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Subcarrier Multiplexing by Chaotic
Multitone Modulation

Cheng Juang, Shaw Tzuu Huang, Chin Yueh Liu, Wei Chung Wang, Tsung Min Hwang, Jonq Juang, and Wen Wei Lin

Abstract—Subcarrier multiplexing by chaotic multitone mod-
ulation is investigated. Optical chaotic light can be achieved by
injecting multiple subcarriers into a self-pulsating laser diode.
Synchronization between two identical chaotic systems (drive
and response) can be implemented provided that the conditional
Lyapunov exponents are all negative. By adding amplitude mod-
ulation (AM) signals to each subcarrier, the two systems become
asymptotically synchronized. The AM signals in each subcar-
rier can be recovered by the introduction of a filtering process
where the Lyapunov exponent of the synchronized error function
matches the cutoff frequency of a first order low pass filter.

Index Terms—Asymptotic synchronization, chaotic modulation,
self-pulsating laser diodes, subcarrier multiplexing.

I. INTRODUCTION

PECORA and Carroll have shown that a chaotic system
(drive system) can be synchronized with a separate

chaotic system (response system) provided that the conditional
Lyapunov exponents (CLE) of the drive and response systems
are all negative [1]. The ability to design such synchronized
systems has opened up opportunities for application of chaos to
private communications. Chaotic switching, chaotic masking,
and chaotic modulation are commonly used to achieve chaotic
transmission [2]. Chaotic switching utilizes a parameter change
in the drive system, where two chaotic states are created to bear
a binary signal [3]. The important issue is that the two chaotic
states are distinguishable under chaotic synchronization,
and are nondistinguishable if not synchronized. For chaotic
masking, a large noise-like chaotic carrier (independently-gen-
erated) is mixed with the signal at the drive end to ensure
privacy [4]. At the response end, the masked signal is recovered
by removing the large chaotic carrier under synchronization.
In a chaotic modulation system, the chaotic oscillator in the
drive end is directly modulated by the information signal.
A synchronization scheme using self-pulsating laser diodes
(chaotic oscillators) under a chaotic single-tone modulation
has been presented [5]. Bennettet al. [6] further investigated
the properties of a laser diode under directly chaotic two-tone
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and multitone modulation (injecting of two and sinusoidal
carriers, respectively).

It is known that in broadband analog applications, one can
employ a multiplexing technique where a number of baseband
signals ( ) are amplitude modulated on a set of subcar-
riers having different frequencies (). These modulated subcar-
riers are then combined electrically to form a composite carrier
that directly modulates a single optical source [7]. In this work,
a possible subcarrier multiplexing based on chaotic multitone
modulation is proposed, as illustrated in Fig. 1. Two identical
laser diodes (with different initial conditions) are modulated by

subcarriers at the transmission and receiving ends. Chaotic
light output is generated under this chaotic multitone modula-
tion so that private communication can be achieved. The two
laser diodes are then synchronized according to the drive-re-
sponse model. When the baseband amplitude modulation (AM)
signal ( ) is added to each subcarrier, the two chaotic sys-
tems are no longer identical. If the AM signals are small, the
two chaotic systems become asymptotically synchronized [8].
All the AM signals can be recovered by measuring the syn-
chronized error function using a proper low-pass filter (LPF) in
the receiving end. The filtering process introduces an additional
Lyapunov exponent, the cutoff frequency from a first-order LPF,
to the synchronized error function and may cause an increase of
fractal dimension [9]. All of the AM signals can be clearly re-
solved if the cutoff frequency of the LPF matches well with the
first Lyapunov exponent of the synchronized error function.

This paper is organized as follows. In Section II, a drive-re-
sponse system model is formulated according to Pecora and
Carroll’s theory. In Section III, a bifurcation diagram from the
Poincare map is plotted and the Lyapunov exponents for self-
pulsating laser diodes under multitone chaotic modulation are
calculated. Synchronization of the drive and response system
are described in Section IV. Section V describes the recovery of
the multiplexed signals by matching the Lyapunov exponent of
the synchronized error function with the cutoff frequency of a
first-order LPF.

II. FORMULATION

Considering a drive-response system using self-pulsating
laser diodes, a drive system, described by a three-dimensional
rate equation, is given by [5]

(1)
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Fig. 1. Functional block diagram of subcarrier multiplexing by chaotic multitone modulation.

and the appropriate response systemis given by

(2)

where is the photon density, is the electron density in
the active region, is the electron density in the saturable ab-
sorption region, is the subcarrier current, and is the
coupling term. Note that is normalized using a factor of ,
where is the active layer volume. The nonlinear functions,

, and which describe the self-pulsating laser diodes can be
written as [10]

(3)

where is the carrier lifetime, is the confinement factor,
is the threshold gain level, is the carrier time diffusion con-
stant between the two layers,is the linear approximation con-
stant for the gain curve, is the transparent level of electron
density, and is the coupling ratio between the spontaneous
field and the lasing mode. The subscripts 1 and 2 describe terms
in the active and absorption layers, respectively. Table I lists all
the parameters of the self-pulsating laser diode obtained from
[10] used in the simulation. Increasing the bias current yields a
dramatic change in output light at 19.8 mA, which corresponds
to the threshold current of the laser. When above the threshold,
the self-pulsating frequency increases due to the increase in

TABLE I
PARAMETERSUSED FOR THESIMULATION OF SELF-PULSATING LASERDIODES

bias current . When is injected, the corresponding
is 2.28 GHz. This value is used in the calculations throughout.

III. SYNCHRONIZATION OF CHAOTIC MULTITONE MODULATED

SELF-PULSATING LASER DIODES

By injecting sinusoidal subcarriers into a self-pulsating
laser diode ( ), optical chaotic light can
be obtained. In order to characterize the asymptotic behavior
of the drive system, numerical computations on Poincare maps,
and Lyapunov exponents are carried out for .
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Fig. 2. Bifurcation diagram of a Poincare map withS(t) versusb for N = 4,
anda = 30 mA.

In the three-dimensional (3-D) phase diagram (, , and
) of the rate equations, let be a two-dimensional (2-D)

hyperplane through a point (0, 0.298, 0) with normal direction
[0, 1, 0]. The Poincare maps are taken from. Fig. 2 shows
the bifurcation diagram of the Poincare map with versus

for , , , and . It is
important to note that the four subcarrier frequencies must be
chosen in a fractional ratio such that the quasi-two-period route
to chaos can be maintained. When , the system
has a quasi-two-period attractor. The system has a periodical
window at and period-doubling occurs when

. The phenomenon of the period-doubling routes to
chaos occurs when .

According to Pecora and Carroll’s theory, synchronization
can only be achieved for all negative CLEs. The CLEs are found
by calculating the Lyapunov exponents for the entire system
and comparing these to the Lyapunov exponents of the drive
system. The remaining Lyapunov exponents are the CLEs. A
simple method is to construct a difference system: let

, , and . The difference
system becomes

(4)

The real part of the eigenvalues (, , and ) of are the
CLEs by definition. If all the CLEs are negative ,

the two systems will be synchronized. If there is a positive CLE,
the difference system will grow further apart as . Thus,
by using a positive CLE, synchronization can be established be-
tween the drive and response system under chaotic multitone
modulation.

IV. RECOVERY OFMULTIPLEXED SIGNALS

AM signals are added to each subcarrier and the resulting in-
jection current is ,
where is the AM signal frequency, and is the AM signal
amplitude. In the response system,remains a constant current.
Thus, the two chaotic systems are no longer identical. Ifis

Fig. 3. Frequency spectrum of the four subcarrier synchronization error
function before applying the filter.

Fig. 4. First Lyapunov exponent of the synchronized error function versus�̂

for � = 0, N = 4, b = 9 mA, anda = 30 mA.

small, the two chaotic systems become asymptotically synchro-
nized. The synchronized error function can be described
by [8]

(5)

where is the proportional constant and, the difference term
between the drive and response systems, which is given by

(6)

Fig. 3 shows the first Lyapunov exponent of the synchro-
nized error function versus for , , ,
and . The positive first Lyapunov exponent implies
the chaotic behaviors of the synchronized error function. Fig. 3
shows the frequency spectrum of the synchronization error func-
tion, which has a complex and unpredictable pattern. The signal
frequency is well hidden by the chaotic modulation. Thus,
the purposes of the private communication can be achieved.



1324 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 39, NO. 10, OCTOBER 2003

Fig. 5. Poincare cross section ofX(t) versusX(t � �) against the cutoff
frequency� for �̂ = 200, � = 0, N = 4, b = 9 mA, anda = 30 mA, where
� = (10f ) .

Fig. 6. Frequency spectrum of the output of the LPFX(t) for � = 1:3 GHz,
�̂ = 200, � = 0, N = 4, b = 9 mA, anda = 30 mA.

The introduction of a linear LPF to the original differential
model can be described by [9]

(7)

where is the output of the filter and is the cutoff
frequency. Fig. 5 plots the Poincare cross section of the
versus against the cutoff frequency for ,

, , , and , where is a
delay time chosen to be . Note that for , the
first Lyapunov exponent of the synchronized error function is
1.3 GHz from Fig. 3. For a large cutoff frequency, contribution
of the differential term can be ignored ( ). Thus,
the Poincare cross section ( ) shows a continuous
dense attractor—a typical behavior of a chaotic waveform. For
a very small cutoff frequency, . The Poincare
cross section ( ) shows a broken attractor—an
integration effect of the dense attractor. However, when the

Fig. 7. Frequency spectrum of the ten subcarrier synchronization error
function before applying the filter.

Fig. 8. Frequency spectrum of the output of the LPFX(t) for � = 0:4 GHz,
�̂ = 200, � = 0, N = 10, b = 7 mA, anda = 30 mA.

cutoff frequency matches the first Lyapunov exponent of the
synchronized error function ( ), as suggested in
[9], an increase in fractal dimensional occurs. Therefore, the
dense attractors become periodic and the embedded signals
can be recovered.

The recovery of the multiplexed signals can also be verified
in the frequency domain. gives the sum
frequency and the difference frequency
at each subcarrier. Fig. 6 shows the frequency spectrum of the
output of the LPF for , , ,

, , and . Two distinct signal peaks
are found at and in each subcarrier. Thus,
the subcarrier multiplexing for can be established.

V. COMPARISON OF AND MULTIPLEXED

SIGNALS

To further test the validity of this filtering process, a ten sub-
carrier system ( , ) is constructed.
Fig. 7 shows the frequency spectrum of the synchronization
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Fig. 9. Bifurcation diagram ofS(t) versusm. N = 1 corresponds to a
frequency modulation index of 0.1.

Fig. 10. Comparison of the local Lyapunov exponent forN = 4 andN = 10.

error function before applying the filter. Similarly, the spec-
trum has a complex and unpredictable pattern and the signal
frequency is well hidden.

In this system, the first Lyapunov exponent of the synchro-
nized error function is 0.4 GHz. Therefore, the cutoff frequency
of LPF is chosen to be 0.4 GHz accordingly. Fig. 8 shows the
frequency spectrum of the output of the LPF for

, , , , , and .
Similarly, two distinct signal peaks are found at and

in each subcarrier. Thus, the subcarrier multiplexing
for can also be established.

When taking into consideration of each subcarrier frequency,
it is difficult to place all the subcarrier in the chaotic regions.
The chaotic orbit can be destroyed while the subcarrier fre-
quency is approaching to the natural frequency[11]. In this
case, exhibit chaotic orbit while
show periodic window, as shown in Fig. 9, whereis the fre-
quency modulation index. corresponds to a frequency
modulation index of 0.1. Thus, the summing effects of the ten
subcarrier system shows less ”chaos” than the four subcarrier

system. It is also evident by plotting the local Lyapunov expo-
nent (in Fig. 10). The ten subcarrier system has a smaller local
Lyapunov exponent all the way.

VI. CONCLUSIONS

In conclusion, self-pulsating laser diodes can be used as a
chaotic multitone modulation device to change sinusoidal elec-
tronic signals into optical chaotic light. Drive and response sys-
tems become asymptotically synchronized when AM signals are
added to each subcarrier in the drive system. The AM signals
in each subcarrier can be recovered by matching the Lyapunov
exponent of the synchronized error function with the cutoff fre-
quency of a first-order LPF. The numerical results indicate four
and ten subcarrier multiplexing systems can be established.
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