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Wide-Sense Nonblocking Multicast
Log2(N;m; p) Networks

Frank K. Hwang and Bey-Chi Lin

Abstract—Recently, Tscha and Lee proposed a fixed-size
window algorithm for the multicast Log

2
( 0 ) network and

expressed a desire to see its extension to theLog
2
( ) net-

work. Later, Kabacinski and Danilewicz generalized the fixed-size
window to variable size to improve the results. In this paper, we
further extend the variable-size results from theLog

2
( 0 )

network to Log
2
( ). Note that this extension is difficult

since each link in the channel graph ofLog
2
( 0 ) has the

same blocking effect, but not so inLog
2
( ). We also

determine the optimal window size and optimal .

Index Terms—Channel graph,Log
2
( ) networks, multi-

cast, wide-sense nonblocking (WSNB) network, window algorithm.

I. INTRODUCTION

F IG. 1 shows an inverse banyan network with
( ) stages and inputs (outputs), and also a

with ( ) extra stages, which are mirror im-
ages of the first stages.

Lea and Shyy [5] first proposed the network,
which consists of a vertical stacking ofcopies of ,

, sandwiched between and connected to an input
stage and an output stage, each with (or ) cross-
bars. As shown in Fig. 2, there are three copies of
sandwiched between the input and output stages.

A multicast network isstrictly nonblockingif the current re-
quest can always be connected regardless of how previous con-
nections were routed, it is wide-sense nonblocking (WSNB) if
the connection of the current request is assured only when all
connections are routed according to a given algorithm.

Tscha and Lee [7] proved that is multicast
strictly nonblocking if

for even
for odd

However, Kabacinski and Danilewicz [4] pointed out that
their proof using “windows” to split a multicast call implies
a routing algorithm, hence, their result is WSNB instead of
strictly nonblocking. Recently, Kabacinski and Danilewicz [4]
extended the fixed window-size algorithm in [6] to variable
window size. Tscha and Lee [7] stated in conclusion that
whether their approach could be extended to
was unclear. Danilewicz and Kabacinski [2], [3] made such
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Fig. 1. (Extra-stage) inverse banyan networks.

Fig. 2. Log (8; 1; 3).

an attempt but encountered some difficulties. In this paper, we
give such an extension for the variable window-size algorithm
by adopting a channel graph blockage analysis first used by
Shyy and Lea [6] on a single-cast network. The
network is much more difficult to analyze because of multipaths
in the channel graph and each link having a different impact on
blockage. We also determine the optimal window size for given

, and then compare the performance among different.

II. GENERAL APPROACH

Define . Tscha and Lee [7] partitioned the out-
puts of into windows, each containing the

outputs reachable from the same crossbar at stage
. Kabacinski and Danilewicz [4] extended the notion

of window to -window, , which consists of the outputs
reachable from the same crossbar at stage . In
other words, if the outputs are labeled by binarysequences,
then a -window consists of those outputs, which have the same

most significant bits. Although an output can be reached by
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Fig. 3. A 2-window ofBY (4; 2).

Fig. 4. A channel graph ofBY (n;m).

crossbars at stage , each such crossbar reaches
the same window due to the well-known “buddy” property of
banyan type networks. Fig. 3 shows that the outputs {0,1,8,9},
reachable from the first crossbar at stage five, form a 2-window
of . We assume to avoid trivial cases.

A channel graphbetween an input crossbar and an output
crossbar is the union of all paths between them (see Fig. 4). In

, all channel graphs are isomorphic with the fol-
lowing double-tree form (two binary trees with their leaves
linked by paths in a one-to-one fashion).

The channel graph of a multicast call is simply the union of
its point-to-point channel graphs.

Following Tscha and Lee [7], we split a multicast request into
multicast requests if the involved outputs spread intowin-

dows, while each request must be routed through the same copy
of . When we are discussing a multicast request
with respect to a given-window, we refer to it as thedesig-
nated -window. Further, a -window is designatedif it con-
tains the designated-window. As Tscha and Lee [7] dealt only
with , the connection from an input to an output is
unique, and whether two connections intersect is determined.
Therefore, an intersection graph among the connections within
a designated -window can be defined, and its maximum
degree plus one becomes the number of copies of suf-
ficient for nonblocking.

For , the analysis is much more complicated as
the connection between an input and an output is not unique.
First of all, we have to be more specific about the window algo-
rithm. We propose the delayed-splitting-window algorithm,
which prescribes that a multicast connection to outputs in the
same -window cannot be split before stage ( ).

Note that further delay is not always possible, since stage
is the last stage where all outputs in the same window

have common reachable crossbars. Also note that such an algo-
rithm fixes only the relative routing of two outputs in the same

-window, , but not the absolute routing to an output.
Thus, whether two connections intersect is uncertain and the
notion of an intersection graph used by Tscha and Lee [7] is
not applicable. Instead, we adopt the method of channel graph
blockage analysis, first proposed by Shyy and Lea [6] for single
cast.

A link connecting stageand stage ( ) is called astage-
link. Consider a -cast request in a-window. An intersecting
connectionis one which contains a link in the channel graph of
the request. We can count an intersecting connection either from
its input end or its output end. An intersecting connection is an
-intersecting connection if it first (last) intersects the channel

graph in a stage-link when counted from the input (output)
side.

We count all -intersecting connections,
, from the output side. Note that the outputs of these con-

nections must all be in the designated-window. Thus, there are,
at most, of such connections. Further, they have different
impacts in blocking the paths in the channel graph, depending
on . For example, for , an ( )-intersecting con-
nection blocks a proportion of 1/2, since the channel graph has
only two stage-( ) links, while an ( )-inter-
secting connection blocks a proportion of 1/4, since the channel
graph has four stage-( ) links.

On the other hand, we will count all-intersecting con-
nections, , from the input side.
Again, an -intersecting connection has a greater (or equality
permitted) blocking impact than an ( )-intersecting call for

. We will show that we never need to count
from the input side over the stage . Therefore, we
adopt the method used in [4] to count from smallto large to
maximize the blocking impact.

III. A N ECESSARY AND SUFFICIENT CONDITION

FOR NONBLOCKING

For any two stages in a multistage network, let and
denote two crossbars at stage, and and be two sets

of crossbars at stage that and can reach, respectively.
Then the network is said to have the buddy property if either

or . It is well known [1] that
and many other networks have the buddy property. Note that in
a buddy network, the set of inputs which can generate an in-
tersecting connection to a multicast request is independent of
the size of that request. To see this, consider a 2-cast call from
input to two outputs and . Then an input can gen-
erate a -intersecting connection (at a crossbar) to the path
from to if and only if it can generate a-intersecting con-
nection (at a crossbar) to the path from to , since the buddy
property assures that if can reach , it can reach . Hence,
increasing the size of the request does not increase the number
of inputs which can generate intersecting connections, but the
fact that these outputs are in the request makes them unavail-
able as outputs to generate intersecting connections (see Fig. 5,
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Fig. 5. Input 4 generates a 3-intersecting connection (4, 4) to (a) a 1-cast
request (0, 0) and (b) a 2-cast request (0, {0, 8}).

for example). Further, each intersecting connection blocks one
copy, so it is the number of intersecting connections that counts.
Obviously, a 1-cast request maximizes that number.

For , although the same analysis on the number
of intersecting connections applies, the-intersecting connec-
tions block different fractions of a copy, depending on. Since
more outputs in a multicast request induce more-intersecting
calls for larger , the worst case is not necessarily a 1-cast re-
quest.

We consider two cases.

A.

The number of stage-links, , in the channel
graph is constant, one for , and two for . Therefore,
each intersecting connection has the same impact, regardless of
which stage it intersects. The worst case occurs when there is a
maximum number of intersecting connections, i.e., from
the designated window, which cause a blocking of
copies.

B.

Let denote the part of the new request which goes to a des-
ignated -window. Suppose is -cast and a 1-window contains

outputs in . Then it can block, at most

if

only for the window which

is in the designated window

if

if

For instance, in Fig. 6, the first output crossbar corresponds to
the case , and the third output crossbar corresponds to the
case .

Therefore, a 1-window can block, at most, 1/2 copy of the
channel graph. Consequently, a-window can block, at most,

copies, which is achieved by having either (each
1-window has ) or (half of the 1-window has

and half has ).
To count -intersecting connections for

we consider two cases.

A.

The argument for this part is a straightforward extension of
the argument in [4] for .

Fig. 6. Assume� = 2 and (0, 0) is the request.r = 1 in the first output
crossbar and connection (6, 1) blocks 1/2 copy, whiler = 0 in the third output
crossbar and connections (4, 4) and (5, 5) each blocks 1/4 copy. Dotted lines
indicate channel graph between the first input and the first output crossbar.

There are inputs which can generate an-intersecting
connection. Further, an-intersecting connection can reach all
windows for , and windows for . In the
worst-case scenario, an-intersecting connection is a multicast
connection going to one output in each window it can reach,
except the designated window for . The reason for
the exception is that all outputs in the designated window are
already counted in the part concerning

. Since an-intersecting connection blocks copies for
and copies for , the total

blocking of up to stage is

for

and

for

Note that these-intersecting connections, , use
up a maximum of outputs in a window.
Therefore, one ( )-intersecting connection can still fit in
if , or , which is the
case here. This ( )-intersecting connection reaches
windows for , and windows for ,
while each path to a window blocks copy.

To summarize, the number of blockings from the input side is

for

for

B.

Then . Note that -intersecting connections for
are counted from the output side. So

the input side counts only up to stage (which is
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Fig. 7. Connection (1, 8) blocks 1/2 copy if counted from the input side, but
only 1/4 copy from the output side. Dotted lines indicate channel graph between
the first input and the first output crossbar.

upper bounded by). Thus, the number of blockings from the
input side is

Since each intersecting connection counted from the output
side blocks in the worst-case scenario, i.e., or ,
at least 1/4 copy, there is no reason for the counting from input
side to go over stage , with one exception.

For , we can increase the blocking by allowing the
unique 1-intersecting connection from the input side to also
go to the designated window to reach an output blocking 1/4
copy (such an output exists when ). Then this inter-
secting connection blocks 1/2 copy if counted from the input
side, greater than its original value 1/4, as counted from the
output side (see Fig. 7, for example). Note that no other such
reversal of counting will bring any further increase, since the
1-intersecting connection is the only one which blocks more
than 1/4 copy when counted from the input side. On the other
hand, since all intersecting connections counted from the input
side are before the middle stage, reversing them to the output
side will only decrease their impact on blocking.

Combining the above, we have:

Theorem 1: is WSNB for broadcast under the
-window algorithm if and only if is as shown in the equation

at the bottom of the page.
Results for correspond to the results in [4]; results for

1, 2 correspond to the results in [2] and [3].
Note that is the Cantor network.
Corollary 2: The Cantor network is WSNB for broadcast

under the -window algorithm if and only if
(0 if ), for .

IV. OPTIMIZATION

Let denote the maximum number of blockings re-
quired inTheorem 1for given and . In this section, we de-
termine optimal for given and , and also compare the
optimal solutions among different .

is decreasing in for . Hence,
in that range. Since

for

we conclude for and , . It was shown
in [4] that is a better choice than . Since for

has a unique minimum, we can start with and
increase the window size until increases. In general,
grows slowly with rate and can be quickly found.

is decreasing in for .
Since

for

. Again, has a unique minimum, and
is a good value to start the upward searching.

Finally, for , we note that is increasing in
for all . Since a larger implies more stages and larger
cost, there is no reason to consider when it costs more
but performs worse. For

for
for

for

for
for

for

for

if for

for
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TABLE I
BEST CHOICE OF� AND CORRESPONDINGVALUE OF p FORm = 2 AND SOME n

The first equation is decreasing inin its range. Hence,
.

Since

for

. has a unique minimum and
is a good value to start the upward searching.

We next compare the optimal solutions for 0, 1, 2. We
will only compare the starting values in the search process.

Clearly, .
Furthermore

So does better in minimizing the number of copies
required. However, we have to recall that a copy with
or costs less. For all three values, the number of
crosspoints is about .

According to the above result, we choose , and com-
pute the best choice of and the corresponding value offor
each in Table I.

Note that for , two ’s yield the same -value. For
larger in the table, we show the-values mainly for mathe-
matical interest, not for practical use.

V. CONCLUSION

We extended the study of a multicast network
in [2] and [5] to a multicast network by refining

their window algorithm. We obtain necessary and sufficient con-
ditions on such that the network is WSNB. We also estimate
the optimal window size.

Intuitively, one would expect the larger is, the more con-
necting power the is, and hence, the fewer copies
are needed for nonblocking. One would also expect the optimal

grows with . We obtain the surprising result that is
optimal universally. But this is a technical result, for which we
have no insight into why it is so. Nonetheless, it is a very valu-
able result, since regardless of how large is, we need only
to use moderate-size , i.e., , which
are relatively inexpensive to construct.

Like all routing algorithms, the delayed splitting algorithm
restricts the scope of ways in connecting a multicast call. But
it also restricts the scope of interference a multicast connection
has on other requests. It is a tradeoff whose net value we do not
know for sure. However, the delayed splitting algorithm sim-
plifies routing to a degree that an analysis of the nonblocking
condition becomes tractable.
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