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Wide-Sense Nonblocking Multicast
Logo(N, m.p) Networks

Frank K. Hwang and Bey-Chi Lin

Abstract—Recently, Tscha and Lee proposed a fixed-size LA KA T
window algorithm for the multicast Log, (N, 0, p) network and &ﬁ%ﬁ%
expressed a desire to see its extension to th®g, (N, m, p) net- T A
work. Later, Kabacinski and Danilewicz generalized the fixed-size ) N -"A‘A
window to variable size to improve the results. In this paper, we T
further extend the variable-size results from theLog, (N, 0, p) )

network to Log, (N, m, p). Note that this extension is difficult
since each link in the channel graph ofLog,(IV, 0, p) has the
same blocking effect, but not so inLog,(IN, m,p). We also
determine the optimal window size and optimakmn.

BY'(4)=-BY"'(4,0) BY'(4,2)
Index Terms—Channel graph,Log, (N, m, p) networks, multi-
cast, wide-sense nonblocking (WSNB) network, window algorithm. Fig. 1. (Extra-stage) inverse banyan networks.
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. INTRODUCTION

IG. 1 shows an inverse banyan netwdsk ~*(n) with

n(= 4) stages andV = 2" inputs (outputs), and also a \N/ \'0'4
BY !(n,m) with m(= 2) extra stages, which are mirror im- “’li- ,‘\"’-
ages of the firstn stages. W AR ATANN
Lea and Shyy [5] first proposed theg, (N, m, p) network, -e‘t‘:ﬁlhvaﬁVH\‘n"I

which consists of a vertical stackingp€opies o3Y ~*(n, m),

0 < m < n-—1, sandwiched between and connected to an input

stage and an output stage, each whtlh x p (or p x 1) cross- N

bars. As shown in Fig. 2, there are three copieBW®f *(3, 1) &\I l‘/\

sandwiched between the input and output stages. -!'\- ] v-/‘
A multicast network isstrictly nonblockingf the current re- W‘Aﬁ}v

guest can always be connected regardless of how previous con- ,A-A?X%- A\

nections were routed, it is wide-sense nonblocking (WSNB) if

the connection of the current request is assured only whenmdl. 2. Log,(8,1,3).

connections are routed according to a given algorithm.

Tscha and Lee [7] proved thatog,(N,0,p) is multicast 55 attempt but encountered some difficulties. In this paper, we
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strictly nonblocking if give such an extension for the variable window-size algorithm
. n2n/2=2 41, for n even by adopting a channel 'graph blockage analysis first used by
pz (n—1)20-1D/2=1 4 1 fornodd - Shyy and Lea [6] on a single-cast network. Thez, (N, m, p)

o o ) network is much more difficult to analyze because of multipaths
However, Kaba‘F'USk' angi Danilewicz [4] pointed out thaf, the channel graph and each link having a different impact on
their proof using “windows” to split a multicast call impliesy|ockage. We also determine the optimal window size for given

a routing algorithm, hence, their result is WSNB instead of, and then compare the performance among different
strictly nonblocking. Recently, Kabacinski and Danilewicz [4]

extended the fixed window-size algorithm in [6] to variable Il. GENERAL APPROACH
window size. Tscha and Lee [7] stated in conclusion that 5 -
whether their approach could be extendedite, (N, m, p) Define$ = 21"/2] Tscha and Lee [7] partitioned thé out-

was unclear. Danilewicz and Kabacinski [2], [3] made sudhits ofBY"(n,m) into N/& windows, each containing the
6 outputs reachable from the same crossbar at stagen —
. _— Ln/2j + 1. Kabacinski and Danilewicz [4] extended the notion
Paper approved by P. E. Rynes, the Editor for Switching Systems of tl ind 9-wind 9 > 1. which ; fthat
IEEE Communications Society. Manuscript received November 29, ZO(ﬁ, window to#-window, 6 > 1, which consists of th2” outputs
revised December 20, 2002 and April 11, 2003. reachable from the same crossbar at stagem — 6 + 1. In
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fhwang@math.nctu.edu.tw). -window consists of those outputs, which have the same
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Note that further delay is not always possible, since stage
m — 60+ 1 is the last stage where all outputs in the same window
have common reachable crossbars. Also note that such an algo-
rithm fixes only the relative routing of two outputs in the same
¢’-window, 6’ < 6, but not the absolute routing to an output.
Thus, whether two connections intersect is uncertain and the
notion of an intersection graph used by Tscha and Lee [7] is
not applicable. Instead, we adopt the method of channel graph
blockage analysis, first proposed by Shyy and Lea [6] for single
cast.

A link connecting stageé and stagei(+ 1) is called astages
link. Consider a&-cast request in &-window. An intersecting
connectioris one which contains a link in the channel graph of
the request. We can count an intersecting connection either from
its input end or its output end. An intersecting connection is an
i-intersecting connection if it first (last) intersects the channel
graph in a stage-link when counted from the input (output)
side.

We count alk-intersecting connections4+m—0 < i < n+
m — 1, from the output side. Note that the outputs of these con-
nections must all be in the designatedindow. Thus, there are,
at most2? — k of such connections. Further, they have different
impacts in blocking the paths in the channel graph, depending
oni. For example, forn > 2, an (o + m — 1)-intersecting con-
nection blocks a proportion of 1/2, since the channel graph has
Fig. 4. A channel graph dBY " (n, m). only two stage+ + m — 1) links, while an @ + m — 2)-inter-

secting connection blocks a proportion of 1/4, since the channel

29=1 crossbars at staget-m—6+1, each such crossbar reachegraph has four stager( m — 2) links.
the same window due to the well-known “buddy” property of On the other hand, we will count allintersecting con-
banyan type networks. Fig. 3 shows that the outputs {0,1,8,9)¢ctions,1 < i < n + m — 6 — 1, from the input side.
reachable from the first crossbar at stage five, form a 2-windagain, ani-intersecting connection has a greater (or equality
of BY (4, 2). We assumé < n to avoid trivial cases. permitted) blocking impact than an- 1)-intersecting call for

A channel graphbetween an input crossbar and an output< [(n +m)/2]|. We will show that we never need to count
crossbar is the union of all paths between them (see Fig. 4)fiam the input side over the stagén + m)/2|. Therefore, we
BY !(n,m), all channel graphs are isomorphic with the foladopt the method used in [4] to count from sméth largei to
lowing double-tree form (two binary trees with theit leaves maximize the blocking impact.
linked by paths in a one-to-one fashion).

The channel graph of a multicast call is simply the union of
its point-to-point channel graphs.

Following Tscha and Lee [7], we split a multicast request into
w multicast requests if the involved outputs spread intain- For any two stageg < k in a multistage network, let and
dows, while each request must be routed through the same copgenote two crossbars at stafieandV andV’ be two sets
of BY ™'(n,m). When we are discussing a multicast requesf crossbars at stage thatv and v’ can reach, respectively.
with respect to a gived-window, we refer to it as thelesig- Then the network is said to have the buddy property if either
natedd-window Further, a#’-windowis designatedf it con- V = V' orV NV’ = ¢. Itis well known [1] thatBY ~*(n)
tains the designatettwindow. As Tscha and Lee [7] dealt onlyand many other networks have the buddy property. Note that in
with BY™'(n), the connection from an input to an output i@ buddy network, the set of inputs which can generate an in-
unigue, and whether two connections intersect is determinéeksecting connection to a multicast request is independent of
Therefore, an intersection graph among the connections withiire size of that request. To see this, consider a 2-cast call from
a designatedn /2 |-window can be defined, and its maximuminput: to two outputso ando’. Then an input’ # 4 can gen-
degree plus one becomes the number of copi&(ofl(n) suf- erate ak-intersecting connection (at a crosshdy to the path
ficient for nonblocking. from i to o’ if and only if it can generate A-intersecting con-

ForBY!(n,m), the analysis is much more complicated asection (at a crosshai) to the path from to o, since the buddy
the connection between an input and an output is not unigypeoperty assures thatif can reach//, it can reachu. Hence,
First of all, we have to be more specific about the window alg@ncreasing the size of the request does not increase the number
rithm. We propose the delayed-splittifigwindow algorithm, of inputs which can generate intersecting connections, but the
which prescribes that a multicast connection to outputs in tfect that these outputs are in the request makes them unavail-
samed-window cannot be split before stage ¢ m — 6 + 1).  able as outputs to generate intersecting connections (see Fig. 5,

2-window

I1l. A N ECESSARY AND SUFFICIENT CONDITION
FOR NONBLOCKING
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stage: 1 2 3 4 5 6 stage: 1 2 3 4 5 6
[T o P s Ty o, SO o, B o PP [UREY g TOP g YOS N e O T
IS TR g
VX XA /i’ 2
Be SiCETis Fallies Eicesis e :
X XX MW— — WA 8 N
e | W W |
NOGE S N ERINE -
MEASKEATY TOASREATY BY'(3.2)
(@) BY''(4,2) (b) BY'(4,2) Fig. 6. Assum& = 2 and (0, 0) is the request. = 1 in the first output

crossbar and connection (6, 1) blocks 1/2 copy, white 0 in the third output

Fig. 5. Input 4 generates a 3-intersecting connection (4, 4) to (a) a 1—c%g
request (0, 0) and (b) a 2-cast request (0, {0, 8}).

icate channel graph between the first input and the first output crossbar.
. . 3 i—1 : . . A

for example). Further, each intersecting connection blocks onel N€ré are2* inputs which can generate asintersecting
copy, so itis the number of intersecting connections that courg@nnection. Further, a”'gf?fifi‘”g connection can reach all
Obviously, a 1-cast request maximizes that number. windows fori < m, and2 " windows fori > m. In the

ForBY ~!(n, m), although the same analysis on the numbdforst-case scenario, afntersecting connection is a multicast
of intersecting connections applies, thintersecting connec- Connection going to one output in each window it can reach,
tions block different fractions of a copy, dependingioince €xcept the designated window for< 7 < f. The reason for
more outputs in a multicast request induce misnetersecting the exception is that all outputs in the designated window are

calls for largeri, the worst case is not necessarily a 1-cast rélready counted in the part concernimg-m — 6 <7 < n +
quest. m — 1. Since an-intersecting connection blocks™ copies for

We consider two cases. i < m and2~™ copies form < i < [(n+ m)/2], the total
blocking of up to stagéd is
A0<m<I1 0
The number of stagetinks, 1 < i < n+m—1, in the channel > o2t (2nf — )27
graphis constant, one fat = 0, and two form = 1. Therefore, i=1

each intersecting connection has the same impact, regardless of o I o .
which stage it intersects. The worst case occurs when there is a = Z 2 - Z 2
maximum number of intersecting connections, 2& - 1 from i=1 =1
the designated window, which cause a blocking2§f— 1) /2™ -0 <2n—0—1 — l) for6 < m
copies. 2 B
and

B.2<m 6

LetR denote the part of the new request which goes to adei—:gi—l (2"—9 _ 1) 2= 4 Z 9i—1 (gn—e—i+m — 1) 9—m
ignated)-window. Suppose® is k-cast and a 1-window contains ;= immdl

7 outputs inR. Then it can block, at most

m m 4 6
_ n—60—1 —1 n—60-—-1 _ 1—m—1

4 i=m+1 1=m+1
(only for the 1 — window which —gon—6-1 _ "t _gp-m 4 for 6 > m.
is in the designated — window), . . , .
1 1 Note that theseé-intersecting connectiong, < i < #, use
Ix o= ifr=1 up a maximum ofy7_, 2i-! = 2¢ — 1 outputs in a window.
-0, ifr=2 Therefore, oned + 1)-intersecting connection can still fit in

ifo+1<n+m-—0,0rf < |(n+m)/2] — 1, whichis the
For instance, in Fig. 6, the first output crossbar correspondsdgse here. Thig(1)-intersecting connection reachzs? — 1
the case' = 1, and the third output crossbar corresponds to th@indows forf < m, and2n—2¢=1+m _ 1 windows for > m,
caser = 0. while each path to a window blocRs ™ copy.

Therefore, a 1-window can block, at most, 1/2 copy of the To summarize, the number of blockings from the input side is
channel graph. Consequentlyfavindow can block, at most,

292 copies, which is achieved by having eittier= 2°—1 (each ¢ <2n—9—1 _ 1) 49— _ o= M for 9 <
1-window hasr = 1) or k = 29=2 (half of the 1-window has 2
r = 1 and half has = 0). gon—0-1 _ 10 _gp-m o1 4 gn=20-1_9-mgor g >

To counti-intersecting connections far< : < n+m—-60—1 2
we consider two cases.

B. 0> [n+m/2]

A < |n+m/2| -1 Then# > m. Note thati-intersecting connections far +

The argument for this part is a straightforward extension ef — # < i < n + m — 1 are counted from the output side. So
the argument in [4] forn = 0. the input side counts only up to stage- m — 6 — 1 (which is

ssbar and connections (4, 4) and (5, 5) each blocks 1/4 copy. Dotted lines
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Stage(i) P2 3 4 5 6 Theorem 1: Log, (N, m, p) is WSNB for broadcast under the
1 -“ L ‘1) 6-window algorithm if and only if is as shown in the equation
o . at the bottom of the page.
-AWAH\V 3 Results forn = 0 correspond to the results in [4]; results for
W Y = .
‘M-A- A.A.\‘[ ‘5 m = 1, 2 correspond to the results in [2] and [3].
mmm g | Note thatLog,(N, n — 1, p) is the Cantor network.
W AV W : i
AWA*WM 9 Corollary 2: The Cantor network is WSNB for broadcast

under thed-window algorithm if and only ifp > 2¢0=2 + 6 -
2n=0=1 —g/2 4 21=0 —21=n 4+ 1/4(0if § = 1), forn > 3.

NKg XN
AN

BY'(4,2)

IV. OPTIMIZATION

Let f(6,m) denote the maximum number of blockings re-
Fig. 7. Connection (1, 8) blocks 1/2 copy if counted from the input side, bgiuired inTheorem Xor givenf andm. In this section, we de-
only 1/4 copy from the output side. Dotted lines indicate channel graph betwq%}mine Optima|90 for given n andm. and also compare the
the first input and the first output crossbar. . . . !
optimal solutions among differemt.

,0) i ing i < - 1. 0=
upper bounded by). Thus, the number of blockings from theLnJ/céj},E)llsmd;]carf?asr:ng ugi];]ocreﬁ < |n/2] — 1. Hence$
input side is ge.

BN (3] 10 (|39

, - 1) . 9Mm/2] n=2:[n/2]+1 _
2 ([3]-1) 2 st
T ) n/2 n n/2]—1
A I e G Pt ~ 22+ (3] -2) 2™/ > 0forn > 3
i=mil m we conclude form = 0 andn > 3, 0° > |n/2]. It was shown
=(n+m-—0—1)2""71 5 2nf1 41 in [4] that [n/2] is a better choice tham /2. Sincef (6, 0) for
gl M 6 > |n/2] has a unique minimum, we can start wjth/2] and
=(n+m-0-2)2 ) + 1. increase the window size untfl(4, 0) increases. In generdl?
Since each intersecting connection counted from the outiPWS slowly with ratdog, n and can be quickly found.
side blocks in the worst-case scenario, ike= 2¢~1 or 2¢-2, f(6,1) is decreasing il for 6 < [n/2] — 1.
at least 1/4 copy, there is no reason for the counting from inputS'"c€
side to go over stage + m — 6, with one exception. f Q(” + UJ 1 1) _f Q(“ + 1)J ‘ 1)
Ford > 2, we can increase the blocking by allowing the 2 ' 2 ’

unique 1-intersecting connection from the input side to also_ K{(n—k 1)J 3 1) Loln=1)/2] | gn2:[(n41)/2]4+1 _ 1}
go to the designated window to reach an output blocking 1/4~ 2

copy (such an output exists whén= 2°—2). Then this inter- (12 (n—1) ety /21t

secting connection blocks 1/2 copy if counted from the input— {2 + GT-‘_ 1)' 20 ]>0 forn >3
side, greater than its original value 1/4, as counted from th ] ) o

output side (see Fig. 7, for example). Note that no other suh = L(# +-1)/2]. Again, f(¢, 1) has a unique minimum, and
reversal of counting will bring any further increase, since the/2] + 1is a good value to start the upward searching.
l-intersecting connection is the only one which blocks more Finally, form > 2, we note thatf (¢, m) is increasing inn
than 1/4 copy when counted from the input side. On the othid all @ > m. Since a largemn implies more stages and larger
hand, since all intersecting connections counted from the ingfSt: there is no reason to consider> 2 when it costs more
side are before the middle stage, reversing them to the outBHf Performs worse. Far > m = 2

side will only decrease their impact on blocking. £0.2) = g.2n=b6-1 4 gn=20-1 foro < |z]
Combining the above, we have: T2 2 (n—0)-2n 04 10 ford > | 2] + 1.

(6. 2n=0-1 4 ogn—26-1 form=0,60<[%]-1
§.2n=0=1 4 gn=20-1 _ L form=1,60< || -1
20 4+ (n—6—2).2n"0-1 form=0, 6> %]

p> 20 4 (n—f—1).2n 01, form =1, > |1

20—2 + - 2n—0—1 _ % _ 29—m + 2n—29—1 —2 m 4 %7 for 2 S m S 2] S L(n';m)J -1
20=2 4 9. 2n=0=1 8 pon—b-m _o-m L L(Qif g =1), form >max{f,1},0< || 1

(202 4 (n4+m—f—2)-2n=0-1 _m 4 5 forg > | "™ | > m > 2
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TABLE |
BEST CHOICE OF¢ AND CORRESPONDINGVALUE OF p FORm = 2 AND SOME n

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 2 3 4 4 5 5,6 6 7 7 8 8 9 9 10
P 3 4 6 9 13 21 29 45 65 97| 145| 209] 321] 449
n 17 18 19 20 21 22 23 24 25 26 27 28 29 30
6| 10,11 11 12 12 13 13 14 14 15 15 16 16 17 17
P 705 961| 1473] 2049| 3073| 4353] 6401| 9217|13313]|19457|27649|40961|57345| 86017
n 31 32 33 34 35 36 37 38 39 40 41
[ 18 18 19| 19,20 20 21 21 22 22 23 23
p | 118785 180225 245761| 376833| 507905|770049|1048577|1572865|2162689|3211265|4456449
n 42 43 44 45 46 47 48 49 50
(2 24 24 25 25 26 26 27 27 28
p [6553601] 9175041| 13369345| 18874369 27262977| 38797313| 55574529| 79691777 113246209

The first equation is decreasingfrin its range. Hence)’ =

1n/2).

Since

sl

n

2

)-1((3)+12)

- LEJ _9n/21=1 4 gn=2|n/2]-1 _ 9ln/2]-1
2

2

I

(I3

6° > [n/2]| + 1. f(6,2) has a unique minimum aneh /2| + 1
is a good value to start the upward searching.
We next compare the optimal solutions far= 0, 1, 2. We
will only compare the starting values in the search process.
n

1 ([210) =50 (3] -2) 2o
f (PJ + 1»1) =2ln/2] 4 qﬁ] - 2) _ofn/2]-2

2 2
() n2) ot (5] 0) 2
Clearly, f (|n/2] + 1,1) < f([n/2],0).
Furthermore

I R )

]—1)-2f"/21*2—i>0forn24

Som = 2 does better in minimizing the number of copies

required. However, we have to recall that a copy with= 0
orm 1 costs less. For all threm: values, the number of
crosspoints is abou? (N3/2log” N).

According to the above result, we choose= 2, and com-
pute the best choice @f and the corresponding value pffor
eachn in Table I.

Note that forn = 17, two §’s yield the samen-value. For
largern in the table, we show thg-values mainly for mathe-
matical interest, not for practical use.

V. CONCLUSION

We extended the study of a multicdsig, (N, 0, p) network
in [2] and [5] to a multicast.og, (N, m, p) network by refining

their window algorithm. We obtain necessary and sufficient con-
ditions onm such that the network is WSNB. We also estimate
the optimal window size.

Intuitively, one would expect the larges is, the more con-
necting power th&og, (N, m, p) is, and hence, the fewer copies
are needed for nonblocking. One would also expect the optimal
m grows with N. We obtain the surprising result that = 2 is
optimal universally. But this is a technical result, for which we
have no insight into why it is so. Nonetheless, it is a very valu-
able result, since regardless of how largeViswe need only
to use moderate-sideog, (N, m,p), i.e.,Log, (N, 2,p), which
are relatively inexpensive to construct.

Like all routing algorithms, the delayed splitting algorithm
restricts the scope of ways in connecting a multicast call. But
it also restricts the scope of interference a multicast connection
has on other requests. It is a tradeoff whose net value we do not
know for sure. However, the delayed splitting algorithm sim-
plifies routing to a degree that an analysis of the nonblocking
condition becomes tractable.
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