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Abstract

Picard, Gauss–Seidel, and Jacobi monotone iterative methods are presented and analyzed for the adap-
tive $nite element solution of semiconductor equations in terms of the Slotboom variables. The adaptive
meshes are generated by the 1-irregular mesh re$nement scheme. Based on these unstructured meshes and
a corresponding modi$cation of the Scharfetter–Gummel discretization scheme, it is shown that the resulting
$nite element sti4ness matrix is an M -matrix which together with the Shockley–Read–Hall model for the
generation–recombination rate leads to an existence–uniqueness–comparison theorem with simple upper and
lower solutions as initial iterates. Numerical results of simulations on a MOSFET device model are given to
illustrate the accuracy and e<ciency of the adaptive and monotone properties of the present methods.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Computer-aided simulation is one of the important processes in developing semiconductor devices.
Numerical methods for the fundamental semiconductor equations play a signi$cant role in this de-
velopment. For most practical device structures, the electrostatic potential and carrier concentrations
exhibit extreme layers [26], particularly in the neighborhood of p–n junctions and the oxide [9].
The presence of layers implies that adaptive mesh generation of unstructured grids is inevitable if
an accurate and e<cient device simulation platform is required [9].
To obtain numerical solutions of semiconductor equations, one must solve a system of nonlinear

algebraic equations resulting from a discretization by, for example, the $nite element method. The
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standard method for the solution of the system is Newton’s method or its variation. Newton’s method
is a local method that, in general, is very sensitive to the initial guess and converges quadratically
in a su<ciently small neighborhood of the exact solution [28].
The method of monotone iterations is a classical tool for the study of the existence of the solution

of semilinear PDEs of certain types [1,14,29,33]. It is also useful for the numerical solution of these
types of problems approximated, for instance, by the $nite di4erence [12,19,30], $nite element [16],
or boundary element [6,11,32] method. It is a constructive method that depends essentially on only
one parameter, called the monotone parameter herein, which determines the convergence behavior of
the iterative process. Based on adaptive 1-irregular $nite element meshes, we extend this classical
method to device simulation by exploiting a very special nonlinear property of the drift-di4usion
model that the carriers satisfy Maxwell–Boltzmann statistical laws by which the model can be
expressed in terms of the electrostatic potential and the Slotboom variables [5,17,35,39].
Embedded in the widely used Gummel’s decoupling algorithm [13,34], three monotone iterative

methods, namely, Picard, Gauss–Seidel, and Jacobi methods, are presented and analyzed in this pa-
per. By extending the Scharfetter–Gummel discretization scheme proposed in [41] to the adaptive
$nite element approximation, it is shown that the resulting sti4ness matrix is an M -matrix which
together with the Shockley–Read–Hall model for the generation– recombination rate leads to an
existence–uniqueness–comparison theorem with simple upper or lower solution as an initial guess.
These methods also yield positivity of carrier concentrations under conditions of strong recombi-
nation similar to that of the method presented in [35] for the drift-di4usion model in one-space
dimension.
In the next section, we state the model from the Van Roosbroeck system to the corresponding

Slotboom-variable formulation and Gummel’s decoupling algorithm. The model is subject to Dirich-
let and Neumann types of conditions on various parts of the boundary of a real-life device domain.
In Section 3, we $rst analyze the matrix properties of the resulting adaptive $nite element sys-
tems for the Poisson equation, which then lead to the M -matrix properties for the semiconductor
equations. Starting with the upper and lower solutions as initial guesses, it is shown in Section 4
that maximal and minimal sequences generated by Picard, Gauss–Seidel, and Jacobi iterations all
converge monotonically from above and below to the unique solution of the resulting nonlinear sys-
tem. We then summarize in Section 5 our implementation procedures into two algorithms, namely,
monotone-Gummel and adaptive algorithms which combine Gummel’s decoupling, monotone itera-
tive, and adaptive methods. Section 6 represents a part of our extensive numerical experiments on
various n-MOSFET device models to demonstrate the accuracy and e<ciency of adaptive and mono-
tone properties of the proposed methods. Moreover, numerical results of the Jacobi and Gauss–Seidel
monotone iterations are also given to verify the theoretical results.

2. The drift-di�usion model

The steady-state Van Roosbroeck system [43], usually referred to as the drift-di4usion model of
semiconductor devices, is

J�=
q
�s
(n− p+ N−

A − N+
D ); (2.1)
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1
q
∇ · Jn = R(�; n; p); (2.2)

1
q
∇ · Jp =−R(�; n; p); (2.3)

where � is the electrostatic potential, n and p are the electron and hole concentrations, q is the
elementary charge, �s is the permittivity constant of the semiconductor, N−

A and N+
D are densities of

ionized impurities, Jn and Jp are the electron and hole current densities, and R(�; n; p) is a function
describing the balance of generation and recombination of electrons and holes. The current densities
Jn and Jp are de$ned as follows:

Jn =−q�nn∇�+ qDn∇n; (2.4)

Jp =−q�pp∇�− qDp∇p; (2.5)

where �n and �p are the $eld-dependent electron and hole mobilities and the di4usion coe<cients
of electrons and holes are expressed in the Einstein relations

Dn = VT�n; Dp = VT�p (2.6)

with VT = kT=q being the thermal voltage, k Boltzmann’s constant, and T a constant temperature.
Based on Maxwell–Boltzmann statistical laws [17,39], we may write system (2.1)–(2.3) as

J�= F(�; u; v); (2.7)

∇ ·
(
Dnni exp

(
�
VT

)
∇u
)
= R(�; u; v); (2.8)

∇ ·
(
Dpni exp

(−�
VT

)
∇v
)
= R(�; u; v); (2.9)

where

u= exp
(−’n

VT

)
; (2.10)

v= exp
(
’p

VT

)
(2.11)

are the Slotboom variables in which the quasi-Fermi potentials ’n and ’p are expressed as

n= ni exp
(
�− ’n

VT

)
;

p= ni exp
(
’p − �
VT

)
;
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and

F(�; u; v) =
qni
�s

(
u exp

(
�
VT

)
− v exp

(−�
VT

))
+

q(N−
A − N+

D )
�s

; (2.12)

R(�; u; v) =
n2i (uv− 1)

�0n(niv exp(−�=VT ) + pT) + �0p(niu exp(�=VT ) + nT)
: (2.13)

Here we consider particularly the Shockley–Read–Hall generation–recombination model with ni being
the intrinsic carrier concentration, �0n and �0p the electron and hole lifetimes, and pT and nT the
electron and hole densities associated with energy levels of the traps.
In device simulation, most numerical methods have been developed for the approximation of

system (2.1)–(2.3) with the primal state variables (�; n; p) [3,36]. Nevertheless, there are also some
methods developed for the Slotboom-variable formulation (2.7)–(2.9) with the state variables (�; u; v)
[35,39]. It has been observed in [3] that the choice of the variables u and v de$ned in (2.10) and
(2.11) is preferable since they lead to self-adjoint and positive de$nite matrices and that the resulting
matrices are better scaled than those of ’n and ’p. The theory and solution methods for systems of
self-adjoint partial di4erential equations have reached a very high standard such that a solution of
the static semiconductor equations in (�; u; v) can be carried out very e<ciently. However, the major
drawback of the variables u and v lies in the enormous dynamic range required for real number
representation in actual computations. By recalling de$nitions (2.10) and (2.11), for example, we $nd
that the exponential terms vary more than 32 orders of magnitude for �∈ [− 1; 1]V . It is, therefore,
obvious that computations are limited to low-voltage applications. Although Newton’s method can be
successfully applied to (2.7)–(2.9) [3,25], it is very sensitive to the initial guess of those variables due
to its local convergence property. In practical simulation, the device terminal characteristics of I–V
curves (i.e., I–V points) is usually of interest. The conventional approach to obtain these curves is a
homotopy process from lower biases to higher biases by Newton’s method, which can be very costly
in terms of computing time and human work load associated with the convergence problems of the
method. On the other hand, with formulation (2.7)–(2.9), the monotone iterative method presented in
this paper is a global method for which the initial guess can be chosen in a more arbitrary way, see
Theorem 4.1 and Section 6 below. This then allows us to have a simultaneous (parallel) computing
of multiple I–V points with various biasing conditions and with independent constant initial guesses
for each I–V point calculation. The computational e4ort can thus be dramatically reduced [22].
System (2.7)–(2.9) is subject to some appropriate conditions on the boundary of a rectangular

region denoted by � ⊂ R2 and shown in Fig. 1. The domain is bounded by the six segments
�AB = AB, �BC = BC, �CD = CD, �DE = DE, �EF = EF, and �FA = FA, i.e., its boundary

9� = �AB ∪ �BC ∪ �CD ∪ �DE ∪ �EF ∪ �FA:

By assuming the charge neutrality condition and the mass-action law [40], the boundary conditions
of the system in terms of the variables �, u, and v are described as follows: The Dirichlet part of
boundary conditions

�= VO + Vb on 9�D; (2.14)

u= exp
(−VO

VT

)
on 9�D; (2.15)
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Fig. 1. Geometry of an n-MOSFET device.

v= exp
(
VO
VT

)
on 9�D; (2.16)

where 9�D=�BC∪�DE∪�FA; VO=VS; VD, or VB, are the source, drain, or substrate voltage applied
on the ohmic contact parts �BC; �DE, or �FA, respectively. Vb represents the built-in potential [40].
On the boundary �AB and �EF, we assume that the normal components of the electric $eld E=−∇�
and current densities are zero,

� · E = 0; � · Jn = 0 and � · Jp = 0:
These conditions lead to the Neumann boundary conditions

9�
9� = 0 on 9�N = �AB ∪ �EF; (2.17)

9u
9� = 0 on 9�N; (2.18)

9v
9� = 0 on 9�N; (2.19)

where � is the outward normal on 9�, and to the mixed and Neumann boundary conditions

�− = �+; �s9y�− = �d9y�+ on 9�R = �CD; (2.20)

9u
9� = 0 on 9�R; (2.21)

9v
9� = 0 on 9�R; (2.22)
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where VG is the voltage applied on the gate, tox is the gate oxide thickness, �d is the permittivity
constant of the gate oxide, and the + and − signs refer to as the limits from the oxide and the
semiconductor regions, respectively, to the interface. The oxide region �O (the rectangular region
CIJD) is assumed to be free of charges, i.e., the Laplace equation J�=0 holds there and �IJ=Vb+VG.
We now describe Gummel’s decoupling algorithm for the DD model. With a given initial guess

(�(0); u(0); v(0)) and for each Gummel’s iteration index g; g=0; 1; : : : ; �(g+1) is computed by solving
the nonlinear Poisson equation in � and the Laplace equation in �O

J�(g+1) = F(�(g+1); u(g); v(g)) in �;

�(g+1) = VO + Vb on 9�D;

9�(g+1)
9� = 0 on 9�N;

J�(g+1) = 0 in �O;

�(g+1) = Vb + VG on �IJ;

9�(g+1)
9� = 0 on �CI ∪ �DJ;

�(g+1)− = �(g+1)+ ; �s9y�(g+1)− = �d9y�(g+1)+ on 9�R (2.23)

and then u(g+1) is computed by solving the electron current continuity equation, with now the known
functions �(g+1) and v(g),

∇ ·
(
D(g+1)n ni exp

(
�(g+1)

VT

)
∇u(g+1)

)
= R(�(g+1); u(g+1); v(g)) in �;

u(g+1) = exp
(−VO

VT

)
on 9�D;

9u(g+1)
9� = 0 on 9�N ∪ 9�R; (2.24)

and $nally v(g+1) is computed by solving the hole current continuity equation, with both �(g+1) and
u(g+1) known,

∇ ·
(
D(g+1)p ni exp

(−�(g+1)

VT

)
∇v(g+1)

)
= R(�(g+1); u(g+1); v(g+1)) in �;

v(g+1) = exp
(
VO
VT

)
on 9�D;

9v(g+1)
9� = 0 on 9�N ∪ 9�R (2.25)

until all preset stopping criteria are satis$ed.
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This decoupling algorithm is widely used in practical simulations of semiconductor devices. Im-
portant analyses of the algorithm pertaining to the existence, stability, convergence, e4ectiveness, etc.
have been thoroughly studied by Jerome and Kerkhoven [17,18,20]. The algorithm de$nes an outer
iteration in a simulation procedure. The monotone method proposed here is applied individually to
each one of the nonlinear algebraic systems resulting from the discretization of di4erential equations
(2.23)–(2.25).
Before going into the discrete systems, we describe the essence of the monotone iterative method

by using a nonlinear Poisson model problem [16,29,30]. Our description is primarily based on [30].
Consider the semilinear elliptic PDEs

J�= f(x; y; �) in �

a
9�
9� + b�= g(x; y) on 9�; (2.26)

where a ≡ a(x; y) and b ≡ b(x; y) are nonnegative functions on 9� with a + b¿ 0, and f and g
are prescribed nonlinear and linear functions in their respective domains.
Applying the $nite element method to (2.26) on a certain partition of the domain, we obtain a

system of nonlinear algebraic equations in a compact form

AZ =−F(Z); (2.27)

whereA is an N×N matrix, Z ≡ (z1; : : : ; zN )T is an unknown vector, and F(Z) ≡ (F1(Z); : : : ; FN (Z))T

is a vector associated with both functions f and g. We denote by N�h the set of grid points associated
with the partition of N� = � ∪ 9�, i.e.,

N�h = {(xi; yi)∈� ∪ 9� : i = 1; 2; : : : ; N};

where N is the total number of regular nodes (see Section 3 for the de$nition) of the $nite el-
ement partition. The sets of grid nodes in �; 9�; 9�D; 9�N, and 9�R are similarly denoted by
�h; 9�h; 9�h

D; 9�h
N, and 9�h

R, respectively.
Starting with a given initial vector Z (0) for problem (2.27), the monotone iterative method generates

a sequence of iterates {Z (m)}; m= 0; 1; : : : ; by solving the equation

AZ (m+1) + *Z (m+1) = *Z (m) − F(Z (m)); (2.28)

where * is a nonnegative diagonal matrix in which its entries +k ; k = 1; : : : ; N , are parameters that
are determined by the nonlinear function f. Under various conditions on the matrices A and *; or
equivalently on the discretization and the function f, it has been shown in [30] that, for the $nite
di4erence approximation, the sequence {Z (m)} generated by Eq. (2.28) converges monotonically to a
solution of (2.27). Obviously, the convergence behavior of the monotone process (2.28) is essentially
dedicated by *.
There are some variants of the Picard method (2.28), such as Jacobi, Gauss–Seidel, and block

iterative monotone methods [30]. We shall discuss the Gauss–Seidel method and the Jacobi method
below.
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3. Matrix properties of the drift-di�usion model

For each Gummel’s iteration and after the discretization, each one of the nonlinear problems
(2.23)–(2.25) will result in a system of nonlinear algebraic equations similar to (2.27) with which our
main concern now is the property of the resulting sti4ness matrix A. The discretization considered
here is particularly based on the adaptive $nite element method using the 1-irregular mesh re$nement
scheme [10,24].
Let T be a $nite element partition of the domain � such that T = {�j; j=1; : : : ; M; N�=

⋃M
j=1 N�j},

and Sh(T ) denote a $nite element space on T . Let N a be a set of N indices that are assigned to
active degrees of freedom (i.e., regular nodes) and N c assigned to constrained degrees of freedom
(irregular nodes). By an active degree of freedom, we mean one that de$nes a parameter associated
with the global sti4ness matrix whereas a constrained degree of freedom is a linear combination of
active degrees of freedom that are associated with the constrained node by element connectivity. For
each i∈N c, there exists a set A(i) ⊂ N a of corresponding active degrees of freedom such that the
resulting $nite element space Sh(T ) consists of continuous functions. Let �h be an arbitrary function
in Sh(T ). If the element � is a square, then �h is of the following form:

�h=
∑
i∈N a

�ib̂i +
∑
j∈N c

�jb̂j

=
∑
i∈N a

�ib̂i +
∑
j∈N c

∑
k∈A( j)

1
2
�kb̂j;

where �i are scalars and b̂i are unconstrained bilinear bases which can be constructed via the
following four shape functions:

s1 = (1− 0)(1− 1)=4;

s2 = (1 + 0)(1− 1)=4;

s3 = (1 + 0)(1 + 1)=4;

s4 = (1− 0)(1 + 1)=4

de$ned on the reference element �̂= {(0; 1): |0|6 1; |1|6 1}. For every i∈N a, let

C(i) = {j∈N c | i∈A(j)}:
We rewrite �h in the form

�h=
∑
i∈N a

�ib̂i +
∑
k∈N a

∑
j∈C(k)

1
2
�kb̂j

=
∑
i∈N a

�i


b̂i +

∑
j∈C(i)

1
2
b̂j


 :
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Thus, the functions

bi = b̂i +
∑
j∈C(i)

1
2
b̂j ∀i∈N a (3.1)

form constrained bilinear bases.
Let (xi; yi)∈ N� be a mesh point in T . For each i∈N a and using the standard notation �i ≈

�(xi; yi), there exists a set V (i) ⊂ N a; i �∈ V (i), of active degrees of freedom such that the $nite
element approximation of problem (2.23) results in a system

0i�i −
∑
k∈V (i)

0k�k =−Fi(�i) + F∗
i ; (3.2)

where

0k =−Bh(bi; bk) ≡ −
∑
�∈T

∫
�
∇bi · ∇bk dx dy;

0i = Bh(bi; bi);

Fi(�i) ≡
∑
�∈T

∫
�
F(�i; ui; vi)bi dx dy

and F∗
i is associated with the boundary conditions in (2.23) if (xi; yi)∈ 9� and F∗

i =0 if (xi; yi)∈�.
Since the partition consists of rectangular elements, the following result can be easily proved (see,

e.g., [2]) with each type of the 1-irregular elements as given in [24].

Theorem 3.1. The matrix induced by (3.2) is diagonally dominant, i.e.,

0i¿
∑
k∈V (i)

0k ; (3.3)

0k¿ 0 ∀k ∈V (i): (3.4)

Furthermore, the strict inequality in (3.3) holds for at least one i∈N a.

However, for continuity equations (2.24) and (2.25), it is well known that the Scharfetter–Gummel
discretization induces nonphysical di4usion in the direction normal to drift velocity for multidimen-
sional problems, which has led to various modi$cations of the method [3,8,21,27,34,37,38,41,42]. In
order to obtain the same matrix property as that of Theorem 3.1, we extend in particular the method
proposed in [41] to the 1-irregular mesh re$nement scheme. By analogy, it su<ces to consider only
the electron continuity equation.
For each j∈N a with uj ≈ u(xj; yj), (2.24) is approximated by

L[uj] ≡ 1juj −
∑

k∈V ( j)
1kuk =−Rj(uj) + R∗

j (3.5)

or in the more compact matrix form

AU =−R(U ) + R∗; (3.6)
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where

1j =
∑

k∈V ( j)
1k ; (3.7)

1k = 0kdk ; (3.8)

dk = Dn|(k; j)niB
(
�(g+1)j − �(g+1)k

VT

)
exp

(
�(g+1)j

VT

)
; (3.9)

0k =−Bh(bj; bk); (3.10)

Rj(uj) = R(�(g+1)j ; u(g+1)j ; v(g)j );

Dn|(k; j) = (Dn(xk ; yk) + Dn(xj; yj))=2;

U = (u1; : : : ; uN );

R(U ) = (R1(u1); : : : ; RN (uN ))

and B(t) = t=(et − 1) is the Bernoulli function for any real number t and R∗
j is associated with the

boundary conditions in (2.24) if (xj; yj)∈ 9� and R∗
j = 0 if (xj; yj)∈�. Note that, by the de$nition

of the Bernoulli function and of the di4usion coe<cient, the factors dk in (3.9) are positive. We
thus conclude the following result.

Theorem 3.2. The matrix A in (3.6) is diagonally dominant, i.e.,

1j¿
∑

k∈V ( j)
1k ;

1k¿ 0 ∀k ∈V (j): (3.11)

Furthermore, the strict inequality in (3.11) holds for at least one j∈N a.

4. Monotone convergence results

The diagonal dominance of the resulting matrices (i.e., M -matrices) of the model problems (2.23)–
(2.25) provides not only stability of numerical solutions (i.e., no nonphysical oscillations) but also
convergence of iterative procedures when the special properties of the nonlinearity in these prob-
lems are taken into account. Moreover, the existence and uniqueness of the solutions can also be
guaranteed by means of the construction of lower and upper solutions which are de$ned as follows:

De!nition 4.1. A vector Ũ ≡ (ũ 1; : : : ; ũ N )∈RN is called an upper solution of (3.6) if it satis$es
the following inequality:

1iũ i −
∑
k∈V (i)

1kũ k¿− Ri(ũ i) + R∗
i (4.1)
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and Û ≡ (û 1; : : : ; û N )∈RN is called a lower solution if

1iû i −
∑
k∈V (i)

1kû k6− Ri(û i) + R∗
i (4.2)

for i∈N a.

As in the previous section, we only consider the monotone convergence for the electron continuity
equation (2.24) since the nonlinear functionals in (2.23)–(2.25) are at right-hand sides and these
equations are all associated with self-adjoint operators. It is obvious that every solution of (3.6) is
an upper solution as well as a lower solution. We say that Û and Ũ are ordered if Û6 Ũ . Given
any ordered lower and upper solutions Û and Ũ , we de$ne

〈Û ; Ũ 〉 ≡ {U ∈RN ; Û6U6 Ũ}; (4.3)

〈û i; ũ i〉 ≡ {wi ∈R; û i6wi6 ũ i}: (4.4)

We only consider positive solutions, i.e., 0¡Û6U6 Ũ , due to physical relation (2.10). Choose
the nonnegative scalars +i such that

+i ≡ max
{
9Ri(wi)
9ui

; wi ∈ 〈û i; ũ i〉
}

or in matrix form

* ≡ diag(+i)

for i∈N d. Then by adding the term +iui on both sides of (3.5) we obtain the equivalent system

L[ui] + +iui = +iui − Ri(ui) + R∗
i : (4.5)

It is easily seen from the de$nition of +i that +i ¿ 0 and

+iui − Ri(ui) + R∗
i ¿ +ivi − Ri(vi) + R∗

i when ũ i¿ ui¿ vi¿ û i: (4.6)

Let NU (0) = Ũ be an initial iterate. We construct a sequence { NU (m+1)} by solving the linear system
1i Nu

(m+1)
i −

∑
k∈V (i)

1k Nu
(m)
i + +i Nu

(m+1)
i = +i Nu

(m)
i − Ri( Nu

(m)
i ) + R∗

i (4.7)

for m = 0; 1; 2; : : : and i∈N a. Similarly, by using U (0) = Û as another initial iterate, we obtain a
sequence {U (m+1)} from the linear system

1iu
(m+1)
i −

∑
k∈V (i)

1ku
(m)
i + +iu

(m+1)
i = +iu

(m)
i − Ri(u

(m)
i ) + R∗

i (4.8)

for m=0; 1; 2; : : : and i∈N a. We refer to { NU (m)} and {U (m)} as the maximal and minimal sequences.
We now show that these two sequences are monotone and converge to a solution of (3.6).

Lemma 4.1. The maximal and minimal sequences { NU (m)} and {U (m)} given by (4.7) and (4.8)
with NU (0) = Ũ and U (0) = Û possess the monotone property

Û6U (m)6U (m+1)6 NU (m+1)6 NU (m)6 Ũ ; m= 0; 1; 2; : : : : (4.9)

Moreover for each m, NU (m) and U (m) are ordered upper and lower solutions.
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Proof. Let w(0)i = Nu(0)i − Nu(1)i = ũ i − Nu(1)i . By (4.7)

(1i + +i)w
(0)
i = (1i + +i)ũ i −


 ∑
k∈V (i)

1k Nu
(0)
k + +i Nu

(0)
i − Ri( Nu

(0)
i ) + R∗

i




= 1iũ i −
∑
k∈V (i)

1kũ k − [− Ri(ũ i) + R∗
i ]¿ 0:

In view of Theorem 3.2, w(0)i ¿ 0 for all i∈N a. This leads to Nu(0)i ¿ Nu(1)i . A similar argument using
relations (4.8) and (4.2) gives u(0)i 6 u(1)i . Let w

(1)
i = Nu(1)i − u(1)i . By (4.7) and (4.8), we have

(1i + +i)w
(1)
i =

∑
k∈V (i)

1k( Nu
(0)
k − u(0)k ) + +i( Nu

(0)
i − u(0)i )− [Ri( Nu

(0)
i )− Ri(u

(0)
i )]:

It then follows from the relation Nu(0)i ¿ u(0)i , the nonnegativity of 1k and (4.6) that

(1i + +i)w
(1)
i ¿ 0;

which again leads to w(1)i ¿ 0 and hence u(0)i 6 u(1)i 6 Nu(1)i 6 Nu(0)i for all i∈N a. Assume, by induction,
that u(m−1)i 6 u(m)i 6 Nu(m)i 6 Nu(m−1)i for some m¿ 1. By (4.7), w(m)i = Nu(m)i − Nu(m+1)i satis$es

(1i + +i)w
(m)
i =

∑
k∈V (i)

1k( Nu
(m−1)
k − Nu(m)k ) + +i( Nu

(m−1)
i − Nu(m)k )− [Ri( Nu

(m−1)
i )− Ri( Nu

(m)
k )]:

It follows again from (4.6) and Theorem 3.2 that

(1i + +i)w
(m)
i ¿ 0:

This yields w(m)i ¿ 0 which shows that Nu(m)i ¿ Nu(m+1)i . A similar argument gives u(m)i 6 u(m+1)i and
Nu(m+1)i ¿ u(m+1)i . The monotone property (4.9) thus follows by induction.
To show that NU (m) and U (m) are upper and lower solutions for each m, we observe from (4.7)

that

1i Nu
(m)
i =

∑
k∈V (i)

1k Nu
(m−1)
k + +i( Nu

(m−1)
i − Nu(m)i )− Ri( Nu

(m−1)
i ) + R∗

i :

By (4.6), (4.9) and Theorem 3.2, we have

1i Nu
(m)
i ¿

∑
k∈V (i)

1k Nu
(m)
k − Ri( Nu

(m)
i ) + R∗

i :

This shows that NU (m) is an upper solution. The proof for the lower solution U (m) is similar.

Based on the monotone property of Lemma 4.1, we have the following monotone convergence
result.

Theorem 4.1. Let Ũ ; Û be a pair of ordered upper and lower solutions of (3.6). Then the sequences
{ NU (m)} and {U (m)} generated by solving (4.7) and (4.8) with NU (0) = Ũ and U (0) = Û converge
monotonically to the solutions NU and U of (3.6), respectively. Moreover

Û6U (m)6U (m+1)6U6 NU6 NU (m+1)6 NU (m)6 Ũ ; m= 1; 2; : : : (4.10)

and if U ∗ is any solution of (3.6) in 〈Û ; Ũ 〉 then U6U ∗6 NU .
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Proof. By Lemma 4.1, the limits

lim NU (m) = NU and limU (m) = U as m → ∞
exist and satisfy relation (4.10). Letting m → ∞ in (4.7) and (4.8) shows that NU and U are solutions
of (4.5). The equivalence between (3.6) and (4.5) ensures that NU and U are solutions of (3.6). Now
if U ∗ ∈ 〈Û ; Ũ 〉 is a solution of (3.6) then Ũ and U ∗ are ordered upper and lower solutions. Using
NU (0) = Ũ and U (0) = U ∗, Lemma 4.1 implies that NU (m)¿U ∗ for every m. Letting m → ∞ gives
NU¿U ∗. A similar argument using U ∗ and Û as ordered upper and lower solutions yields U ∗¿U .
This proves the theorem.

In view of the relation NU¿U ∗¿U for any solution U ∗ in 〈Û ; Ũ 〉, NU and U are often called
maximal and minimal solutions in 〈Û ; Ũ 〉, respectively. In general, these two solutions are not
necessarily the same. Nevertheless, they are the same for model problems (2.23)–(2.25).

Theorem 4.2. If the conditions in Theorem 4.1 hold, then NU = U is the unique solution of (3.6).

Proof. Let W = NU − U . Then W ¿ 0 and by (3.6)

AW =−R( NU ) + R(U )6 9( NU − U ) = 9W;

where

9 ≡ max
{
−9Ri(wi)

9ui
; wi ∈ 〈û i; ũ i〉; i∈N a

}
: (4.11)

Equivalently, we have (A−9I)W 6 0 where I is the identity matrix. Hence, the inverse (A−9I)−1
exists and is nonnegative since 96 0 and A is symmetric due to (3.9) and (3.10). This implies
that W 6 0 which leads to W = 0, i.e., in 〈Û ; Ũ 〉, NU =U =U ∗ is the unique solution of (3.6).

Finally, we give some comparison results for the monotone sequences obtained by the three basic
iterative methods of Picard, Jacobi, and Gauss–Seidel. The iterative methods are based on system
(3.6) with A written in the split form A=D−L−U, where D;L and U are the diagonal, lower-o4
diagonal and upper-o4 diagonal matrices of A, respectively. By Theorem 3.2, the elements of D
are positive and those of L and U are nonnegative.
Using the split form of A the three iterative schemes are given as follows:
(a) Picard method:

(A+ *)U (m+1) = *U (m) − R(U (m)) + R∗: (4.12)

(b) Gauss–Seidel method:

(D−L+ *)U (m+1) = *U (m) +UU (m) − R(U (m)) + R∗: (4.13)

(c) Jacobi method:

(D+ *)U (m+1) = *U (m) + (L+U)U (m) − R(U (m)) + R∗: (4.14)

It is clear that, following Theorem 3.2, the inverses of the matrices (A+ *), (D−L+ *) and
(D+ *) all exist and are nonnegative.
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Using either Ũ or Û as initial iterates, we can construct a sequence from each one of the iterative
schemes (4.12)–(4.14). Denote the respective sequences by { NU (m)

P }, { NU (m)
G } and { NU (m)

J } with NU (0)=Ũ
and by {U (m)

P }, {U (m)
G } and {U (m)

J } with U (0) = Û , and refer to them again as maximal and minimal
sequences, respectively. The convergence of these sequences and the uniqueness of the limiting
solutions can be shown in a similar way as in Theorems 4.1 and 4.2. Furthermore, these three
minimal or maximal sequences exhibit an ordered behavior as given in the following theorem for
which a proof can be found in [30].

Theorem 4.3. Let Ũ ; Û be a pair of ordered upper and lower solutions of (3.6). Then the three
pairs of sequences ({ NU (m)

P }; {U (m)
P }), ({ NU (m)

G }; {U (m)
G }) and ({ NU (m)

J }; {U (m)
J }) generated by solving

(4.12), (4.13), and (4.14), respectively, with NU (0) = Ũ and U (0) = Û converge monotonically to the
solution of (3.6). Moreover

NU (m)
P 6 NU (m)

G 6 NU (m)
J and U (m)

P ¿U (m)
G ¿U (m)

J for m= 1; 2; : : : : (4.15)

5. Implementation algorithms

We brieRy summarize our implementation procedures for the proposed methods into two algo-
rithms. The $rst algorithm is an adaptive process based on the general framework of the weak
residual error estimation developed in [23] and on the object-oriented programming (OOP) pro-
totype proposed in [24]. The data structure of the prototype is designed to combine 1-irregular
mesh re$nement scheme, various types of PDEs, and various numerical methods in an integrated
computational platform.

An adaptive algorithm.
Step 1: Initial mesh: Generate a coarse and structured mesh for which the number of nodes can

be chosen as small as possible.
Step 2: Junction re8nement: Since the initial mesh is usually very coarse, a preprocessing re-

$nement to capture irregularities caused by the junction layers of the doping pro$le and by the
inversion layer due to the applied voltages proves to be an essential step for more e4ective re-
$nement and faster convergence in the subsequent computations. For the junction layers, Poisson’s
problem in (2.23) with low biasing conditions is pre-solved few times with the same procedures of
error estimation and re$nement as that of Steps 5 and 6 below.

Step 3: Interface re8nement: For the inversion layer, several re$nement iterations are performed
speci$cally along the interface boundary. The re$nement procedure is the same as that of Step 6.
We now have a nonuniform mesh with a better resolution in the vicinity of the interface and the
junction.

Step 4: Solution: On the current mesh, each one of nonlinear problems (2.23)–(2.25) is then
approximated by FEM. The resulting nonlinear algebraic equations are then solved by some mono-
tone iterative method. Note that this solution procedure consists of an outer loop associated with
Gummel’s iteration solving (2.23)–(2.25) consecutively and an inner loop associated with the mono-
tone iteration. Moreover, the assembly of global sti4ness and mass matrices of the resulting ap-
proximation is not required, that is, the solution of the discretized nonlinear systems is performed
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on a node-by-node (regular node) basis. This step is described in more details in the following
monotone-Gummel algorithm.

Step 5: Error estimation: All adaptive methods require more or less a posteriori information about
the computed solution for optimizing overall computational e4ort in the sense that the methods deliver
a given level of accuracy with a minimum of degrees of freedom. In essence, the a posteriori error
estimation can be regarded as the driving force of adaptive mechanism. Several methods for error
estimation in semiconductor simulations have been proposed and incorporated with adaptive grid
re$nement. PISCES [31], for example, limits the variation of the quasi-Fermi potential over one
element; the element is re$ned if this limit is exceeded. Bank and Weiser [4] proposed a method to
estimate the error based on the computation of the norm of the local residual of the elliptic equation
and the jump in the normal derivative of the computed solution at inter-element boundaries. An
estimation based on computation of the error in the current continuity equation is developed in [9].
We found that the variation of the approximate potential or electron concentration is much easier and
inexpensive to obtain and yet su<ciently e4ective (since the variations di4er drastically from low to
high concentration) for adaptive mesh generation. Variations are calculated with respect to every two
nodes in each element, from which the largest one is chosen as an error indicator for the element.
Error indicators are obtained in an element-by-element manner according to the hierarchical tree
structure of the elements in the OOP database (see [24] for more details). A set of criteria on such
as global error (maximum) norms of approximated solutions in inner iteration and outer iteration
will also be veri$ed (see the next section). If none of the stopping criteria is satis$ed, the adaptive
process will continue to Step 6, otherwise it will go to Step 7 for postprocessing the computed
solutions.

Step 6: Re8nement: For each element, if its error indicator is larger than a preset error tolerance,
it is divided into four subelements according to the rules of the 1-irregular mesh re$nement scheme
as given in [24]. We then move on to Step 4.

Step 7: Postprocessing: All computed solutions are then postprocessed for further analysis of the
physical phenomena.
The second algorithm illustrates how the monotone iterative methods are embedded into the Gum-

mel decoupling algorithm. Here we use the notation g as Gummel’s (outer) iteration index and m
as the monotone (inner) iteration index.

A monotone-Gummel algorithm

Step 0: Set g := 0.
Step 1: Solve the Poisson and Laplace equations in (2.23).

Step 1.1: Set m := 0 and set the initial guess

�(m)j =

{
�̃j or �̂j if g= 0;

�(g)j otherwise

for all (xj; yj)∈ N�h, where �̃j and �̂j are constant values that can be easily veri$ed to be
an upper and lower solution of �, respectively.
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Step 1.2: If g= 0, set u(g) and v(g) by the charge neutrality condition.
Step 1.3: Compute �(m+1)j (an unknown real value) by solving the discrete potential system

0j�
(m+1)
j + +j(�)�

(m+1)
j =

∑
k∈V ( j)

0k�
(m)
k − Fj(�

(m)
j ; u(g)j ; v(g)j ) + +j(�)�

(m)
j ∀(xj; yj)∈�h;

�(m+1)j = VO + Vb ∀(xj; yj)∈ 9�h
D;

9�(m+1)j

9� = 0 ∀(xj; yj)∈ 9�h
N;

0j�
(m+1)
j =

∑
k∈V ( j)

0k�
(m)
k ∀(xj; yj)∈�h

O;

�(m+1)j = VG + Vb ∀(xj; yj)∈�IJ;

9�(m+1)j

9� = 0 ∀(xj; yj)∈�CI ∪ �DJ;

�s9y�(m+1)− = �d9y�(m+1)+ ∀(xj; yj)∈ 9�h
R (5.1)

with

+j(�) = max
{

qni
�sVT

(
u(g)j exp

(
�j

VT

)
+ v(g)j exp

(−�j

VT

))
; �̂j6�j6 �̃j

}
:

Step 1.4: Set �(m)j := �(m+1)j ∀j and m := m + 1. Go to Step 1.3 until the stopping criteria
of the inner iteration are satis$ed.

Step 1.5: Set �(g+1)j := �(m+1)j ∀j.
Step 2: Solve the electron continuity equation in (2.24).

Step 2.1: Set m := 0 and set the initial guess

u(m)j =

{
ũ j or û j if g= 0;

u(g)j otherwise

for all (xj; yj)∈ N�h, where ũ j and û j are constant values for all (xj; yj)∈ N�h that can be
easily veri$ed to be an upper and lower solution of u, respectively.

Step 2.2: Compute u(m+1)j (an unknown real value) by solving the discrete electron system

1ju
(m+1)
j + +j(u)u

(m+1)
j =

∑
k∈V ( j)

1ku
(m)
k − Rj(�

(g+1)
j ; u(m)j ; v(g)j ) + +j(u)u

(m)
j ∀(xj; yj)∈�h;

u(m+1)j = exp
(−VO

VT

)
∀(xj; yj)∈ 9�h

D;

9u(m+1)j

9� = 0 ∀(xj; yj)∈ 9�h
N ∪ 9�h

R (5.2)
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with

+j(u)=max

{
�0n(niv

(g)
j exp(−�(g+1)j =VT )+pT )n2i v

(g)
j +�0pnTn

2
i v
(g)
j +n3i �

0
pexp(�

(g+1)
j =VT )

(�0n(niv
(g)
j exp(−�(g+1)j =VT )+pT )+�0p(niuj exp(�

(g+1)
j =VT )+nT ))2

}
:

Step 2.3: Set u(m)j := u(m+1)j ∀j and m := m+1. Go to Step 2.2 until the stopping criteria of
the inner iteration are satis$ed.

Step 2.4: Set u(g+1)j := u(m+1)j ∀j.
Step 3: The hole continuity equation in (2.25) is solved analogously as done in Step 2.
Step 4: Set g := g + 1 and go to Step 1 until the stopping criteria of the outer iteration are

satis$ed.
Note that the solution procedure in the above algorithm is completely similar to that of the standard

Gummel algorithm except that the initial iterates for the Gummel iterations in Steps 1.1 and 2.1 are
chosen by the lower and upper solutions of the corresponding semilinear PDEs. Moreover, it can
be seen from (5.1) and (5.2) that the unknown scalars are calculated in a node-by-node manner
without explicitly computing the Jacobian matrix as required by Newton’s method. As shown in
Theorem 4.1, we have rather large freedom to choose the values of the initial iterates. For elliptic
PDEs, the upper or lower solution is readily determined by the boundary conditions. This in turn
suggests that the initial guesses in the above algorithm can be deduced from applied voltages and
built-in potentials. For example, we can choose �̃j =VD +Vn and �̂j =VB +Vp, ũ j =exp(−VB=VT ),
û j=exp(−VD=VT ), ṽj=exp(VD=VT ) and v̂j=exp(VB=VT ), where Vn is the built-in potential in n-region
and Vp is the built-in potential in p-region.

6. Numerical example

We consider an n-MOSFET device with a channel length of 0:34 �m and with the gate oxide
thickness of 7 nm. The doping pro$le for the test device is shown in Fig. 2, which is an elliptical
Gaussian distribution with the concentration 1020 cm−3 in the source and drain regions and 1016 cm−3
in the p-substrate region. The shallow implantation is needed to obtain a ‘normal-o4’ device with
positive threshold voltage and the deep implantation is necessary to avoid punchthrough. The junction
depth is 0:2 �m and the lateral di4usion under the gate is 0:08 �m.
With the drain voltage VD = 1:0 V and the gate voltage VG = 1:0 V, Fig. 3 illustrates a typical

adaptive $nal mesh which was generated from an initial mesh of 16 elements. The inversion and
junction layers are e4ectively captured by the adaptive process. Corresponding to the $nal mesh,
these computed solutions were obtained by the Gauss–Seidel monotone iteration with, for exam-
ple, an initial guess of the upper solution shown in Fig. 4 for the electron continuity equation.
The $nal results of the potential and electron concentration are shown in Figs. 5 and 6, respec-
tively.
In order to observe more clearly the monotone convergence behavior, we present some numerical

results of Jacobi and Gauss–Seidel monotone iterations for the electron continuity equation. Since
exp(−VD=VT ) � 1:7e − 17, we have chosen ũ = 1 and û = 1:0e − 18 as an ordered pair of upper
and lower solutions for the iterations. The approximate maximal and minimal solutions Nu i and u i

for some coordinates (xi; yi) are given in Tables 1 and 2 for Jacobi and Gauss–Seidel iterations,
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Fig. 2. Doping concentration.

Fig. 3. The $nal adaptive mesh.

respectively. The last row in these tables gives the number of iterations for the maximal and minimal
sequences { Nu (m)}, {u (m)}. It is clearly seen from these tables that Nu i is always larger than u i at
every mesh point i. Moreover, the number of iterations for the Gauss–Seidel iteration is smaller than
that of the Jacobi iteration. The stopping criterion for these iterations is ‖u(m) − u(m−1)‖6 0:001VT

where ‖·‖ is the maximum error norm. Note that, for the hole current continuity equation, the initial
values are determined by exp(VD=VT ). Numerical results for this case are similar to those of Tables
1 and 2.
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Fig. 4. The upper solution for the Gauss–Seidel iteration.

Fig. 5. Electrostatic potential.

We make a concluding remark on some numerical aspects in connection with the model formu-
lation. Obviously, the dynamic range of the Slotboom values of u and v in (2.10) and (2.11) is
enormously large in computations. For this, various scaling strategies have been proposed in the
literature to avoid catastrophic roundo4 e4ect [3]. The worst case of the numerics for the variables
u and v that we have experienced during the course of the development of our code is about of
order 10100 on our computing systems (Unix on DEC workstations and Linux on Pentium III) with
the machine number of order 10300. The ranges of applied voltages that have been tested with our
code are −10 V (the reverse bias) to 10 V (the forward bias) for a p–n diode, 0–5 V (the drain
bias) and 0–4 V (the gate bias) for a MOSFET.
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Fig. 6. Electron concentration.

Table 1
Upper and lower solutions (in log scale) at nodes (xi; yi) by the Jacobi monotone iteration (No.: Number of iterations)

yi \ xi 0.05 0.5 0.7 0.75 0.8 0.95

Nu i 0.95 −4:78E− 10 −0:2423 −16:790 −16:794 −16:797 −16:799
u i −2:07E− 9 −0:4330 −16:799 −16:799 −16:799 −16:799
Nu i 0.85 −1:33E− 9 −0:281 −16:253 −16:795 −16:796 −16:798
u i −5:80E− 9 −0:310 −16:278 −16:799 −16:799 −16:799
Nu i 0.8 −2:17E− 6 −0:247 −6:168 −11:796 −13:217 −13:746
u i −2:18E− 6 −0:259 −6:169 −11:797 −13:218 −13:746
Nu i 0.75 −1:38E− 2 −0:189 −1:040 −1:594 −1:9250 −2:2226
u i −1:39E− 2 −0:193 −1:041 −1:595 −1:9254 −2:2229
Nu i 0.5 −6:69E− 2 −0:1133 −0:1782 −0:1945 −0:1945 −0:1945
u i −6:72E− 2 −0:1136 −0:1785 −0:1947 −0:1947 −0:1947
Nu i 0.05 −8:16E− 3 −0:0111 −0:0139 −0:0146 −0:0146 −0:0146
u i −8:19E− 3 −0:0112 −0:0139 −0:0146 −0:0146 −0:0146
No. 1619 ( Nu i) 1750 (u i)

To quantitatively discuss the issue of matrix conditioning [15] associated with the implementation
of these Slotboom variables, we present the conditioning numbers of the sti4ness matrices of (5.1)
and (5.2) in Table 3 for several bias conditions.
The second row from the bottom of the table clearly shows that matrix conditioning deteriorates

dramatically for large biases due to the term exp(�=VT ) in (3.9). To improve the conditioning, we
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Table 2
Upper and lower solutions by the Gauss–Seidel iteration

yi \ xi 0.05 0.5 0.7 0.75 0.8 0.95

Nu i 0.95 −6:46E− 11 −0:1736 −16:794 −16:796 −16:798 −16:799
u i −2:00E− 9 −0:4274 −16:799 −16:799 −16:799 −16:799
Nu i 0.85 −1:80E− 10 −0:2681 −16:245 −16:797 −16:797 −16:799
u i −5:61E− 9 −0:3099 −16:277 −16:799 −16:799 −16:799
Nu i 0.8 −2:17E− 6 −0:241 −6:167 −11:796 −13:217 −13:746
u i −2:18E− 6 −0:259 −6:169 −11:797 −13:218 −13:746
Nu i 0.75 −1:38E− 2 −0:188 −1:040 −1:594 −1:9249 −2:2224
u i −1:39E− 2 −0:193 −1:041 −1:595 −1:9254 −2:2229
Nu i 0.5 −6:68E− 2 −0:1131 −0:1781 −0:1943 −0:1943 −0:1943
u i −6:71E− 2 −0:1136 −0:1785 −0:1947 −0:1947 −0:1947
Nu i 0.05 −8:15E− 3 −0:0111 −0:0139 −0:0146 −0:0146 −0:0146
u i −8:19E− 3 −0:0112 −0:0139 −0:0146 −0:0146 −0:0146
No. 826 ( Nu i) 1627 (u i)

Table 3
The matrix conditioning associated with the Slotboom variables (VS = 0 and VB = 0)

Bias conditions VD = 0 VD = 1 VD = 3 VD = 3 VD = 5
VG = 0 VG = 1 VG = 0 VG = 2 VG = 3

Degrees of freedom 749 749 3452 3452 4393
� Matrix in (5.1) 2.346E+2 2.346E+2 2.443E+2 2.443E+2 8.646E+2
u Matrix in (5.2) 3.487E+17 1.587E+39 4.419E+187 7.274E+121 1.396E+188
u Matrix in (6.1) 1.515E+4 5.062E+4 1.133E+5 1.106E+5 1.706E+5

can divide (5.2) by this term and ni to obtain

1̂ju
(m+1)
j + +̂j(u)u

(m+1)
j

=
∑

k∈V ( j)
1̂ku

(m)
k − R(�(g+1)j ; u(m)j ; v(g)j )

/[
ni exp

(
�(g+1)j

VT

)]
+ +̂j(u)u

(m)
j ; (6.1)

where 1̂j = exp(−�(g+1)j =VT )1j=ni, 1̂k = exp(−�(g+1)j =VT )1k=ni and +̂j = exp(−�(g+1)j =VT )+j=ni. Before
solving (6.1), the division is performed node-by-node for all the known terms in the equation.
The conditioning is indeed improved as shown in the last row of the table. Note that the sti4ness
matrix is an M -matrix and Theorem 4.1 still holds with this scaling technique. Another way to
improve the conditioning is to perform (at the discrete level) the change of the variables n=niue�=VT

and p = nive−�=VT back to their primitive forms as suggested in [7]. The resulting sti4ness matrix
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with

1̂k = 0kDn|(k; j)B
(−�j + �k

VT

)
; (6.2)

1̂j =
(m)∑

k∈V ( j)
0kDn|(k; j)B

(
�j − �k

VT

)
(6.3)

is then no longer an M -matrix. For example, for some node i, if B((�j −�k)=VT )= 1 for k �= i and
�j ¿�i then B((�j − �i)=VT )¡B((−�j + �i)=VT ) and 1̂j ¡

∑(m)
k∈V ( j) 1̂k . Nevertheless, the mixed

or hybrid methods proposed in [7] can be used to recover the M -matrix property and furthermore
to have the current conservation property. However, the implementation of these methods is more
complicated than that of (6.1) since the discrete system is enlarged by these methods and the matrix
reduction by means of static condensation requires an element-wise inversion of the block-diagonal
matrix associated with the auxiliary variable. Moreover, a suitable numerical integration formula for
the local and global matrices and for the right-hand side vector is required (see [7] for more details).
The monotone parameters +j(u) in (5.2) will also be more involved with these methods.
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