresponding to a smaller void ratio) implies to a larger co-ordination number
(according to Equation (16)), and will result in a stronger constraint to inter-particle slippage or
rotation.

5.3. Fabric parameter D33ðrank 2Þ or D33=D3333ðrank 4Þ

The fabric parameter D33 (rank 2) or D33=D3333 (rank 4) determines the contact normal
distribution in a granular assembly. Figures 13–15 show the calculated contact normal
distributions after calibration. In these figures, ‘L’ denotes loading stage and ‘U’ denotes
unloading stage. Discussions follow:

5.3.1. Fabric parameter of rank 2ðD33Þ. In K0 loading stages, D33 of very dense Ottawa
sand ðDr ¼ 95%Þ was close to 0. It indicated that the contact normal distribution of the
granular assembly at a very dense state tends to be rather isotropic or directionally uniform as
shown in Figure 13(a). During K0-unloading, however, D33 were negative; it indicated that
the horizontal contact normal were more than the vertical contact normal, as shown in

Figure 10. Comparison of the calculated and measured wave velocity distributions in
various unloading stages for Dr ¼ 95%:
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Figure 13(b) and 13(c). On the other hand, D33 in K0-loading for medium dense or loose
Ottawa sand (Dr ¼ 62:3% and Dr ¼ 46:5%) were both positive. It implied that the number of
contact points was significantly more abundant along the vertical direction than along
the lateral direction as shown in Figures 14(a) and 15(a); it can also be noted that the
Ottawa sand of lower Dr displayed a larger D33: While in various unloading stages, in spite
the shapes of their contact normal distributions were similar, D33 were smaller than the D33

in loading stages as shown in Figures 14(b)–(c) and 15(b)–(c). For example, D33 of Dr ¼ 62:3%
after K0-unloading was reduced to near 0. A more pronounced difference in the contact
density along various directions in a granular assembly would result in more anisotropic
mechanical properties.

5.3.2. Fabric parameters of rank 4 ðD33 and D3333Þ. The fabric coefficient D3333 may play a role
of distorting the shape of density distribution in oblique directions, say y ¼ 458: For negative
D3333; the shape of density distribution bulges outward in y ¼ 458 direction, hence it resulted in
an increase of the density in y ¼ 458 direction and a decrease in both the vertical and horizontal
directions; vice versa is true for a positive D3333:

Figure 11. Comparison of the calculated and measured wave velocity distributions in
various unloading stages for Dr ¼ 62:3%:
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For Dr ¼ 95% in K0 loadings, contact normal distribution has its highest density in an oblique
direction near y ¼ 458; as shown in Figure 13(d). In this case, the resultant horizontal
component is pretty close to the resultant vertical component. For K0 unloading stages, the
shape of density distribution remains similar to that in K0 loading stages. However, the density
in vertical direction decreases while the density in horizontal direction increases, as shown in
Figure 13(e) and 13(f). The resultant horizontal component becomes larger than the resultant
vertical component; this trend agrees with the case using rank 2.

For Dr ¼ 62:3% in K0 loadings, contact normal distribution has its lowest and highest
densities in oblique (near y ¼ 458) and vertical ðy ¼ 08) directions, respectively, as shown in
Figure 14(d). For K0 unloading, the density along oblique direction remains the lowest among
all directions; also, the densities in vertical and horizontal directions get closer, as shown in
Figure 14(e) and 14(f ).

For Dr ¼ 46:5% in K0 loading, contact normal distribution has its highest and lowest densities
in the vertical and horizontal directions, respectively, as shown in Figure 15(d). Since D3333 is
close to 0, this contact normal distribution appears very similar to that using rank 2. In
unloading, D3333 increases with decreasing sv; as a result, the density in oblique direction
decreases with decreasing sv; as shown in Figure 15(e) and 15(f ).

Figure 12. Comparison of the calculated and measured wave velocity distributions in
various unloading stages for Dr ¼ 46:5%:
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The above illustrations of the calibrated fabrics deserve more elaboration. Although less
complicated, the distribution density for fabric of rank 2 is only capable of describing simpler
shapes of fabric distribution such as round, elliptical or peanut-like shapes. Using fabric of
rank 4 with D33 and D3333; on the other hand, raises the flexibility for describing the shape of
contact normal distribution.

Geometric fabrics calibrated using fabric of rank 4 for a very dense specimen ðDr ¼ 95%Þ
showed that the densest distribution of geometric fabric is along an oblique direction, which
was very different from those for looser specimens (Dr ¼ 62:3% and Dr ¼ 46:5%). This may
be attributed to the pluviation fabric and the applied shear stress level: the pluviation fabric
of a very dense specimen was much more isotropic hence was likely to generate a bulged
fabric near y ¼ 458 direction when the specimen was subjected shear stress. A change in
shear stress would increase or decrease the density of geometric fabric along the 458 direction,
Eðy ¼ 458Þ; depending on the change in shear stress; for instance, Eðy ¼ 458Þ for a specimen
subjected to a larger shear stress, it should be larger than that for the same specimen subjected
to a smaller shear stress. The influence of shear stress on geometric fabric can be examined
by the relation between tmax=sm (the maximum shear stress divided by the mean principal stress)

Table II. Experiment and calibrated results.

sv ðshÞave
Calibrated parameters

(kPa) (kPa) K0 Rank a b D33 D3333

37.81 17.11 0.453 2 0.2956 0.029 �0:08 }
Loading
stages

62.78 26.97 0.430
4 0.2949 0 �0:01 �0:78111.13 46.49 0.418

Dr ¼ 95% 62.78 39.39 0.627
2 0.2958 0.014 �0:29 }

Unloading
stages

4 0.2958 0.005 �0:25 �0:75

37.81 28.80 0.762
2 0.2951 0.033 �0:42 }

4 0.2948 0 �0:37 �0:62

37.4 16.56 0.443 2 0.2918 0.062 0.23 }
Loading
stages

62.37 28.04 0.450
4 0.2922 0.106 0.19 0.48

110.72 51.06 0.461

Dr ¼ 62:3%
62.37 41.71 0.669 2 0.2922 0.361 0.03 }

Unloading
stages

4 0.2924 0.41 0.02 0.25

37.4 30.26 0.809
2 0.2901 0.036 0.03 }

4 0.2905 0.225 0.01 0.52

37.22 19.46 0.523 2 0.2902 0.276 0.38 }
Loading
stages

62.19 30.70 0.494
4 0.2902 0.272 0.40 �0:01

110.54 53.71 0.486
2 0.2906 0.547 0.34 }

Dr ¼ 46:5%

62.19 38.26 0.615 4 0.2907 0.559 0.33 0.06
Unloading

stages
37.22 25.43 0.683

2 0.2917 1.536 0.30 }

4 0.2920 1.736 0.28 0.50
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and Eðy ¼ 458Þ: Eðy ¼ 458Þ of a fully isotropic geometric fabric which is equal to 1=4p: It
can be noted that the normalized shear stress ðsv � shÞ=ðsv þ shÞ in the first unloading stage
was larger than that in the second unloading stage, while Eðy ¼ 458Þ of rank 4 at the first
unloading stage was larger than that at the second unloading, as shown in Table IV. This
trend cannot be predicted by fabric tensor of rank 2 because of its limitation. It reveals the
superiority of the fabric tensor of rank 4 over rank 2 in modelling fabric evolution.

The role of geometric fabric on the stress state of K0 loading/unloading was further
explored. For this purpose, the total vertical component FV and the total horizontal component
FH of geometric fabric were introduced. FV was the resultant of the vertical component
of geometric fabric in the upper half space projected onto the vertical axis (axis-3) ð¼

R p=2
0R 2p

0 cos y Eðo; yÞ sin y do dyÞ and FH was the resultant of horizontal component of geometric
fabric in the right (or left) half space projected on axis-1 or axis-2 (using a similar integral as
the above but with an inter-changed integral domain). These integrations yielded the
following results.

FV ¼
1

4
1þ

D33

4
�

D3333

24

� �
ð19Þ

Table III. Average percentage of differences between the measured and the calculated wave velocities.

Calibrated parameters
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

Vm�Vc
Vc

� �2
n

s
sv (kPa) K0 Rank a b D33 D3333 (%)

Loading
stages 37.81–111.13 0.418–0.453

2 0.2956 0.029 �0:08 } 1.786

4 0.2949 0 �0:01 �0:78 1.699

Dr ¼ 95%
2 0.2958 0.014 �0:29 } 1.974

Unloading
stages

62.78 0.627
4 0.2958 0.005 �0:25 �0:75 1.644

2 0.2951 0.033 �0:42 } 2.02437.81 0.762
4 0.2948 0 �0:37 �0:62 1.918

Loading
stages 37.4–110.72 0.443–0.461

2 0.2918 0.062 0.23 } 1.432

4 0.2922 0.106 0.19 0.48 1.380

Dr ¼ 62:3%
2 0.2922 0.361 0.03 } 1.123

62.37 0.669
4 0.2924 0.41 0.02 0.25 1.098Unloading

stages
37.4 0.809

2 0.2901 0.036 0.03 } 2.089

4 0.2905 0.225 0.01 0.52 2.047

Loading
stages 37.22–110.54 0.486–0.523

2 0.2902 0.276 0.38 } 2.180

4 0.2902 0.272 0.40 �0:01 2.179

Dr ¼ 46:5%
2 0.2906 0.547 0.34 } 1.462

Unloading
stages

62.19 0.615
4 0.2907 0.559 0.33 0.06 1.461

37.22 0.683
2 0.2917 1.536 0.30 } 1.395

4 0.2920 1.736 0.28 0.50 1.230
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FH ¼
1

4
1�

D33

8
�

D3333

64

� �
ð20Þ

For a fully isotropic geometric fabric, both FH and FV are equal to 1
4
; so the ratio FH=FV is

equal to 1. Table V lists K0; FH; FV and FH=FV for various cases. The ratio FH=FV in unloading
appears significantly larger than in loading. Table V also shows that FH=FV increases with
increasing K0: The increasing ratio of FH=FV during unloading implies an increase of relative
constraint in lateral directions in order to maintain a state of K0 condition. This may be
responsible for the fact that K0 in unloading stages was always larger than K0 in loading stage.

Figure 13. Evolutions of fabric of rank 2 ((a)–(c)) and rank 4 ((d)–(f)) in various loadings for Dr ¼ 95%:
(a) sv ¼ 37:81–111:13 kPaðLÞ; (b) sv ¼ 62:78 kPaðUÞ; (c) sv ¼ 37:81 kPaðUÞ; (d) sv ¼ 37:81–111:13 kPaðLÞ;

(e) sv ¼ 62:78 kPaðUÞ; and (f ) sv ¼ 37:81 kPaðUÞ:
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6. CONCLUSIONS

This study aimed to investigate the fabric evolution in K0 loading and unloading. This work
made use of a field simulator to control K0 loading/unloading in large specimens prepared by
air-pluviation. Experimentally determined K0 agreed well with the exiting empirical relations. In
each loading stage, wave velocities along various propagation directions were measured. On the

Figure 14. Evolutions of fabric of rank 2 ((a)–(c)) and rank 4 ((d)–(f)) in various loadings for Dr ¼ 62:3%:
(a) sv ¼ 37:4–110:72 kPaðLÞ; (b) sv ¼ 62:37 kPaðUÞ; (c) sv ¼ 37:4 kPaðUÞ; (d) sv ¼ 37:4–110:72 kPaðLÞ;

(e) sv ¼ 62:37 kPaðUÞ; and (f ) sv ¼ 37:4 kPaðUÞ:
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basis of the theories of micro-mechanics and wave propagation, the microscopic parameters of
the granular assembly were back calculated to investigate the fabric evolution of granular soil
during K0 loading/unloading.

Geometric fabric was modelled by fabric tensors of ranks 2 and 4 separately in this study. The
fabric parameter D33 (rank 2) or D33=D3333 (rank 4) determines the contact normal distribution
in a granular assembly. The expression of geometric fabric in fabric of rank 2 with D33 only is
less complicated but limited; using fabric of rank 4 with D33 and D3333; on the other hand, raises
the flexibility for describing the shape of contact normal distribution. The relation between the
normalized shear stress ðsv � shÞ=ðsv þ shÞ and Eðy ¼ 458Þ was examined to explore the
influence of shear stress on geometric fabric. The ratio ðsv � shÞ=ðsv þ shÞ in the first unloading

Figure 15. Evolutions of fabric of rank 2 ((a)–(c)) and rank 4 ((d)–(f)) in various loadings for Dr ¼ 46:5%:
(a) sv ¼ 37:22–110:54 kPaðLÞ; (b) sv ¼ 62:19 kPaðUÞ; (c) sv ¼ 37:22 kPaðUÞ; (d) sv ¼ 37:22–110:54

kPaðLÞ; (e) sv ¼ 62:19 kPaðUÞ; and (f ) sv ¼ 37:22 kPaðUÞ:
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Table IV. Stresses and EðyÞ for various cases.

sv ðshÞ
tmax=sm Rank

Distribution probability

(kPa) (kPa) Eðy ¼ 08Þ Eðy ¼ 908Þ Eðy ¼ 458Þ

2 0.057 0.091 0.074

Unloading
stages

62.78 39.39 0.23
4 0 0.067 0.099

Dr ¼ 95% 37.81 28.80 0.14
2 0.046 0.096 0.071

4 0.001 0.076 0.092

Unloading
stages

62.37 41.71 0.20
2 0.082 0.078 0.080

Dr ¼ 62:3%
4 0.101 0.086 0.072

37.4 30.26 0.11
2 0.082 0.078 0.080

4 0.122 0.095 0.063

Unloading
stages

62.19 38.26 0.24
2 0.107 0.066 0.086

Dr ¼ 46:5%
4 0.111 0.068 0.084

37.22 25.43 0.19
2 0.103 0.083 0.069

4 0.142 0.083 0.069

Table V. Relation between K0 and FH=Fv:

sv
K0 Rank

Statistical parameters

(kPa) FH Fv FH=Fv

Loading
stages

37.81–111.13 0.418–0.453
2 0.253 0.245 1.033
4 0.253 0.258 0.981

Dr ¼ 95% Unloading
stages

62.78 0.627 2 0.259 0.232 1.116

4 0.261 0.242 1.079

37.81 0.762
2 0.263 0.224 1.174

4 0.264 0.233 1.133

Loading
stages

37.4–110.72 0.443–0.461
2 0.243 0.264 0.920

4 0.242 0.257 0.942
Dr ¼ 62:3%

Unloading
stages

62.37 0.669
2 0.249 0.252 0.988

4 0.248 0.249 0.996

37.4 0.809 2 0.249 0.252 0.988

4 0.248 0.245 1.012

Loading
stages

37.22–110.54 0.486–0.523
2 0.238 0.274 0.869

4 0.238 0.275 0.865
Dr ¼ 46:5%

62.19 0.615
2 0.239 0.271 0.882

Unloading
stages

4 0.239 0.270 0.885

37.22 0.683
2 0.241 0.269 0.896

4 0.239 0.262 0.912
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stage was larger than that in the second unloading stage, while Eðy ¼ 458Þ of rank 4 at the first
unloading stage was larger than that at the second unloading. This trend, however, was not
predicted by fabric tensor of rank 2 because of its limitation. It reveals the advantage of using
the fabric tensor of rank 4 in modelling fabric evolution in spite of its complexity.

By comparing total vertical component FV and the total horizontal component FH of
geometric fabric, it appears that the ratio FH=FV in the unloading stage is significantly larger
than in the loading stage. Also, FH=FV increases with increasing K0: The increasing ratio of
FH=FV during unloading implies increasing relative constraint in lateral directions in order to
maintain a K0 condition. Residual fabric change is accompanied with K0 unloading. This
explains why K0 in unloading stages was always larger than K0 in loading stage-fabric evolution
is responsible for the change in K0:
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