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Lower confidence bounds with sample size information for Cpm applied to

production yield assurance

W. L. PEARNy* and MING-HUNG SHUz

The process capability index Cpm, sometimes called the Taguchi index, has been
proposed to the manufacturing industry as providing numerical measures on
process performance. A lower confidence bound estimates the minimum process
capability, conveying critical information regarding product quality, which is
essential to quality assurance. The sample size determination is directly related
to the cost of the data collection plan. The purpose of this paper is to provide
explicit formulas with efficient algorithms to obtain the lower confidence bounds
and sample sizes required for specified precision of the estimation on Cpm using
the maximum likelihood estimator (MLE) of Cpm. We also provide tables for
the engineers/practitioners to use for their in-plant applications. A real-world
example taken from a microelectronics manufacturing process is investigated
to illustrate the applicability of the proposed approach. The implementation of
existing statistical theory for capability assessment bridges the gap between the
theoretical development and factory applications.

1. Introduction

The loss-based process capability index Cpm, sometimes called the Taguchi index,
has been proposed to the manufacturing industry to measure process performance.
The index measures the ability of the process to cluster around the target, which
reflects the degrees of process targeting (centring). The index Cpm incorporates the
variation of production items with respect to the target value and the specification
limits preset in the factory (see Hsiang and Taguchi 1985, Chan et al. 1988, Kotz and
Johnson 1993, Kotz and Lovelace 1998). The index Cpm is defined in the following:

Cpm ¼
USL� LSL

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð�� TÞ2

q ,

where USL is the upper specification limit, LSL is the lower specification limit, � is
the process mean, � is the process standard deviation, and T is the target value
setting of the midpoint of the specification limits (T ¼ m ¼ (USL þ LSL)/2). The
capability index Cpm is not primarily designed to provide an exact measure on the
number of conforming items, i.e. the process yield. However, Cpm considers
the process departure (��T)2 (rather than 6� alone) in the denominator of the
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definition to reflect the degrees of process targeting (Hsiang and Taguchi 1985, Chan
et al. 1988). We note that �2

þ (��T)2 ¼ E[(X�T)2] which is the major part of
the denominator of Cpm. Since E[(X�T)2] is the expected loss, where the loss of
a characteristic X missing the target is often assumed to be well approximated by the
symmetric squared error loss function, loss(X) ¼ k(X�T)2, the capability index Cpm
has been referred to as a loss-based index.

In general the process mean � and the process standard deviation � are
unknown. However, in practice, � and � can be estimated using the sample data.
We then consider the natural estimator of the index Cpm. In order to calculate the
estimator, however, sample data must be collected, and a great degree of uncertainty
may be introduced into capability assessments due to sampling errors. The approach
by simply looking at the calculated values of the estimated indices and then making a
conclusion on whether the given process is capable, is highly unreliable as the sam-
pling errors have been ignored. A reliable approach for estimating the true value of
Cpm is to construct the lower confidence bound. The lower confidence bound is not
only essential to production yield assurance, but can also be used in capability testing
for decision making. In fact, Ruczinski (1996) showed that Yield� 2� (3Cpm)� 1, or
the fraction of non conformities ( 2�(�3Cpm). Table 1 displays various values of
Cpm ¼ 0.95(0.05)2.00, and the corresponding maximum possible non-conformities
(in PPM). For example, if a process has capability with Cpm	 1.25, then the
production yield would be at least 99.982%.

2. Estimation of Cpm

The index Cpm can be rewritten as the following:

Cpm ¼
d

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð�� TÞ2

q ,

where d ¼ (USL�LSL)/2 is half the length of the specification interval. Chan et al.
(1988) and Boyles (1991) proposed the following two estimators of Cpm,

~CCpm ¼
d

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ ð �XX � TÞ2

q , ĈCpm ¼
d

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
n þ ð �XX � TÞ2

q ,

Cpm PPM Cpm PPM

0.95 4371.923 1.50 6.795
1.00 2699.796 1.55 3.319
1.05 1632.705 1.60 1.587
1.10 966.848 1.65 0.742
1.15 560.587 1.70 0.340
1.20 318.217 1.75 0.152
1.25 176.835 1.80 0.067
1.30 96.193 1.85 0.029
1.35 51.218 1.90 0.012
1.40 26.691 1.95 0.005
1.45 13.614 2.00 0.002

Table 1. Various values of Cpm and the maximum possible
non-conformities (in PPM).
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where �XX ¼
Pn
i¼1 Xi=n, S

2
¼
Pn
i¼1 ðXi �

�XXÞ2=ðn� 1Þ and S2
n ¼

Pn
i¼1 ðXi �

�XXÞ2=n: In
fact, the two estimators, ~CCpm and ĈCpm, are asymptotical equivalent. We note
that �XX and S2

n are the MLEs of � and �2, respectively. Hence, the estimated index
ĈCpm is the MLE of Cpm. Furthermore, the term S2

n þ ( �XX �T)2 in the denominator
of ĈCpm is the uniformly minimum variance unbiased estimator (UMVUE) of
the term �2

þ (��T)2 in the denominator of Cpm, where S2
n þ ( �XX �T)2 ¼Pn

i¼1 ðXi � TÞ
2=n and �2

þ (��T)2 ¼ E[(X�T)2]. Therefore, it is reasonable, for
reliability purpose, that we use the estimator ĈCpm to evaluate process performance.
Under the assumption of normality, Kotz and Johnson (1993) obtained the rth
moment, and calculated the first two moments, the mean, and the variance of
ĈCpm. Boyles (1991) and Pearn et al. (1992) showed that ĈCpm is distributed as:

ĈCpm 

USL� LSL

6�

ffiffiffiffiffiffiffiffi
n

�2
n, l

s
,

which can be alternatively expressed as

ĈCpm 
 Cpm

ffiffiffiffiffiffiffiffiffiffiffi
1þ

l
n

r ffiffiffiffiffiffiffiffi
n

�2
n, l

s
, ð1Þ

where �2
n, ldenotes the non-central Chi-square distribution with n degrees of freedom

and non-centrality parameter l ¼ n�2 where � ¼ ð�� TÞ=�. Several methods have
been proposed for constructing approximate lower confidence bounds of Cpm in the
literature. Marcucci and Beazley (1988) proposed using the ordinary Chi-square
distribution to approximate the non-central Chi-square distribution to obtain the
following approximate lower confidence bound, denoted as CLðMBÞpm ,

CLðMBÞpm ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
n 1� �ð Þ

n

r
ĈCpm, ð2Þ

where �2
nð1� �Þ is the (1� �)th percentile of the ordinary central Chi-square with n

degrees of freedom. Thus, the approximate sample size needed for given estimation
precision RðMBÞ

pm can be obtained as (Marcucci and Beazley 1988):

n ffi
�2
n 1� �ð Þ

R
ðMBÞ2

pm

, where RðMBÞ
pm ¼ CLðMBÞpm =ĈCpm: ð3Þ

Boyles (1991) used a moment approximation to the non-central Chi-square
distribution, �2

n, l, to obtain the approximate lower confidence bound. It has been
shown that the distribution of

S2
n þ ð �XX � TÞ2

�2 þ ð�� TÞ2
¼

�̂�2

�2
�2
v

v
, where v ¼

n 1þ �2
� �2
1þ 2�2
� � : ð4Þ

Since Cpm=ĈCpm ¼ �̂�=�, an approximate 100�% lower confidence bound for Cpm,
can be found as

ĈCpm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
v 1� �ð Þ

v

s
: ð50Þ

3583Lower confidence bounds
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In practice, Boyles (1991) recommended obtaining the approximate lower confidence
bound CL Boð Þ

pm as

CL Boð Þ
pm ffi ĈCpm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
v̂v 1� �ð Þ

v̂v

s
, where v̂v ¼

n 1þ �̂�
2

� 	2
1þ 2 �̂�

2
� 	 , �̂� ¼

�XX � T
� �
S

: ð5Þ

Thus, the approximate sample size required for given estimation precision RðBoÞ
pm can

be obtained by solving v̂v, where

v̂v ffi
�2
v̂vð1� �Þ

R
ðBoÞ2

pm

: ð6Þ

On the other hand, based on equation (1), the 100�% lower confidence bound
CLðZHÞ
pm can be found as (Zimmer and Hubele 1997):

CLðZHÞ
pm ¼ ĈCpm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
n, lð1� �Þ

nþ l

s
: ð7Þ

Thus, the sample size required with a given estimation precision RLðZHÞ
pm can be

obtained as:

n ¼
�2
n, lð1� �Þ

R
ðZHÞ

2

pm

� l ð8Þ

Using equations (1) and (7), Zimmer and Hubele (1997) and Zimmer et al. (2001)
presented graphical procedures and tables of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=�2

n, lð1��Þ
p

to obtain confidence inter-
vals and sample sizes required of Cpm, where the parameter (��T)/� is assumed to
be a known constant. It is noted that when (��T)/� ¼ 0, the lower confidence
bounds (7) (Zimmer et al. 2001) are the same as the approximate lower confidence
bounds obtained in (2) by Marcucci and Beazley (1988) and (5) by Boyles (1991).
Moreover, when (��T)/� ¼ 0, equation (8) for the sample sizes would be identical
to those obtained from approximate equations (3) and (6). In this paper, we first
provide an explicit form of the cumulative distribution function of the maximal
likelihood estimator (MLE) of Cpm, which can be expressed in terms of a mixture
of the Chi-square distribution and the normal distribution. We then develop an
efficient algorithm to compute the lower confidence bounds to determine the
sample sizes required for specified precision of the estimation on Cpm. We also
provide tables for the engineers/practitioners to use in their factory applications.
A real-world example on the simultaneous sampling analogue-to-digital converters,
taken from a microelectronics-component manufacturing factory, is investigated to
illustrate the applicability of the algorithm.

3. Cumulative Distribution Function of Estimated Cpm

From a demonstrably stable process (under statistical control), the MLE of Cpm,
ĈCpm¼d=ð3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
nþð �XX�TÞ2

p
Þ. To derive the cumulative distribution function (CDF) and the

probability density function (PDF) of ĈCpm, we define

(1) D ¼ n 1/2 d/�,
(2) K ¼ nS2

n=�
2, which is distributed as �2

n�1,

3584 W. L. Pearn and M.-H. Shu
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(3) Z ¼ n1/2( �XX �T)/�, which is distributed as N(�, 1), where � ¼ n1/2(��T)/�,
(4) Y ¼ Z2, then, the PDF of Y can be expressed as:

fY ðyÞ ¼
1

2
ffiffiffi
y

p fZ �
ffiffiffi
y

p� �
þ fZ

ffiffiffi
y

p� �� �
, for y> 0: ð9Þ

We note that the estimator ĈCpm can be rewritten as:

ĈCpm ¼
D

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ Y

p :

F
ĈCpm

ðxÞ ¼ 1� P
D

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ Y

p > x

� �
¼ 1�

Z 1

0

P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K þ Y

p
<
D

3x
jY ¼ y

� �
fY ðyÞ dy

¼ 1�

Z D2=ð9x2Þ

0

P K < D2= 9x2
� �

� y
� �

fY ðyÞdy, x > 0: ð10Þ

The last equality in (10) holds since P{K<D2/(9x2)� y} ¼ 0, for y>D2/(9x2).
Hence, we have

FĈCpmðxÞ ¼ 1�

Z D2=ð9x2Þ

0

FK D
2= 9x2
� �

� y
� �

fY ðyÞdy: ð11Þ

Using the representation in (9), we may obtain

F
ĈCpm

ðxÞ ¼ 1�

Z D2=ð9x2Þ

0

FK D
2=ð9x2Þ � y

� � 1

2
ffiffiffi
y

p fZ �
ffiffiffi
y

p� �
þ fz

ffiffiffi
y

p� �� �
dy, ð12Þ

fĈCpmðxÞ ¼

Z D2=ð9x2Þ

0

fK D
2= 9x2
� �

� y
� � D2

9x3
ffiffiffi
y

p fZ �
ffiffiffi
y

p� �
þ fZ

ffiffiffi
y

p� �� �
dy: ð13Þ

Changing the variable g ¼ (3x/D)2y in integral (13), we can obtain the PDF of ĈCpm,
as follows:

fĈCpm ðxÞ ¼
D3

27x4

Z 1

0

1ffiffiffi
g

p fK
D2

ð1� gÞ

9x2

 !
fZ �

D
ffiffiffi
g

p

3x

� �
þ fZ

D
ffiffiffi
g

p

3x

� �� �
dt, x > 0: ð14Þ

We note that the statistic Z2 follows a non-central chi-square distribution with
one degree of freedom and non-centrality parameter �2. Chen (1998) defined the
distribution of Y as a weighted non-central chi-square distribution with one
degree of freedom and non-centrality parameter �2 under the assumption of normal-
ity. Chen (1998) also derived the PDF of Y, in an alternative form of equation (9), as
the following, where l ¼ �2 and Yj is distributed as �2

1þj.

fY ðyÞ ¼
e�l=2

2
ffiffiffi
�

p
X1
j¼0

ð
ffiffiffi
2

p
�Þj

j!
�

1þ j

2

� �
ð�1Þj fYj ðyÞ þ fYj ðyÞ
� 	( )

, y> 0: ð15Þ

Using the expression for the PDF of Y in equation (11), we may obtain

FĈCpm ðxÞ ¼ 1�
e�l=2

2
ffiffiffi
�

p
X1
j¼0

ð
ffiffiffi
2

p
�Þj

j!
�

1þ j

2

� �

�

Z D2=ð9x2Þ

0

FK D
2=ð9x2Þ � y

� �
�1ð Þ

j fYj yð Þ þ fYj yð Þ

� 	
dy ð16Þ
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Therefore, the PDF of ĈCpm, in an alternative form of (14), can be expressed as

f
ĈCpm

ðxÞ ¼
e�l=2

2
ffiffiffi
�

p
X1
j¼0

ð
ffiffiffi
2

p
�Þj

j!
�

1þ j

2

� �

�

Z D2=ð9x2Þ

0

fK D
2=ð9x2Þ � y

� �
2D2=ð9x3Þdy: ð17Þ

Changing variable with g ¼ (3x/D)2 y in equation (17), we can obtain the PDF of
ĈCpm, as expressed in equation (18),

f
ĈCpm

ðxÞ ¼
21�n=2Dnx�ðnþ1Þ

3n� ðn� 1Þ=2ð Þ
�
e�l=2

2
ffiffiffi
�

p exp
�D2

18x2

 !
�
X1
j¼0

1

j!

�D

3x

� �j

�
X2
i¼1

ð�1Þij
Z 1

0

1� gð Þ
n�3ð Þ=2g j�1ð Þ=2dg, x > 0:

¼
21�n=2Dn

3nxnþ1
exp �

l
2
�
D2

18x2

 !X1
j¼0

lD2

36x2

 !j
= j!�

n

2
þ j

� 	� 	( )
, x > 0, ð18Þ

which is identical to the PDF of ĈCpm obtained in Vännman and Kotz (1995). From
equation (12), changing the variable with y ¼ t2, the cumulative distribution func-
tion of ĈCpm can be expressed in terms of a mixture of the Chi-square distribution and
the normal distribution:

FĈCpm ðxÞ ¼ 1�

Z b ffiffinp
=ð3xÞ

0

FK
b2n

9x2
� t2

 !
ðtþ �

ffiffiffi
n

p
Þ þ ðt� �

ffiffiffi
n

p
Þ

� �
dt,

for x> 0, where b ¼ d/�, FK(�) is the cumulative distribution function of the ordi-
nary central Chi-square distribution �2

n�1, and (�) is the PDF of the standard normal
distribution N(0, 1). The framework of the derivation can be found in Vännman and
Kotz (1995). Figures 1(a)–(d) display the PDF and CDF plots of ĈCpm for � ¼ 0 and
1, b ¼ 3, d ¼ 2, with various sample sizes n ¼ 10, 20 and 50. From figures 1(a)–(d)
we observe that for n ¼ 10 the distributions are skew and have large spread. As n
increases, the spread decreases and so does the skewness. For n>50, the estimate
ĈCpm is approximately unbiased.

4. Lower confidence bounds on Cpm

We note that when Cpm ¼ C, the term b ¼ d/� can be expressed as
b ¼ 3C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
. Thus, the index Cpm may be expressed as a function of the distribu-

tion characteristic parameter .

Cpm ¼
d

3�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p ¼
d=�

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p :

Hence, given the sample of size n, the confidence level �, the estimated value, ĈCpm,
and the parameter �, the lower confidence bounds (denoted as CLðPSÞpm can be obtained
using a numerical integration technique with iterations, to solve the following (equa-
tion (19)). In practice, the parameter � is unknown, but it can be calculated from the
sample data as �̂� ¼ ( �XX �T)/S. It should be noted, in particular, that equation (19) is
an even function of �. Thus, for both � ¼ �0 and � ¼ ��0 we may obtain the same

3586 W. L. Pearn and M.-H. Shu
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lower confidence bound CLðPSÞpm .

Z b ffiffinp
=ð3ĈCpmÞ

0

FK
b2n

9ĈCpm2

� t2

 !
 tþ �

ffiffiffi
n

p� �
þ  t� �

ffiffiffi
n

p� �� �
dt ¼ 1� �: ð19Þ

Using equation (19), we may compute the lower confidence bounds, CLðPSÞpm . An
algorithm using the technique called the direct search is developed. An efficient

Matlab program (available on request) executing the algorithm is also developed,
which incorporates three auxiliary functions for evaluating CLðPSÞpm , including (a) the

cumulative distribution function of the chi-square �2
n�1, FK(�), (b) the probability

density function of the standard normal distribution N(0,1), (�), and (c) the function
of numerical integration using the recursive adaptive Simpson quardrature – ‘quad’.

The Matlab program requires no more than 10 CPU seconds for all sample sizes, to
obtain the lower bound values for all sample sizes investigated.

(a) (b)

(c) (d)

Figure 1. (a) PDF plots of ĈCpm with � ¼ 0, b ¼ 3, d ¼ 2, and n ¼ 10, 20, 50 (bottom to top);
(b) PDF plots of ĈCpm with � ¼ 1.0, b ¼ 3, d ¼ 2, and n ¼ 10, 20, 50 (bottom to
top); (c) CDF plots of ĈCpm with � ¼ 0, b ¼ 3, d ¼ 2, and n ¼ 10, 20, 50 (bottom to
top); (d) CDF plots of ĈCpm with � ¼ 1.0, b ¼ 3, d ¼ 2, and n ¼ 10, 20, 50 (bottom to top).
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4.1. Lower confidence bounds CLðPSÞpm and parameter �
Since the process parameters � and � are unknown, then the distribution char-

acteristic parameter, � ¼ (��T)/ � is also unknown, and has to be estimated in real
applications, naturally by substituting � and � by the sample mean �XX and the sample
standard deviation S. Such an approach introduces additional sampling errors from
estimating � in finding the lower confidence bounds, and would certainly make our
approach (and of course including all the existing methods) less reliable.
Consequently, the conclusions made would result in less production yield assurance
to the factories, and provide less quality protection to the customers. To eliminate
the need for further estimating the distribution characteristic parameter �, we exam-
ine the behaviour of the lower confidence bounds CL against the parameter �, using
the following approximation formula, in equation (20), proposed by Wilson and
Hilferty (1931). Note that the approximation is very accurate for a wide range of
percentile points, even with sample sizes as small as 10.

�2
vð1� �Þ ¼ v Zð1� �Þ

ffiffiffiffiffi
2

9v

r
þ 1�

2

9v

" #3

: ð20Þ

Substituting equations (20) and (4) into equation (50), we may obtain

CL ¼ ĈCpm Zð1� �Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 2�2Þ

9nð1þ �2Þ2

s
þ 1�

2ð1þ 2�2Þ

9nð1þ �2Þ2

" #3=2

:

Define the function

f(�) ¼ ĈCpm½Zð1� �Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 2�2Þ=9nð1þ �2Þ2

q
þ 1� ðð2ð1þ 2�2Þ= 9nð1þ �2Þ2Þ�3=2Þ,

then

f 0ð�Þ ¼
�4�3ĈCpm

3n 1þ �2
� �3 Zð1� �Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ 2�2Þ

9nð1þ �2Þ2

s
þ 1�

2ð1þ 2�2Þ

9nð1þ �2Þ2

" #1=2

�
Zð1� �Þ

2

2ð1þ 2�2Þ

9nð1þ �2Þ2

 !�1=2

�1

2
4

3
5: ð21Þ

It is easy to verify that f 0(0) ¼ 0, f 00(�)>0 when �>0, and f 00(�)>0 when �<0
(even function). So, the function f(�) takes its absolute minimum at � ¼ 0. To
demonstrate that this result is valid for a non-central Chi-square distribution, we
perform extensive calculations to obtain the lower confidence bounds CLðPSÞpm for
� ¼ 0(0.05)3.00, n ¼ 10(5)200, ĈCpm ¼ 0.7(0.1)3.0, and confidence level � ¼ 0.95.
Note that of the parameter values we investigated, � ¼ 0(0.05)3.00 cover a suffi-
ciently wide range of applications with process capability Cpm	 0. The results indi-
cate that (i) the lower confidence bound CLðPSÞpm is decreasing in �, and is increasing in
n, (ii) the lower confidence bound CLðPSÞpm obtains its minimum at � ¼ 0 in all cases.
Figures 2–7 plot the curves of the lower confidence bound, CLðPSÞpm , versus the param-
eter � for ĈCpm ¼ 0.7, 0.9, 1.2, 2.0, 2.5, 3.0, respectively, with confidence level
� ¼ 0.95. For bottom curve 1, sample size n ¼ 30; for bottom curve 2, sample size
n ¼ 50; for bottom curve 3, sample size n ¼ 70; for top curve 3, sample size n ¼ 100;
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for top curve 2, sample size n ¼ 150; for top curve 1, sample size n ¼ 200. Hence, for

practical purpose we may solve equation (19) with � ¼ 0 to obtain the required lower

confidence bounds for given ĈCpm, n and �, without having to estimate further the

parameter �. Thus, the level of confidence � can be ensured, and the decisions made

based on such approach are indeed more reliable.

We analytically justify (equations (20), (21)), and numerically demonstrate in

figures 2–7 that (i) the lower bound function f(�) indeed takes its absolute minimum

0.5

0.55

0.6

0.65

0.7

0 1 2 3

Figue 2. Plots of CLðPSÞpm versus |�| for ĈCpm ¼ 0.7, � ¼ 0.95 and n ¼ 30, 50, 70, 100, 150, 200.
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Figue 3. Plots of CLðPSÞpm versus |�| for ĈCpm ¼ 0.9, � ¼ 0.95 and n ¼ 30, 50, 70, 100, 150, 200.
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Figue 4. Plots of CLðPSÞpm versus |�| for ĈCpm ¼ 1.2, � ¼ 0.95 and n ¼ 30, 50, 70, 100, 150, 200.
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at � ¼ 0, (ii) the lower bound obtained by setting the unknown parameter � ¼ 0 is
indeed maximal among those which guarantee that the level of confidence is at least
�, and (iii) the lower bound cannot be improved unless the value of the unknown
parameter � ¼ 0 is given. Tables 2(a)–(b) tabulate the lower confidence bound
values, CLðPSÞpm , for ĈCpm ¼ 0.7(0.1)3.0, n ¼ 10(5)200, and � ¼ 0.95. For example, if
ĈCpm ¼ 1.5 for n ¼ 100, then the lower confidence bound CLðPSÞpm ¼ 1.324, and so we
may conclude that Cpm>1.324, with 95% confidence. We remark here that if l ¼ 0

1.4
1.45
1.5

1.55
1.6

1.65
1.7

1.75
1.8

1.85
1.9

1.95
2

0 1 2 3

Figue 5. Plots of CLðPSÞpm versus |�| for ĈCpm ¼ 2.0, � ¼ 0.95 and n ¼ 30, 50, 70, 100,150, 200.
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Figue 7. Plots of CLðPSÞpm versus |�| for ĈCpm ¼ 3.0, � ¼ 0.95 and n ¼ 30, 50, 7, 100, 150, 200.
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Figue 6. Plots of CLðPSÞpm versus |�| for ĈCpm ¼ 2.5, � ¼ 0.95 and n ¼ 30, 50, 70, 100, 150, 200.
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(or � ¼ 0) in the formula CLðZHÞ
pm obtained in Zimmer and Hubele (1997), then we

obtain the same lower bound.

5. Sample size determination for Cpm

The sample size determination is important, as it directly relates to the cost of
the data collection plan. From equation (19), it can be rewritten asZ RðPSÞ

pm

ffiffiffiffiffiffiffiffiffiffiffiffi
nð1þ�2Þ

p

0

FK R
ðPSÞ2

pm nð1þ �2Þ � t2
� 	

ðtþ �
ffiffiffi
n

p
Þ þ ðt� �

ffiffiffi
n

p
Þ

� �
dt ¼ 1� �: ð22Þ

n 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

5 0.335 0.383 0.431 0.475 0.525 0.575 0.623 0.670 0.718 0.766 0.814 0.862
10 0.439 0.500 0.565 0.625 0.691 0.750 0.816 0.875 0.942 1.000 1.068 1.125
15 0.487 0.557 0.625 0.696 0.765 0.835 0.905 0.974 1.044 1.114 1.183 1.250
20 0.515 0.589 0.663 0.737 0.810 0.884 0.958 1.031 1.105 1.179 1.250 1.325
25 0.535 0.611 0.688 0.764 0.841 0.917 0.994 1.070 1.147 1.223 1.300 1.375
30 0.549 0.628 0.706 0.785 0.864 0.942 1.021 1.099 1.178 1.256 1.335 1.413
35 0.560 0.640 0.720 0.800 0.881 0.961 1.041 1.121 1.200 1.281 1.361 1.441
40 0.569 0.651 0.732 0.813 0.895 0.976 1.058 1.139 1.220 1.302 1.383 1.465
45 0.577 0.659 0.742 0.824 0.907 0.989 1.072 1.154 1.237 1.319 1.401 1.484
50 0.583 0.666 0.750 0.833 0.917 1.000 1.083 1.167 1.250 1.333 1.417 1.500
55 0.589 0.673 0.757 0.841 0.925 1.009 1.093 1.178 1.262 1.346 1.430 1.514
60 0.593 0.678 0.763 0.848 0.933 1.017 1.102 1.187 1.272 1.357 1.442 1.526
65 0.598 0.683 0.768 0.854 0.939 1.025 1.110 1.196 1.281 1.366 1.452 1.537
70 0.601 0.687 0.773 0.859 0.945 1.031 1.117 1.203 1.289 1.375 1.461 1.547
75 0.605 0.691 0.778 0.864 0.950 1.037 1.123 1.210 1.296 1.383 1.469 1.556
80 0.608 0.695 0.781 0.868 0.955 1.042 1.129 1.216 1.303 1.390 1.476 1.563
85 0.610 0.698 0.785 0.872 0.959 1.047 1.134 1.221 1.309 1.396 1.483 1.570
90 0.613 0.701 0.788 0.876 0.963 1.051 1.139 1.226 1.314 1.402 1.489 1.577
95 0.615 0.703 0.791 0.879 0.967 1.055 1.143 1.231 1.319 1.407 1.495 1.583

100 0.617 0.706 0.794 0.882 0.970 1.059 1.147 1.235 1.324 1.412 1.500 1.588
105 0.619 0.708 0.797 0.885 0.974 1.062 1.151 1.239 1.328 1.421 1.505 1.594
110 0.621 0.710 0.799 0.888 0.977 1.065 1.154 1.243 1.332 1.425 1.509 1.598
115 0.623 0.712 0.801 0.890 0.979 1.068 1.157 1.246 1.336 1.428 1.514 1.603
120 0.625 0.714 0.803 0.893 0.982 1.071 1.160 1.250 1.339 1.432 1.518 1.607
125 0.626 0.716 0.805 0.895 0.984 1.074 1.163 1.253 1.342 1.435 1.521 1.611
130 0.628 0.717 0.807 0.897 0.986 1.076 1.166 1.256 1.345 1.438 1.525 1.615
135 0.629 0.719 0.809 0.899 0.989 1.078 1.168 1.258 1.348 1.441 1.528 1.618
140 0.630 0.720 0.810 0.900 0.991 1.081 1.171 1.261 1.351 1.444 1.531 1.621
145 0.631 0.722 0.812 0.902 0.992 1.083 1.173 1.263 1.354 1.446 1.534 1.624
150 0.633 0.723 0.81 0.904 0.994 1.085 1.175 1.266 1.356 1.449 1.537 1.627
155 0.634 0.724 0.815 0.905 0.996 1.087 1.177 1.268 1.358 1.451 1.540 1.630
160 0.635 0.725 0.816 0.907 0.998 1.088 1.179 1.270 1.361 1.454 1.542 1.633
165 0.636 0.727 0.817 0.908 0.999 1.090 1.181 1.272 1.363 1.456 1.545 1.635
170 0.637 0.728 0.819 0.910 1.001 1.092 1.183 1.274 1.365 1.458 1.547 1.638
175 0.638 0.729 0.820 0.911 1.002 1.093 1.184 1.275 1.367 1.460 1.549 1.640
180 0.638 0.730 0.821 0.912 1.004 1.095 1.186 1.277 1.369 1.462 1.551 1.642
185 0.639 0.731 0.822 0.913 1.005 1.096 1.188 1.279 1.370 1.44 1.553 1.645
190 0.640 0.732 0.823 0.915 1.006 1.098 1.189 1.281 1.372 1.464 1.555 1.647
195 0.641 0.732 0.824 0.916 1.007 1.099 1.191 1.282 1.374 1.465 1.557 1.649
200 0.642 0.733 0.825 0.917 1.008 1.100 1.192 1.284 1.375 1.467 1.559 1.651

Table 2(a). Lower confidence bounds CLðPSÞpm of Cpm for ĈCpm ¼ 0.7(0.1)1.8, n ¼ 5(5)200,
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Hence, given the desired estimation precision RðPSÞ
pm , the confidence level �, and

the parameter �, the sample size can be obtained using the numerical integration
technique with iterations, to solve equation (22). It should be noted, in particular,
that equation (22) is an even function of �. Thus, for both � ¼ �0 and � ¼ � �0
we may obtain the same sample size n.

5.1. Sample size n and parameter �
Since the process parameters � and � are unknown, then the distribution

characteristic parameter, � ¼ (��T )/� is also unknown. To eliminate the

n 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

5 0.900 0.950 1.000 1.050 1.100 1.150 1.198 1.246 1.294 1.341 1.375 1.425
10 1.193 1.250 1.319 1.375 1.445 1.500 1.570 1.625 1.696 1.750 1.822 1.875
15 1.322 1.392 1.462 1.531 1.600 1.671 1.740 1.810 1.875 1.949 2.019 2.088
20 1.400 1.474 1.547 1.621 1.695 1.768 1.842 1.916 1.990 2.063 2.137 2.211
25 1.450 1.529 1.606 1.682 1.759 1.835 1.912 1.988 2.065 2.141 2.218 2.294
30 1.492 1.571 1.649 1.725 1.806 1.885 1.963 2.042 2.120 2.199 2.275 2.356
35 1.521 1.600 1.682 1.762 1.842 1.922 2.000 2.082 2.162 2.242 2.322 2.400
40 1.546 1.627 1.709 1.790 1.872 1.953 2.034 2.116 2.197 2.279 2.360 2.441
45 1.566 1.649 1.731 1.814 1.896 1.979 2.061 2.144 2.225 2.309 2.391 2.474
50 1.584 1.667 1.750 1.834 1.917 2.000 2.084 2.167 2.250 2.334 2.417 2.500
55 1.598 1.683 1.767 1.850 1.935 2.019 2.103 2.187 2.272 2.356 2.440 2.524
60 1.611 1.696 1.781 1.866 1.950 2.035 2.120 2.205 2.290 2.375 2.460 2.544
65 1.623 1.708 1.794 1.879 1.964 2.050 2.135 2.221 2.306 2.392 2.475 2.562
70 1.633 1.719 1.805 1.891 1.977 2.063 2.149 2.235 2.321 2.407 2.492 2.578
75 1.642 1.728 1.815 1.900 1.988 2.074 2.161 2.247 2.334 2.420 2.506 2.593
80 1.650 1.737 1.824 1.911 1.998 2.085 2.171 2.258 2.345 2.432 2.519 2.606
85 1.658 1.745 1.832 1.919 2.007 2.094 2.181 2.269 2.356 2.443 2.530 2.618
90 1.665 1.752 1.840 1.927 2.015 2.103 2.190 2.278 2.366 2.453 2.541 2.629
95 1.671 1.759 1.847 1.935 2.023 2.111 2.199 2.287 2.375 2.463 2.550 2.638

100 1.677 1.765 1.853 1.941 2.030 2.118 2.206 2.295 2.383 2.471 2.559 2.648
105 1.682 1.771 1.859 1.948 2.036 2.125 2.213 2.302 2.391 2.479 2.568 2.656
110 1.687 1.776 1.865 1.954 2.042 2.131 2.220 2.309 2.398 2.487 2.575 2.664
115 1.692 1.781 1.870 1.959 2.048 2.137 2.226 2.315 2.404 2.493 2.583 2.672
120 1.696 1.786 1.875 1.964 2.053 2.143 2.232 2.321 2.411 2.500 2.589 2.679
125 1.700 1.790 1.879 1.969 2.058 2.148 2.237 2.327 2.416 2.506 2.596 2.685
130 1.704 1.794 1.884 1.973 2.063 2.153 2.243 2.332 2.422 2.512 2.601 2.691
135 1.708 1.798 1.888 1.978 2.068 2.157 2.247 2.337 2.427 2.517 2.607 2.697
140 1.711 1.801 1.892 1.982 2.072 2.162 2.252 2.342 2.432 2.522 2.612 2.702
145 1.715 1.805 1.895 1.985 2.075 2.166 2.256 2.347 2.437 2.527 2.617 2.708
150 1.718 1.808 1.899 1.989 2.080 2.170 2.260 2.350 2.441 2.532 2.622 2.713
155 1.721 1.811 1.902 1.993 2.083 2.174 2.264 2.355 2.446 2.536 2.627 2.717
160 1.724 1.814 1.905 1.996 2.087 2.177 2.268 2.359 2.450 2.540 2.631 2.722
165 1.726 1.817 1.908 1.999 2.090 2.181 2.272 2.362 2.453 2.544 2.635 2.725
170 1.729 1.820 1.911 2.002 2.093 2.184 2.275 2.366 2.457 2.548 2.639 2.730
175 1.731 1.823 1.914 2.005 2.096 2.187 2.278 2.369 2.461 2.552 2.643 2.734
180 1.734 1.825 1.916 2.008 2.099 2.190 2.281 2.373 2.464 2.555 2.646 2.738
185 1.736 1.827 1.919 2.010 2.102 2.193 2.284 2.375 2.467 2.559 2.650 2.741
190 1.738 1.830 1.921 2.013 2.104 2.196 2.287 2.379 2.470 2.562 2.653 2.745
195 1.740 1.832 1.923 2.015 2.107 2.198 2.290 2.382 2.473 2.565 2.656 2.748
200 1.742 1.834 1.926 2.017 2.109 2.201 2.293 2.384 2.476 2.568 2.660 2.751

Table 2(b). Lower confidence bounds CLðPSÞpm of Cpm for ĈCpm ¼ 1.9(0.1)3.0, n ¼ 5(5)200,
� ¼ 0.95.
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need for further estimating the distribution characteristic parameter �, we examine
the behaviour of the sample size n against the parameter �. We perform extensive
calculations to obtain the sample sizes n for � ¼ 0(0.1)3.00, estimation precision
RðPSÞ
pm ¼ 0.75(0.05)0.95, and confidence level � ¼ 0.90, 0.95, 0.975 and 0.99. Figure 8

plots the curves of the required sample size, n, versus the parameter � for
RðPSÞ
pm ¼ 0.8(0.05)0.95, with confidence level � ¼ 0.95. In figure 8, for bottom

curve 1, RðPSÞ
pm ¼ 0.8, for bottom curve 2, RðPSÞ

pm ¼ 0.85, for top curve 2, RðPSÞ
pm ¼ 0.9,

for top curve 1, RðPSÞ
pm ¼ 0.95. The results indicate that (i) the sample size n is decreas-

ing in �, and is increasing in RðPSÞ
pm , (ii) the sample sizes n obtains its maximum at

� ¼ 0 in all cases. Hence, for practical purposes we may solve (22) with � ¼ 0 to
obtain the required sample sizes n for given RðPSÞ

pm and �, without having to
estimate further the parameter �. Thus, the level of confidence � can be ensured,
and the decisions made based on such an approach are indeed more reliable. In
fact, Franklin (1999) indicated (without justifications) that one can provide the
largest sample size with � ¼ 0, which coincides with our results. We remark that
to maintain the confidence level no less than �, the required sample size n obtained
using the proposed approach cannot be reduced.

5.2. Computing the required sample size
To compute the sample size required n, we develop a Matlab program (available

on request). The program reads the desired estimation precision RðPSÞ
pm and the con-

fidence level �, and outputs with the sample size n (always rounding up if n is not an
integer) and the actual estimation precision R�. Table 3 displays the sample size n
required for R� 	RðPSÞ

pm with RðPSÞ
pm ¼ 0.75(0.01)0.95 and � ¼ 0.9, 0.95, 0.975 and

0.99. For example, if RðPSÞ
pm is set to 0.89, then with � ¼ 0.95 the sample size

needed is n ¼ 114. We conclude that a minimum sample size of n ¼ 114 is required
to be 95% certain that the true Cpm is no less than R� ¼ 89.03% of the sample
estimate ĈCpm. Thus, if the sample estimate ĈCpm ¼ 1.3, then the true value of Cpm is
no less than 1.3� 89.03% ¼ 1.157, with 95% confidence.

6. Capability measure for analogue-to-digital converters

The type of analogue-to-digital converter we investigated is a CMOS, low-power
device with 10-bit, and taking 6 mega samples per second (MSPS), which is a
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Figue 8. Plots of n versus |�| for RðPSÞ
pm ¼ 0.80, 0.85, 0.9, 0.95 (from bottom to top).
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simultaneous sampling analogue-to-digital converter (SSADC). The characteristics
of SSADC in speed, resolution, bandwidth, and single-supply operation make it
suitable for applications in radar signal detecting, imaging, high-speed acquisition,
and communications. A multi-stage pipelined architecture with output error correc-
tion logic provides no missing codes over the full operating temperature range.
Internal control registers are used to program the SSADC into the desired mode.
The SSADC product consists of four analogue inputs, which are sampled simulta-
neously. These inputs can be selected individually and configured to single-ended or
differential inputs. An integrated 16 word deep FIFO allows the storage of data in
order to improve data transfers to the processor.

Internal reference voltages for the SSADC (1.5V and 3.5V) are provided. The
SSADC has a built-in reference, which provides the reference voltages for the
SSADC. The VREFP is set to 3.5V and the VREFM is set to 1.5V. An external
reference can also be used through two reference input pins, REFP and REFM, if
the reference source is programmed as external. The voltage levels applied to these
pins establish the upper and lower limits of the analogue inputs to produce a full-
scale and zero-scale reading respectively. This SSADC product is available in 32-pin
DA (TSSOP) package and its functional block diagram, as depicted in figure 9. The
precision of the reference voltage is an essential product characteristic, which has a
significant impact on the SSADC quality. For the reference voltage of this product,
the upper specification limit, USL, is set to 3.7V, and the lower specification limit,
LSL, is set to 3.3V. Sample data collected from 120 analogue-to-digital converters
are displayed in table 4. A histogram and the normal probability plot of the 120

Rpm
� ¼ 0.90 � ¼ 0.95 � ¼ 0.975 � ¼ 0.99

n R� n R� n R� n R�

0.75 15 0.7549 23 0.7545 31 0.7522 42 0.7505
0.76 16 0.7629 25 0.7645 34 0.7633 46 0.7613
0.77 17 0.7702 27 0.7735 37 0.7730 50 0.7708
0.78 19 0.7629 29 0.7815 40 0.7816 55 0.7813
0.79 21 0.7941 32 0.7921 44 0.7917 60 0.7905
0.80 23 0.8035 35 0.8012 48 0.8005 66 0.8001
0.81 25 0.8118 39 0.8117 53 0.8101 74 0.8110
0.82 28 0.8225 43 0.8207 60 0.8215 82 0.8203
0.83 31 0.8316 48 0.8304 67 0.8310 92 0.8302
0.84 35 0.8418 54 0.8402 75 0.8403 104 0.8403
0.85 39 0.8503 62 0.8509 86 0.8508 119 0.8505
0.86 45 0.8609 71 0.8608 98 0.8602 136 0.8601
0.87 52 0.8709 82 0.8705 114 0.8703 158 0.8701
0.88 61 0.8810 96 0.8804 134 0.8804 186 0.8802
0.89 72 0.8907 114 0.8903 159 0.8902 222 0.8903
0.90 86 0.9002 138 0.9004 193 0.9003 268 0.9001
0.91 106 0.9103 170 0.9103 238 0.9102 332 0.9102
0.92 133 0.9201 214 0.9201 301 0.9202 420 0.9201
0.93 173 0.9301 279 0.9301 393 0.9301 549 0.9301
0.94 235 0.9401 380 0.9401 534 0.9401 748 0.9401
0.95 337 0.9501 546 0.9501 769 0.9501 1078 0.9500

Table 3. Sample size n required for R� 	RðPSÞ
pm , with RðPSÞ

pm ¼ 0.75(0.01)0.95, and � ¼ 0.90,
0.95, 0.975, 0.99.
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Figue 9. The SSADC and the functional block diagram.

3.54 3.49 3.51 3.53 3.54 3.51 3.61 3.53 3.57 3.55
3.56 3.58 3.50 3.59 3.59 3.54 3.55 3.45 3.45 3.52
3.48 3.54 3.52 3.51 3.57 3.56 3.60 3.51 3.50 3.55
3.51 3.59 3.56 3.48 3.47 3.61 3.52 3.55 3.50 3.56
3.52 3.58 3.50 3.55 3.53 3.48 3.48 3.52 3.49 3.53
3.48 3.50 3.48 3.49 3.50 3.49 3.52 3.58 3.52 3.57
3.48 3.48 3.53 3.53 3.49 3.57 3.58 3.50 3.59 3.62
3.57 3.53 3.53 3.50 3.48 3.51 3.49 3.44 3.53 3.55
3.53 3.52 3.55 3.55 3.54 3.47 3.56 3.48 3.58 3.53
3.50 3.50 3.51 3.55 3.51 3.54 3.51 3.57 3.50 3.57
3.56 3.55 3.52 3.52 3.53 3.59 3.55 3.53 3.53 3.53
3.54 3.59 3.51 3.45 3.52 3.56 3.49 3.55 3.50 3.49

Table 4. The 120 sample observations.
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observation data both show that the sample data appears to be normal. The
Shapiro–Wilk test is also used to check whether the sample data follow the
normal distribution. The statistic W is found to be 0.9855 with p-value 0.2287.
Thus, we conclude that the sample data can be regarded as taken from a normal
process (or a near normal process).

6.1. Capability calculation and data analysis
6.1.1. LCB applications
In order to obtain the lower confidence bound on CLðPSÞpm , we execute the Matlab
program. The program reads the sample data file, and the input of sample size
n ¼ 120, LSL ¼ 3.3 V, USL ¼ 3.7V, target value T ¼ 3.5V, and confidence level
�¼ 0.95, then outputs with the sample mean, �XX ¼3.528, the sample standard devia-
tion Sn ¼ 0.0377, the estimator ĈCpm ¼ 1.415, and the lower confidence bound
CLðPSÞpm ¼ 1.263. We therefore conclude that the true value of the process capability
Cpm, is no less than 1.263 with 95% level of confidence. We note that the conclusions
made here have used the particular value of � ¼ 0 in finding the lower confidence
bound, thus the confidence level is ensured to be no less than 0.95 (or the Type I
error is no greater than 0.05). We thus can ensure that the production yield is
99.984%, and the number of the non-conformities is less than 156 PPM.

6.2. Sample size information applications
For situations where a specified sample data collection plan must be implemented

due to limitations on production resource–say one is only allowed to take a sample
of n� 150–we could first check table 3 to obtain the appropriate sample size,
n ¼ 138, under the column of confidence level � ¼ 0.95. The corresponding
(actual) estimation precision is R� ¼ 0.9004. Thus, if the sample measurements of
the 138 SSADCs yield an estimate ĈCpm ¼ 1.62, then we may conclude that the true
value of Cpm is no less than 1.62� 90.04% ¼ 1.46, with 95% confidence.

7. Control chart applications

7.1. Multiple control chart samples application
Many of the existing simultaneous sampling analogue-to-digital converters inte-

grated circuit (SSADC IC) manufacturing factories implemented a daily-based pro-
duction control plan for monitoring/controlling process stability. A routine-basis
data collection procedure is executed to run �XX and S control charts (for moderate
sample sizes). The past ‘in control’ data consist of multiple samples of ms groups,
with variable sample size ni ¼ (xi1, xi2, . . ., xini ) and N ¼

Pms
i¼1 ni. The control chart

samples are then analysed to compute the manufacturing capability. Thus, manu-
facturing information regarding the product quality characteristic is derived from
multiple samples in this case, rather than based on one single sample. Under the
assumption that these samples are taken from the normal distribution N(�,�2), we
consider the following estimators of process mean and process standard deviation,

�XXi ¼

Pni
j¼1 xij

ni
and

Si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPni
j¼1 xij �

�XXi
� �2
ni � 1

vuut
,
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for the ith sample mean and the sample standard deviation, respectively. Then,
���X ¼

Pms

i¼1
�XX i=ms and S2

P ¼
Pms
i¼1 ðni � 1ÞS2

i =
Pms
i¼1 ðni � 1Þ are used for calculating

the manufacturing capability Cpm. For cases with multiple samples, two estimators
of Cpm can be considered, ĈCMðZhÞ

pm and ĈCMðPSÞ
pm , as shown below. The estimator ĈCMðZhÞ

pm

is proposed in Zhang (2001). Unfortunately, the exact distribution of ĈCMðPSÞ
pm is

difficult to obtain. The exact distribution of the estimator proposed here, ĈCMðPSÞ
pm ,

can be found as a function of the non-central Chi-square distribution, which is
analytically tractable (Pearn et al. 2003). Consequently, the critical values, lower
confidence bounds, sample size determination, and the manufacturing capability
calculations can be performed using the same technique for cases with one single
sample.

ĈCMðZhÞ
pm ¼

USL� LSL

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1ð ÞS2

P þN
��XX�XX � T

� 	2� �
=N

s
:

ĈCMðPSÞ
pm ¼

USL� LSL

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXms

i¼1
ðni � 1ÞS2

P þN
��XX�XX � T

� 	2
N

vuut
:

7.2. MPPAC control chart application
Furthermore, for SSADC IC manufacturing factories having a group of

processes to be monitored and controlled, it would be effective to use the MPPAC
(Multi-Process Performance Analysis Chart). The MPPAC can be used to illustrate
and analyse the manufacturing capability for multiple processes, which conveys
critical information regarding the departure of the process mean from the target
value, process variability, capability levels, and provides a guideline of directions
for capability improvement. Singhal (1991) introduced the Cpk MPPAC for mon-
itoring multiple processes. Pearn and Chen (1997) proposed a modification to the
Cpk MPPAC combining the more advanced capability index Cpm and Cpmk to iden-
tify the problems causing the processes to fail to centre around the target. Pearn et al.
(2002) developed the MPPAC based on the incapability index Cpp. Using the same
technique, the Cpm MPPAC can be developed to monitor the capability for multiple
SSADC IC manufacturing processes. Using the Cpm MPPAC, practitioners/
engineers can simultaneously analyse the performance of multiple processes based
on one single chart. The Cpm MPPAC also prioritizes the order of the processes
which the quality improvement effort should focus on, for either moving the process
mean closer to the target value or reducing the process variation. The developed
confidence lower bounds can then be applied to the Cpm MPPAC to ensure
the accuracy of the MPPAC for given sample sizes.

8. Conclusions

In this paper, we considered the problem of finding the lower confidence bound
and sample sizes required for specified precision of the estimation for the Cpm. The
lower confidence bounds present a measure on the minimum capability of the pro-
cess based on the sample data. The sample size determination is directly related to
the cost of the data collection plan. We used the explicit form of the CDF of the
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estimator ĈCpm expressed in terms of a mixture of the Chi-square distribution and
the normal distribution, to calculate the lower confidence bounds and sample sizes
required for specified precision of the estimation. We investigated the behaviour of
the lower confidence bound values and sample sizes required for specified precision
of the estimation versus the process characteristic parameter � ¼ (��T)/�. The
results indicated that the maximal lower confidence bound obtaining its minimal
value at � ¼ 0, and the minimal sample sizes required for specified precision of the
estimation can be found by setting � ¼ 0. The proposed approach ensures that the
risk of making incorrect decisions will be no greater than the preset Type I error
1� �. We also provided tables for the engineers/practitioners to use for their in-plant
applications. A real-world example on analogue-to-digital converters, taken from a
microelectronics manufacturing process is investigated, to illustrate the applicability
of our approach. The implementation of the existing complicated statistical theory
for capability assessment bridges the gap between the theoretical development and
the factory applications.
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