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[1] Electromagnetic wave propagation along waveguides having two-dimensionally
(2-D) periodic walls with finite thickness is formulated here as an exact boundary-value
problem. The dispersion relation of such a class of waveguide is systematically analyzed
in terms of both phase and attenuation constants. In addition, the contour map of field
components and Poynting vector are also demonstrated in this paper to verify the guiding
characteristics of such a class of waveguides. In particular, the strong couplings between
an incident plane wave and waveguide modes phase-matching condition are carefully
examined and are employed to identify the existence of waveguide modes. INDEX
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1. Introduction

[2] The development of artificial materials by con-
structing lattice structures has gained considerable atten-
tion in recent years; in particular, the stop-band
phenomenon associated with lattice structures has found
many applications. For example, an antenna substrate
etched with two-dimensionally (2-D) periodic holes has
been utilized to suppress the surface waves introduced by
printed antenna [Yang, 1996; Gauthier et al., 1997;
Papapolymerou et al., 1998; Lubecke et al., 1998]. The
2-D periodic layers in conjunction with planar structures
have been investigated for both optical and microwave
applications; one example is a high impedance surface
that will not support a surface wave in any direction
[Sievenpiper et al., 1999; Yang et al., 1999]. A 2-D
periodic impedance surface has been employed as a
simplified model to study its scattering and guiding
characteristics, especially for its stop-band behaviors in
bound-wave and leaky-wave regions [Hwang and Peng,
1999a, 1999b]. A 2-D periodic array of dielectric rods in

a uniform surrounding has been shown to exhibit many
interesting phenomena, such as spontaneous emission
and localization of electromagnetic energy. The large
pixels (square rods of dielectric material) have been
proved to be able to obtain a very large absolute band
gap [Shen et al., 2002]. In addition, they also provided a
fast plane-wave expansion method to speed up the
computation for the band structure. Specifically, the
periodic arrays of dielectric materials were employed
as a novel waveguide to mold the flow of electromag-
netic energy or as a novel cavity to store the energy
[Mekis et al., 1999; Maystre, 1994; Joannopoulos et al.,
1995; Noponen and Turunen, 1994; Vardaxoglou et al.,
1993]. Although the phenomenon of waveguiding in
such a class of structures has been demonstrated by
means of numerical and experimental studies, the pur-
pose of this work is to gain a clear physical picture of
wave processes involved and to develop design rules for
practical considerations.
[3] The basic concept of this class of applications can

be traced back to the early work of Larsen and Oliner
[1967], who had used one-dimensionally (1-D) periodic
dielectric slabs to form waveguide walls that are operated
in their stop-band or below-cutoff condition. In this
paper, we extend the structure to the two-dimensional
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case; that is, we replace the waveguide walls by finite
stacks of 1-D periodic layers rather than uniform ones.
For the purpose of comparison, the guiding character-
istics of waveguides with uniform periodic dielectric
layers are also investigated [Hwang and Peng, 2002].
[4] Specifically, the structure under consideration is a

waveguide with 2-D periodic walls made of rectangular
dielectric rods array immersed in a uniform surrounding,
such as air. The 2-D periodic array is composed of a
finite number of one-dimensionally periodic layers that
are stacked with equal spacing between two neighboring
ones. Each periodic layer is composed of an infinite
number of rectangular dielectric rods of infinite length.
In addition, we may displace every second row by a
fractional part of the period to have any 2-D lattice
pattern, so that the effect of the array pattern can be
systematically investigated with ease. In this work, we
shall employ the transverse resonance technique to
obtain the dispersion relation; thus, the first step is to
study the scattering characteristics of 2-D periodic
dielectric rods array with finite thickness.
[5] The scattering characteristics of such a structure

can be easily analyzed as a multilayer boundary-value
problem. Here, we take the building block approach,
such that the overall 2-D periodic structure can be
regarded as a stack of unit cells, each consisting of a
1-D periodic layer in junction with a uniform one. By the
rigorous method of mode matching, the input-output
relation of a unit cell and the field distributions therein
can be determined in a straightforward manner. It is
noted that the present method offers a flexible approach
to the analysis of 1-D periodic layer with arbitrary profile
by making use of the staircase approximation to model it
as a stack of cascaded 1-D periodic layers with different

sizes of dielectric rods. In the absence of any incident
wave, the existence of a non-trivial solution defines the
condition of resonance in the transverse direction of the
waveguide; in turn, this determines the dispersion rela-
tion of the waveguide.
[6] Based on the exact approach described above, we

have carried out extensive numerical results to identify
and explain the physical phenomena associated with the
type of waveguides with 2-D periodic walls of finite
thickness. Their dispersion characteristics are displayed
in terms of both phase and attenuation constants. In
particular, the contour plot for electric and magnetic
field components and distribution of Poynting vector
are used to gain a better understanding of the physical
processes involved in the waveguiding in such a type of
structures. Besides, the strong coupling between the
incident plane wave and guided modes has also been
studied in detail, including the mutual verification with
the field and Poynting-vector distribution in the struc-
ture; these results establish consistently the distinctive
characteristics of the waveguide with 2-D periodic walls
of finite thickness from different viewpoints.

2. Statement of Problem

[7] Figure 1 shows a periodic structure with a finite
number of unit cells, each consisting of a periodic layer
in junction with a uniform one. While each periodic layer
is composed of an infinite number of rectangular dielec-
tric rods of infinite length, the structure can be viewed as
an unbounded 2-D periodic medium, particularly when
the number of the periodic layers in a stack is increased
indefinitely. Therefore, we may infer the propagation
characteristics of the 2-D periodic medium by the scat-

Figure 1. Structure configuration of waveguide with 2-D periodic walls of finite thickness.
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tering characteristics of a stack of sufficiently large
number of 1-D periodic layers. With the coordinate
system attached therein, the dielectric rods in each layer
has the width a1 and the distance between two neigh-
boring rods is a2, so that the period of the layer is a =
a1 + a2. For simplicity, a1/a will be referred to as the
aspect ratio of the 1-D periodic layer. The thickness of
the 1-D periodic layers is b1 and the separation between
two neighboring ones is b2. In general, we assume that
between two neighboring layers, there is a relative
position shift of the distance s in the lateral direction,
so that we may investigate the effect of a large class of
array patterns on the propagation characteristics of a 2-D
periodic medium by adjusting the parameter s in our
analysis. For example, we have a square array pattern for
s = 0 and a triangular array pattern for s = 0.5a. Notice
that for an arbitrary value of s, b = b1 + b2 is not
necessary the period of the structure in the y-direction.
Actually, the structure has a period

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ b2

p
along the

direction at the angle q = sin�1(s/b) from the y-axis;
nevertheless, the ratio b1/b will be referred to as the
aspect ratio in the y-direction.

3. Mathematical Formulation

[8] Since the scattering of plane-wave by a stack of
1-D periodic layers has been well developed as a
rigorous boundary-value problem [Hwang and Peng,
2002; Peng, 1989; Peng et al., 1975; Tamir et al.,
1964; Hessel and Oliner, 1965; Hall et al., 1988], the
derivation of the input-output relation for a 1-D periodic
layer is briefly outlined here, while more details are
referred to the literature [Peng et al., 1975]. Specifically,
the results in the form of input impedance and transfer
matrices will be used as the building block to analyze the
plane-wave scattering by the stack of periodic layers.

3.1. Input-Output Relation of 1-D Periodic Layer

[9] The 1-D periodic layer is assumed to be vertically
uniform and is characterized by a relative dielectric
constant that is periodic along the x-direction, as:

e xð Þ ¼ e xþ dð Þ; ð1Þ

where d is the period. Due to the spatial periodicity, a set
of Fourier components or space harmonics is generated
everywhere in the structure; the propagation constant of
the nth space harmonic in the x- direction is given by:

kxn ¼ kx þ n
2p
d
; for n ¼ . . . ;�2;�1; 0; 1; 2; . . . ; ð2Þ

where kx is the fundamental wavenumber along
x-direction. Based on Floquet’s theorem, the general
field solutions can be expressed as a superposition of
the complete set of space harmonics. With respect to the

z-direction, the tangential electric and magnetic field
solutions in 1-D periodic medium can be written, for the
TE mode, as [Peng et al., 1975]:

Eyðx; zÞ ¼
X1
n¼�1

X1
m¼�1

PmnVmðzÞe�jkxnx ð3aÞ

Hxðx; zÞ ¼ �
X1
n¼�1

X1
m¼�1

QmnImðzÞe�jkxnx ð3bÞ

with the shorthand notations:

VmðzÞ ¼ e�jkzmzcm þ ejkzmzdm ð4aÞ

ImðzÞ ¼ Ym e�jkzmzcm � ejkzmzdm
� �

; ð4bÞ

where kzm is the propagation constant along z-direction
of the mth mode and is determined from the dispersion
relation of the periodic medium for a given kxm, the
propagation constant of the mth space harmonic as
defined in equation (1). Once kzm is obtained, the Fourier
amplitudes, Pmn and Qmn can then be determined in a
straightforward manner. cm and dm are, respectively, the
amplitudes of the forward and backward propagating
waves of the mth mode in the 1-D periodic layer, and Ym
is the corresponding wave admittance.
[10] The field solutions in a uniform medium can be

easily written as a superposition of all space harmonics,
each propagating independently as a plane wave. By
imposing the continuity of tangential field components
across the interfaces between the periodic and uniform
layers, we can obtain the input-output relations of the
periodic layer. The detailed mathematical derivations can
be found in Hwang and Peng [2002]; the most important
results are the input impedance and the transfer matrices
that are given, respectively, as:

Zin ¼ QðIþ &inÞðI� &inÞ�1
P�1 ð5aÞ

T ¼ Q Iþ &out½ 	 expð�jkzdÞðIþ &tÞ�1
Q�1 ð5bÞ

with the shorthand notations:

Gt ¼ e�jkztGoute
�jkzt ð5cÞ

&out ¼ ðZoutPþQÞ�1ðZoutP�QÞ; ð5dÞ

where t is the thickness of the 1-D periodic layer, Zout

and Zin are the output and input impedance matrices
looking downward from the lower- and upper- surfaces
of such 1-D periodic layer, respectively. It is noted that
the uniform layer can be regarded as the limiting case of
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1-D periodic layer with vanishing periodic variation.
Thus, the input-output relation of uniform layer will be
simply a diagonal matrix and can be derived without
difficulty.

3.2. Scattering Characteristics of a Stack of 1-D
Periodic Layers

[11] With the input-output relation and transfer matrix
for a single periodic layer described above, we may
employ successively, from the bottom to the top layer, the
input-output relation of a unit cell that consists of a 1-D
periodic layer in junction with a uniform one. Thus we
can obtain the input impedance matrix looking down-
ward from the top surface of the structure, Zdn, that is, the
relationship between the tangential electric and magnetic
field vectors at the reference plane z = 0:

Etð0Þ ¼ ZdnHtð0Þ; ð6Þ

where Et and Ht are infinite column vectors whose
entries consist of the amplitudes of the tangential electric
and magnetic fields in the incident region, such as air. In
terms of the superposition of the incident and reflected
waves, these column vectors may be written in the
following form:

Et 0ð Þ ¼ Za aþ bð Þ ð7aÞ

Ht 0ð Þ ¼ a� b; ð7bÞ

where the vector a and b represent the amplitudes of
incident and reflected plane waves, respectively. The
boundary condition in equation (6) on the tangential field
components on the input surface at z = 0 leads to the
following vector relation:

b ¼ &a ð8aÞ

& ¼ Za þ Zdnð Þ�1
Zdn � Zað Þ; ð8bÞ

where G is the reflection matrix of the stack of periodic
layers. Thus, the reflected amplitudes of all the space
harmonics are now completely determined. We then
obtain the tangential electric and magnetic field over the
input surface by equation (7a). Furthermore, we can
successively employ the transfer matrix of a unit cell,
equation (5d), from the top to bottom layer to obtain the
electric and magnetic fields everywhere within the
structure under consideration.

3.3. Guiding Characteristics of the Stacks of 1-D
Periodic Layers

[12] In the absence of any incident wave, a = 0, and the
existence of nontrivial solutions requires the condition:

detðZa þ ZdnÞ ¼ 0 ð9Þ

which is known as the transverse resonance condition,
which defines the dispersion relation of the waveguide.
Such a determinantal equation of infinite order must be
truncated to a finite order for numerical analysis. We
have implemented a computer code on the basis of the
exact formulation described above to determine the
dispersion root of the waveguide. Extensive results are
obtained systematically for various structural parameters,
in order to identify the wave propagation phenomena and
their physical implications.

4. Numerical Results and Discussions

[13] Based on the exact formulation described in the
preceding section, we are now in a position to carry out
both qualitative and quantitative analyses of guiding
characteristics in such a class of waveguides. First, we
invoke the concept of parallel-plate waveguide to model
the waves propagation inside the defect region. This
allows us to identify in an easy manner various physical
effects associated with the structure in hand and this will
be particularly useful for practical considerations. Sec-
ond, with the truncation of the infinite system of equa-
tions for the Fourier amplitude to a finite order, the
numerical accuracy is carefully studied. It is noted that in
the case of TM mode, considerable improvement on the
convergence rate can be achieved by reformulating the
eigenvalue problems [Lalanne and Morris, 1996; Li,
1996; Ho et al., 1990; Shen and He, 2002]. After the
numerical accuracy is assured, extensive numerical data
are obtained to identify systematically important physical
processes associated with the structure under considera-
tion and to explore promising applications.
[14] The characteristic solutions of the class of 2-D

periodic dielectric array certainly depend on the compo-
sition of the structure. Throughout this work, we shall
consider the case where the relative dielectric constants
of dielectric rod and surrounding medium are 11.4 and
1.0, with the aspect ratio along x and y directions to be
0.4 and 0.6, respectively. By a proper choice of the
parameters a1, a2, b1, b2 and s, we can generate any array
pattern. For example, we may have a triangular pattern
for s = 0.5a, and a square pattern with a1 = a2 = b1 = b2
and the lateral shift s = 0. Specific examples are given
below.

4.1. Contour of Constant Reflection Coefficient

[15] To investigate the reflection of a plane wave by a
2-D periodic dielectric array, contours of constant reflec-
tion coefficient are plotted against the frequency and the
incident angle. These contours provide a simple and
useful procedure for the design of a waveguide for a
desired number of propagating modes.
[16] Figure 2 shows the contour of constant reflection

coefficient for a finite stack of 1-D periodic layers. The
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horizontal axis represents the normalized phase constant
along the x-direction, kxd/2p, and the vertical axis shows
the normalized frequency, d/l. The reflectivity is plotted
in gray-scale color map according to the level specified
by the color bar on the right-hand side of the figure. The
region drawn in bright color shows that of total
reflection, that is, a reflection coefficient that is very
close to unity. For example, the band where the
normalized frequency (d/l) is between 0.30 and 0.35
and the normalized phase constant ranges from 0 to 0.5
corresponds to the region of total reflection. Here, we
may utilize the characteristics of total reflection in such a
region for the design of waveguide walls, so that total
internal reflections may be achieved with the wave
bouncing back and forth between the two walls and its
energy guided along this channel, as in the case of
parallel-plate waveguide.

4.2. Dispersion Characteristics of Waveguide

[17] Before embarking on an elaborate numeri-
cal analysis, it is instructive to consider first the
approximation of the dispersion relation by that of a
corresponding ideal parallel-plate waveguide. The dis-
persion relation of a parallel-plate waveguide with a

distance h between to metal plates can be expressed
explicitly as:

kxd

2p

� �2

þ nd

2h

� �2

¼ d

l

� �2

ea; ð10Þ

where d is the period of 1-D periodic layer along the
x-direction, n is the mode index of the parallel-plate
waveguide. Graphically, such a simple expression can be
plotted into curve in the form of the Brillouin diagram,
and the results are shown in dash line in Figure 3a. The
above equation determines a parabolic curve with
the normalized cutoff frequency located at d/l = d/2h,
for the lowest order mode of parallel-plate waveguide
with either TE or TM polarization. Intuitively, we would
expect a defect waveguide to behave in a similar way as
a corresponding parallel-plate waveguide, if the total
reflections from the waveguide walls are achieved. In
what follows, we shall demonstrate that a parallel-plate
waveguide can indeed provide useful initial data for the
design of defect waveguides. As an example, in view of
the contour map as shown in Figure 2, we may choose
the cutoff condition of the ‘‘reference’’ parallel-plate
wave at the value: d/2h = 0.3 so that its dispersion curve
falls within the region of strong reflection of the stack of

Figure 2. Contour of constant reflection coefficient for the stacks of 1-D periodic layer, where the
number of stack is three.
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2-D periodic structure, as shown with a dash-dot line in
(Figure 3a).
[18] Based on the exact dispersion relation in (10), we

have carried out a systematically evaluation of the
guiding characteristics of the waveguide walls with
square pattern, and the results are likewise displayed in
the form of Brillouin diagram in Figures 3a and 3b for
real and imaginary parts of kx, respectively. It is noted
that the long-dash line is the boundary of the bound-

wave region. The dispersion curves on the left-hand side
of bound-wave boundary represent fast waves (bx 
 ko),
while the those on the other side are slow waves (bx� ko).
From Figure 3a we observe that the variation of phase
constant for such a waveguide follows closely that of the
corresponding parallel-plate waveguide, as expected. It is
noted that in Figure 3a we have designed three cases of
defect waveguide having three, four and five 1-D periodic
layers as their waveguide walls, respectively. From this

Figure 3. (a) Variation of the phase constant versus normalized frequency for different number of
1-D periodic layers; (b) variation of the attenuation constant versus normalized frequency for
different number of 1-D periodic layers.
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figure we observe that the increase of the number of 1-D
periodic layers has a negligible effect on the phase
constant, but it reduces appreciably the attenuation due to
the leakage of energy through the 1-D periodic layers of
finite number, as depicted in Figure 3b.

4.3. Field Contour Plot

[19] To substantiate the guiding characteristics of
waveguide modes in such waveguide, we plot the
contour of electric and magnetic field components for
easy understanding of the physical picture of the wave-
guiding phenomenon. First, we arbitrarily choose one
point (d/2h = 0.3175) on the dispersion curve to plot the
field distribution, as shown in Figures 4a, 4b, and 4c,
respectively, for Ey, Hx and Hz over the waveguide with

square pattern of walls. It is noted that these fields are
plotted with the normalization of the eigenvector,
corresponding to the dispersion root (eigenvalue) as
determined from equation (9), to unity. Referring to the
color bar attached, Figure 4a indicates that the electric
field is concentrated in the waveguide region and
exhibits the localization of power within it. Away from
this region, the fields decay exponentially in the
transverse direction.

4.4. Distribution of Poynting Vector

[20] In addition to the field contour as shown previ-
ously, Poynting vector can also provide us considerable
information about the power flow in waveguide. We
setup a grid with a large number of points in the structure

Figure 4. Distribution of electric and magnetic field components within the waveguide with 2-D
periodic walls (guiding analysis), which is arranged in square pattern: (a) Ey(x, z), (b) Hx(x, z), and
(c) Hz (x, z); (d) distribution of Poynting vector.
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and determine the Poynting vector at each of those grid
points. By the normalization of the amplitude of the
incident plane wave to unity, the resulting pattern is
shown in Figure 4d with the same parameters as those in
Figures 4a–4c. As is well known, the real part of
Poynting vector represents the strength and direction of
power flow. In Figure 4d the distribution of the Poynting
vectors is almost uniform in the central region and is
flowing along the axial direction. On the other hand, the
Poynting vectors away from the waveguide are rather
small; thus, the power leakage is negligible, consistent
with the fact that the attenuation constant is quit small.

4.5. Influence of the Lattice Pattern on the
Propagation Constant of the Localized Mode

[21] In addition to the square pattern, we have also
investigated the dispersion relation for various patterns
with different lateral shift distance s ranging from zero to
a half of the period along x direction. Though not shown,
we have found that the variations of the phase constant

do not change appreciably. In contrast, as shown in
Figure 5, the attenuation constants among them vary
significantly. To the extent of our calculations, the
attenuation constants of square and triangular pattern
yield, respectively, lower and upper bounds of all the
patterns. From these results we may conclude that the
triangular pattern yields the strongest stop-band behavior.
This provides a general guideline for the selection of array
pattern for a specific purpose, tightly bound or otherwise.

4.6. Strong Coupling Between Incident Plane Wave
and Localized Modes in Defect Waveguide

[22] We have carried out extensive numerical experi-
ments with various structure and incident parameters;
however, only a few representative sets are selected here
to illustrate the interesting phenomena that may take place
in the presence of 2-D periodic structure. Figure 6a shows
the reflection intensity of the space harmonic n = 0 versus
the wavelength of the plane wave for various incident
angles. It is important to observe that there exists a sharp

Figure 5. Variation of the attenuation constant versus normalized frequency for various lattice
patterns.
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variation along each curve, as marked by the characters
from A’s to E’s in Figures 6a and 6b.
[23] To explain these unusual behaviors of reflection

characteristics, we recall the dispersion curve of wave-
guide with 2-D periodic walls of triangular pattern.
Referring to the inset in Figure 6b, a plane wave of TE
polarization is incident on such a waveguide at an angle

qinc with respect to the z-axis. The phase constant kx
along the x-direction is given as:

kx ¼ ko sin qinc; ð11Þ

where ko is the free-space wavenumber. For a given
incident angle qinc, the relationship between kxd/2p and

Figure 6. (a) Variation of the reflection intensity versus normalized frequency for various incident
angles; the number of 1-D periodic layer is three and is arranged in triangular pattern; variation of
the phase constant (b) and attenuation constant (c) versus normalized frequency for different
number of 1-D periodic layers arranged in triangular pattern.
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kod/2p can be represented as a straight line passing
through the origin with the slope 1/sinqinc. Here, we plot
the straight line for various angles together with the
Brillouin diagram in Figure 6b. Here, the intersection
points between incident plane wave and waveguide
mode are circled and labeled in alphabetical order for
various incident angles. At each of the intersection
points, the real part of the wavenumber along the x
direction of waveguide mode is the same as that of
incident plane wave, and this is known as the phase-
matching condition for maximum coupling. Over the
frequency range covering all intersection points, we had

calculated the reflected power under the same incident
conditions, as shown in Figure 6a.
[24] Explicitly, we observe that the sharp decreases in

the bandwidth occur at different frequencies as marked
by the characters A0, B0, C0, D0 and E0, respectively.
Comparing to Figure 6b, the position of rapid variation
corresponds to the intersection points A, B, C, D and E,
respectively. It is interesting to note that these intersec-
tion points have very small attenuation constant for the
waveguide, as shown in Figure 6c; thus, good phase-
matching conditions occurs at these points, and a strong
coupling takes place between the incident plane wave

Figure 7. Distribution of electric and magnetic field components within the waveguide with 2-D
periodic walls (scattering analysis), which is arranged in triangular pattern: (a) Ey(x, z), (b) Hx(x, z),
and (c) Hz(x, z); (d) distribution of Poynting vector.
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and a waveguide mode. In particular, the two cases C and
D have very narrow bandwidths, because these are high-
Q operation with the attenuation constant of waveguide
nearly equal to zero.
[25] To understand the coupling of energy under the

phase-matching condition, we also plot the contour for
the electric and magnetic field components, as we have
done in the previous example. Here, the incident angle is
designated as 30� and the normalized frequency is d/l =
0.317, which is located at the intersection point C. It is
interesting to note that the field pattern shown in

Figures 7a to 7d is identical to that shown in Figure 4.
It is evident that under the phase-matching condition, the
energy of the incident plane wave is converted into that
of the waveguide.
[26] In contrast to the phase-matching condition be-

tween the incident plane wave and a waveguide mode,
we choose a point away from the intersection point, that
is, the incident angle is qinc = 30� and the normalized
frequency is d/l = 0.35. Since this operation point is not
at the phase-matching condition, the incident power can’t
be coupled into the waveguide and must be reflected

Figure 8. Distribution of electric and magnetic field components within the waveguide with 2-D
periodic walls (scattering analysis), which is arranged in triangular pattern: (a) Ey(x, z), (b) Hx(x, z),
and (c) Hz(x, z); (d) distribution of Poynting vector.
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back into the free-space under the stop-band condition.
The contour of field components and distribution of
Poynting vector are shown in Figures 8a to 8d, which
indicate that the incident plane wave is indeed reflected
by the structure and can hardly penetrate into the
structure.
[27] Figure 9 shows the contour of constant reflection

coefficient for the waveguide with triangular pattern of
waveguide walls. In this example, we plot the contour
map versus both normalized frequency and phase con-
stant along the x-direction. It is interesting to note that
there exists a parabolic curve with low reflectivity, which
is the same that as shown in Figure 6b. This can now be
explained on the basis of the phase-matching condition.
Therefore, as long as the attenuation constant of
waveguide mode is not too large, the phase constant of
waveguide mode can be predicted by the phase-matching
condition for the scattering analysis or vice versa.

5. Conclusions

[28] We have employed the rigorous method of mode
matching to treat the problem of scattering and guiding
characteristics of waveguides with 2-D periodic walls of
finite thickness. We analyze first the scattering of plane
waves by a 2-D periodic dielectric array to identify its
stopband behavior. The results are then utilized for the
study of guiding characteristics of waveguide composed
of 2-D periodic arrays as its side walls. In particular, the
strong coupling of incident plane wave into a waveguide
mode has been investigated and was utilized to predict
the guiding characteristic of the waveguide. Extensive

numerical results have been carried out to investigate the
phenomena of energy leakage for various numbers of
layers in a stack and also for different array patterns. We
have demonstrated that an ideal parallel-plate waveguide
can provide useful initial data for the design of defect
waveguides.
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(Phtotonics System on Chip) under the contact numbers 89-E-
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