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50TH ANNIVERSARY OF CLOS NETWORKS

INTRODUCTION

In multicast traffic, an input can request to con-
nect to up to a certain number of outputs. If that
number is specified to be f, it is f-cast traffic. If
that number is unconstrained, it is broadcast
traffic. Usually, it is assumed that in multicast
traffic, calls come and go sequentially. Suppose
(i,O) is the current multicast call where i is an
input and O is a set of idle outputs. Then none
of the outputs in O can appear in any other
existing connection. However, i can be either
idle or busy depending on the model. If i must
also be idle, we call it closed-end traffic; if i can
be busy, we call it open-end traffic. In the latter
case, the various calls from i must carry the same
message. Sometimes, all traffic is routed simulta-
neously. Then there is no difference between
closed-end and open-end traffic since we can
always combine calls from the same input into
one call.

In a multistage interconnection network
each stage consists of ri crossbars of the same
size, and links exist only between adjacent
stages. We will let n1 denote the number of
inlinks of an input switch, n2 the number of
outlinks of an output switch, and r1(r2) the
number of input (output) switches. Then N1 =
n1r1 is the number of network inputs and N2 =
n2r2 the number of network outputs. The most
studied multistage interconnection network is
the three-stage Clos network C(n1, r1, m, n2,
r2), where m is the number of middle-stage
switches (Fig. 1).

A symmetric three-stage network with n1 =
n2 = n, r1 = r2 = r, is denoted by C(n, m, r).
Note that a three-stage Clos network can be
recursively extended to a (2k + 1)-stage network

by replacing each switch in a given stage with a
three-stage Clos network.

In a nonblocking network, all requests can
be connected, meaning calls from different
inputs have link-disjoint paths. There are three
levels of nonblockingness. If a request can be
connected regardless of how previous calls
were connected, the level is strictly nonblock-
ing. If a request can always be connected as
long as all connections follow a given routing
algorithm A, the level is wide-sense nonblock-
ing. If a request can be connected when paths
of existing connections can be rerouted to
make way, the level is rearrangeably nonblock-
ing. Another way of interpreting rearrangeably
nonblocking is that any set of requests can be
simultaneously routed. There are also varia-
tions such as standard path nonblocking and
repackably nonblocking [1], which we will not
discuss in this article.

Masson and Jordan [2] first introduced the
notion of a multicast multistage interconnection
network on three-stage Clos networks. They
gave sufficient conditions for both strictly and
rearrangeably nonblocking. However, the strictly
nonblocking result is really wide-sense nonblock-
ing since the routing assumes that outputs from
the same output switch in a multicast call will
share a path until reaching the output switch.
Such a practice has been referred to in the liter-
ature as the no-split rule, which defines a rout-
ing algorithm. Using the no-split rule, broadcast
traffic can be treated as r2-cast traffic.

To compare the cost of different networks,
the number of crosspoints is still a popular mea-
sure since even if it is not the real cost, it is a
good figure of merit. In such comparisons, we
also assume N1 = N2 = N to reduce the number
of parameters.

The multicast multistage interconnection net-
work, in particular the three-stage Clos network,
has been widely studied due to its many applica-
tions in videoconferencing, video on demand, e-
commerce, parallel computing, and so on. In this
survey we focus on the multicast nonblocking
three-stage Clos network and its recursive exten-
sions. The reader is referred to [3] for general
terminology.
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STRICTLY NONBLOCKING

Friedman [4] proved a fundamental result for a
general multicast strictly nonblocking network
(not necessarily a multistage interconnection
network).

Theorem 1 — A strictly nonblocking network
with closed-end broadcast traffic has at least
O(N2) crosspoints.

Since an N × N crossbar is broadcast strictly
nonblocking and has N2 crosspoints, any hope to
design an unbounded multicast strictly nonblock-
ing network to save cost is dashed, but one can
still save cost on f-cast networks.

Although a sufficient condition on strictly
nonblocking three-stage Clos networks was
attempted early [2] (but turned out to be a con-
dition on wide-sense nonblocking), genuine nec-
essary and sufficient conditions were given much
later. Actually, several sets of conditions were
given that were not in complete agreement.
Besides, there are different hardware models to
consider. It is typical to assume that a crossbar
has fan-out capability (i.e., a crossbar itself is a
strictly nonblocking multicast network). But we
may restrict the crossbars of a given stage to be
without the fan-out capability (i.e., only capable
of point-to-point connection). Presumably, such
a crossbar has lower cost due to either less hard-
ware or a simpler control mechanism.

Let model i, i = 1, 2, 3 denote the hardware
model in which stage i has no fan-out capability,
and let model 0 denote that in which every stage
has fan-out capability.

It is messy to get the exact necessary and suf-
ficient conditions for these methods (which
explains why there are several different sets of
such conditions), especially when one has to take
the boundary effect from the input and output
sizes into consideration. Recently, the author
gave a unifying approach to compute the neces-
sary and sufficient conditions, which simplifies
derivation as well as verification [3]. Further-
more, this approach works not only for the above
four strictly nonblocking models, but also for
some wide-sense nonblocking models. We sum-
marize these findings for the strictly nonblocking
model in Table 1.

From Theorem 1, we know that to get a bet-
ter cost than O(N2), we must bound f. For f = r2,
all strictly nonblocking networks of Table 1 need

O(N5/3) crosspoints by setting n1 = O(N1/3) and
n2 = O(N2/3), but model 1 needs O(N2) cross-
points. For C(n, m, r), all models need O(N2)
crosspoints.

WIDE-SENSE NONBLOCKING
There are three general classes of routing algo-
rithms for a multicast multistage interconnection
network. The 0-1 fan-out class is characterized
by whether the routing algorithm allows fan-out
at a stage. (Note that if a crossbar cannot per-
form fan-out due to hardware structure, the
result is strictly nonblocking.) The size fan-out
class is characterized by the specification of the
fan-out size at a stage. The window class is char-
acterized by the specification of the partition of
a multicast request into multicast subrequests
that are independently routed.

The first 0-1 fan-out algorithm, as well as the
first wide-sense nonblocking multicast algorithm,
is the no-split algorithm of Masson and Jordan
on a three-stage Clos network. They gave a suffi-
cient condition for wide-sense nonblocking.
Hwang used the unifying approach introduced
earlier to obtain a necessary and sufficient con-
dition similar to those in Table 1.

Note that the no-split rule plus the fan-out
capability of the output switch guarantee that
only one path is needed to reach all outputs in
the same output switch in an f-cast call. Thus, f2
> r2 can be reduced to f2 = r2 . Therefore, it is
not surprising that the cost under the no-split
rule is on the same order as those strictly non-
blocking networks in Table 1 with f2 = r2.

While the 0-1 fan-out class was started acci-

� Figure 1. A three-stage Clos network.
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� Table 1. Conditions for f-cast strictly nonblocking Clos networks.
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dentally by a “strictly nonblocking” result of
Masson and Jordan, the size fan-out class was
started accidentally by a rearrangeably nonblock-
ing result of Kirkpatrick, Klawe, and Pippenger
[5]. This algorithm was later interpreted to be a
wide-sense nonblocking algorithm that sets an
upper bound of either n2 or log2 n2 on the fan-
out size at the input stage [3].

Yang and Masson [6] first explicitly proposed
a fan-out size algorithm by restricting the fan-
out size at the input stage to be at most p (to be
optimally determined). The no-split rule is also
tacitly assumed. They proved the following.

Theorem 2 — C(n1, r1, m, n2, r2) is f-cast wide-
sense nonblocking for the closed-end traffic
under the p-restriction routing if m > (n1 – 1)p
+ (n2 – 1)f1/p.

They showed that a correct set of p middle
switches can be found in O(n2f) time, and the
optimal choice of p is log f/2 log log f.

At f = r2, the number of crosspoints is O(N3/2

log r/log log r) = O(N3/2 logN/log logN) obtained
by setting O(n1) = O(n2) = O(N1/2). Yang and
Masson also extended it to a (2k + 1)-stage Clos
network and showed that the number of cross-
points is

Feldman, Friedman, and Pippenger [7] con-
sidered a two-stage network such that the first
stage consists of concentrators (a bipartite graph,
but not necessarily complete as a crossbar), the
second stage of copies of r1 × N2 crossbars. In
their construction, each pair of inputs share
exactly two neighbors. The routing algorithm
allows no fan-out at the first stage, and an out-
put of the concentrator can be selected to carry
the path only if its selection would not cause any
input to have too many busy neighbors(a thresh-
old is defined). They showed that a multicast
wide-sense nonblocking three-stage network with
O(N5/3) crosspoints can be constructed, and also
a five-stage extension with O(N3/2) crosspoints.
They also gave a nonconstructive s-stage version
with O(N1+1/s(logN)1–1/s) crosspoints, which is
slightly better than Yang and Masson’s construc-
tion.

Tscha and Lee [8] proposed the first window
algorithm on the multi-log2N network by parti-
tioning the N = 2n outputs into groups called
windows, each consisting of 2n/2 outputs that
can reach the same set of switches in stage n/2
+ 1. A multicast request is correspondingly par-
titioned into several subrequests where outputs
from the same window are in the same subre-
quest. Two subrequests from the same input
must have link disjoint paths just as if they were
from different inputs. Kabacinski and Danilewicz
[9] extended to windows of variable sizes with
some comparisons among different sizes. Unfor-
tunately, the number of crosspoints is
O(N2logN).

Hwang applied the window algorithm to the
three-stage Clos network. Again, the author
used the unifying approach to obtain a necessary

and sufficient condition, and also showed that
√

—
r is a near-optimal choice of window size for

C(n, m, r), while m ≥ (2n — 1) √
—
r is a sufficient

condition.
Note that C(n, (2n – 1) √

—
r, r) has O(N7/4)

crosspoints by setting n = O(N1/2). Setting the
window size to r2, the window algorithm equals
the routing in model 1. Setting the window size
to 1, the window algorithm equals the routing in
model 2 except that the no-split rule is in force.
Therefore, the window algorithm unites the two
models and provides a spectrum of choices in
between.

REARRANGEABLY NONBLOCKING
Masson and Jordan gave a sufficient condition
on multicast rearrangeably nonblocking C(n1, r1,
m, n2, r2). Hwang refined it to be both sufficient
and necessary.

Theorem 3 — For model 2, C(n1, r1, m, n2, r2)
is f-cast rearrangeably nonblocking if and only if

m ≥ min{min{n1f, N2}, min{n2,N1}}

For f = r2 the network has O(N5/3) cross-
points by setting n1 = O(N1/3) and n2 = O(N2/3).
Note that the symmetric network would need
O(N2) crosspoints.

Unlike the strictly noblocking case, neces-
sary and sufficient conditions for rearrangeably
nonblocking are not known for models 0, 1, and
3. An O(N7/4) cost network for model 1 was
given by Kirkpatrick, Klawe, and Pippenger. As
mentioned before, their rearrangeably non-
blocking results for model 0 are actually wide-
sense nonblocking results. The cost of either
their three-stage network or its s-stage recur-
sive extension is larger than those of Yang and
Masson.

Hwang and Lin [10] conjectured: “For
model 1, C(n, 2n, r) is 2-cast rearrangeably
nonblocking.” Their motivation for studying
this conjecture is to provide rearrangeable
nonblocking for some occasional bicast calls in
an strictly nonblocking point-to -point network.
Note that if the conjecture holds, a point-to-
point call (i, j) can always be routed without
rearranging, since the (n – 1) co-inputs (co-
outputs) can occupy at most n – 1 middle
switches regardless of their calls being point-
to-point or bicast. Also, note that this is true
only under model 1.

Du and Ngo [11] extended the conjecture to
an asymmetric three-stage Clos network with n1
≥ n2. They also gave a counterexample if n1 <
n2, and proved the conjecture for n2 = 2 or 3.
Hwang, Liao, and Tong [12] proved for r2 ≤ 4.
They also considered the case where the multi-
cast calls do not have to be bicast.

Richards and Hwang [13] considered a net-
work that is mathematically equivalent to a
three-stage network where the input switch is of
size 1 × k, k ≤ m, and the linking between the
first two stages is not a complete bipartite graph
(i.e., input i is linked to the set Mi of middle
switches). They actually proposed the elimina-
tion of the input stage by assigning input i to an
inlink of each middle switch in Mi. They called it
a two-stage network. For easier comparison with
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other three-stage networks, we will treat it as a
three-stage network, although no crosspoint is
counted in the first stage since each input switch
can be a splitter.

Note that outputs on different output
switches can compete only for stage 1 links, but
in the two-stage network each stage 1 link is
dedicated to an input and not subject to com-
petition. Therefore, we can study the rear-
rangeably nonblocking condition as if there
were only one output switch. Let B denote the
bipartite graph between the first two stages.
Then the network is rearrangeably nonblocking
if and only if B is a partial concentrator of
capacity n2 (i.e., up to n2 inputs have at least
that many neighbors). By Hall’s theorem on a
system of distinct representatives, for any set
of q ≤ n2 inputs requested by the outputs of the
output switch, there exist q middle switches,
each carrying a distinct requested input to con-
nect to the output switch. The number of cross-
points depends on n2 as a function of k (not
completely determined yet). O(N7/4) is prov-
able while O(N5/3) is conjectured.

CONCLUSIONS
A survey of multicast nonblocking multistage
interconnection networks was given in [1, Ch. 4].
Here we focus on three-stage Clos networks and
bring the literature up to date. Some interesting
new developments are:
• A unifying approach to compute necessary

and sufficient conditions for many multicast
strictly nonblocking and wide-sense non-
blocking models

• A new class, the window class, of routing
algorithms that unites some previous seem-
ingly unrelated models

• Recent progress on the bicast conjecture for
model 1
We also provided some fresh viewpoints:

• We provided a more structured framework
to study multicast wide-sense nonblocking
three-stage Clos networks by classifying the
routing algorithms into three classes. In
particular, we pointed out that the input
stage fan-out size can be controlled by hard-
ware structure.

• We observed the close relation between two
problems thus far studied separately: the

rearrangeably nonblocking network under
model 1; and satisfying the strictly non-
blocking requirement for point-to-point
traffic but the rearrangeably nonblocking
requirement for multicast traffic.
The author wishes to thank the reviewers for

careful reading and many helpful suggestions.
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