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A new self-organizing fuzzy logic control (SOFLC) design

method is proposed. The proposed method is applied to the

command line-of-sight (CLOS) guidance law design. The SOFLC

contains two sets of fuzzy inference logic. One is the fuzzy logic

controller and the other is the rule modifier. The new learning

method of the rule modifier is developed based on a fuzzy

learning algorithm. The modification value of each rule is based

on the fuzzy firing weight, so that learning of the rule bases is

reasonable. Finally, two engagement scenarios are examined, and

a comparison between a fuzzy logic control (FLC), an optimal

learning FLC, and the proposed SOFLC CLOS guidance laws

is made. Simulation results show that the proposed SOFLC

guidance law can achieve better guidance performance than the

other guidance laws.
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I. NOMENCLATURE

Ãt Yaw angle of target
µt Pitch angle of target
Ãm Yaw angle of missile
µm Pitch angle of missile
Ámc Roll angle command
¾t Azimuth angle of line-of-sight (LOS)

to target
°t Elevation angle of LOS to target
¾m Azimuth angle of LOS to missile
°m Elevation angle of LOS to missile
¢¾ ¾m ¾t
¢° °m °t
T Thrust force
D Drag force
M Mass of missile
g Gravity acceleration
ax Axial acceleration of missile
ãyc Yaw acceleration command
ãzc Pitch acceleration command
aty Yaw acceleration of target
atz Pitch acceleration of target
Rm Missile range from ground tracker
Rt Target range from ground tracker
vm Missile velocity
vt Target velocity
at Target acceleration
sµ sin(µ)
cµ cos(µ)
(XI ,YI ,ZI) Missile inertial frame
(XM ,YM ,ZM) Body frame
(XL,YL,ZL) LOS frame
(xt,yt,zt) Target position in inertial frame
(xm,ym,zm) Missile position in inertial frame.

II. INTRODUCTION

The guidance law design makes use of the relative
target-missile states to produce command accelerations
for the autopilot of a missile. The guidance system is
a nonlinear, time-varying, and multiobjective problem
[1, 2]. Command line-of-sight (CLOS) guidance
represents a derivative of the command guidance
technique. The principle of CLOS guidance is to
force a missile to fly as close as possible along the
instantaneous LOS joining the ground tracker and
the target. CLOS guidance has been regarded as a
low-cost guidance concept because it emphasizes
the placement of avionics on the launch platform as
opposed to the on board expendable weapon [3, 4].

FLC using a rule-based algorithm can model the
qualitative aspects of human knowledge and reasoning
processes without employing precise quantitative
analyses. It also possesses several advantages such
as robustness and no need of system model [5, 6].
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Recently, FLC has been applied to guidance systems
[7–9]. However, these fuzzy-logic-based guidance law
design methods are based on fuzzy inference rules
that are constructed based on the qualitative aspects
of human knowledge. The design of satisfactory
fuzzy rules needs time-consuming trial-and-error. To
tackle this problem, an attractive approach is provided
by self-organizing fuzzy logic control (SOFLC)
[10–12]. The SOFLC proposed in [10, 11] contains
a learning algorithm to modify the control rules
based on an evaluation of the system’s performance.
The modification of the control rules is achieved
by assigning a credit to the control action based on
present performance. In [12], a negative gradient
modification method for the optimal performance
is expressed, in which the local optimal control
performance can be obtained. This rule modification
approach is called optimal learning fuzzy logic control
(OLFLC) here. However, the convergence time of the
control action for this method is long since only one
rule is modified each time.
A new SOFLC design method is proposed here.

The proposed SOFLC contains two sets of fuzzy
inference logic. One is the fuzzy logic controller
and the other is the rule modifier. The new learning
method of the rule modifier is developed based
on a fuzzy learning algorithm. Since more than
one rule will be fired at each inferring process and
the fired grade is different for each rule, one rule
modification algorithm presented in [12] and the
fixed value modification algorithm presented in [10,
11] are not the most suitable ones. In the proposed
SOFLC design method, the modification value of
each rule is based on the fuzzy firing weight, so that
the learning of the rule bases is more reasonable
than that in [10–12]. Finally, the proposed SOFLC
is applied for the CLOS guidance law design.
For simulations, two engagement scenarios are
considered; one is an antiaircraft scenario and the
other is an anti-intercontinental-ballistic-missile
scenario. A comparison between an FLC, an OLFLC,
and the proposed SOFLC guidance laws is made.
Simulation results show that the SOFLC guidance
law can achieve smaller miss distance than the
other fuzzy-logic-based guidance laws and the
performance index of SOFLC guidance law is smaller
than the OLFLC guidance law, so that the proposed
self-organizing fuzzy learning algorithm is more
suitable for CLOS guidance law design.

III. FORMULATION OF MISSILE-TARGET
ENGAGEMENT

The three-dimensional CLOS guidance problem
can be formulated as a tracking problem for a
time-varying nonlinear system. Fig. 1 depicts the
three-dimensional pursuit situation. The origin of
the inertial frame is located at the ground tracker.

Fig. 1. Three-dimensional pursuit scenario.

Fig. 2. CLOS pursuit scenario.

The origin of the missile body frame is fixed at the
missile center of mass. For simulations, the motion of
the missile in the inertial frame can be represented as
follows [4]:

ẍm = axcµmcÃm ãyc(sÁmcsµmcÃm+ cÁmcsÃm)

ãzc(cÁmcsµmcÃm sÁmcsÃm)

ÿm = axcµmsÃm ãyc(sÁmcsµmsÃm cÁmccÃm)

ãzc(cÁmcsµmsÃm+ sÁmccÃm)

z̈m = axsµm+ ãycsÁmccµm+ ãzccÁmccµm g

_Ãm = ãyccÁmc=(vmcµm) ãzcsÁmc=(vmcµm)

_µm = ãycsÁmc=vm+ ãzccÁmc=vm gcµm=vm

(1)

where vm denotes the velocity of the missile given by

vm
¢
=(_x2m+ _y

2
m+ _z

2
m)
1=2 (2)

and ax represents the axial acceleration of the missile
given by

ax
¢
=(T D)=M: (3)

A tracking error is defined in order to convert the
CLOS guidance problem into a tracking problem.
The CLOS guidance involves guiding the missile onto
the LOS to target. Define the LOS frame as depicted
in Fig. 2. The XL axis forwards along the LOS to
target and the YL axis is horizontally directed to the
left of the XL ZL plane. Then, the coordinates (e1,e2)
indicated in Fig. 2 represent the missile position in the
LOS frame. The tracking error is defined as [4]

e
¢
=

e1

e2
=

xms¾t+ ymc¾t
xms°tc¾t yms°ts¾t+ zmc°t

: (4)
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Fig. 3. Block diagram representation of estimation algorithm for
guidance information.

Fig. 4. Guidance system for FLC CLOS guidance law.

Note that e represents the distance from the missile
to the LOS. Therefore, the missile will eventually
hit the target if the tracking error is driven to zero
before the target crosses the missile. Since e1 and e2

Fig. 5. Engagement responses of FLC CLOS guidance law.

Fig. 6. Guidance system for SOFLC CLOS guidance law.

cannot be measured directly, these quantities ought
to be computed indirectly using the polar
position data of the missile available from the ground
tracker as

e
¢
=

e1

e2
=

Rmc(¢°+ °t)s¢¾

Rms(¢°+ °t)c°t Rmc(¢°+ °t)s°tc¢¾
:

(5)
The control object is to drive the error and the
change-of-error (e and _e) to zero.

IV. FUZZY LOGIC CONTROL

The basic FLC should be viewed as a linguistic
conditional statement symbolized in the form of a
relation matrix R given by the Cartesian product

R = E _E U (6)
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Fig. 7. Engagement responses of SOFLC CLOS guidance law.

where R is the control rule base; E and _E are the
fuzzified values of e and _e, respectively; U is the
fuzzy output of the controller; means the Cartesian
product. The overall relation matrix R obtained from
the fuzzy control rules is calculated as the union of m
individual relation matrices

R = R1 R2 Rm =
m

i=1

Ri: (7)

Therefore, the output U from the fuzzy controller
can be obtained from its inputs E and _E. Zadeh’s
compositional rule is employed for rule inference:

U = (E _E) R (8)

where denotes the compositional rule of inference.
The fuzzy control rules are in the following form:

Rule i : If e is Fie and _e is Fi_e then u is ½i

(9)
where Fie and F

i
_e represent the fuzzy sets; ½i,

i= 1,2, : : : ,n are the singleton control actions.
The defuzzification of the controller output is
accomplished by the method of center-of-gravity [5]

u(e, _e,½i) =
n
i=1wi ½i
n
i=1wi

(10)

where wi is the firing weight of the ith rule. The
defuzzified value in (10) represents the control
force.

V. SELF-ORGANIZING FUZZY LOGIC CONTROL

The objective of the control is to bring the system
from any initial state to a desired state, and the
dynamic behavior of the system should be insensitive
to the variations of the system parameters and external
disturbances. To achieve the objective an iterative
learning algorithm is adopted to adjust control efforts
½i, i = 1,2, : : : ,n that are initiated from zero and are
learned from the fuzzy rule modifier. The central
part of the iterative learning algorithm for a SOFLC
system is to change the control effort in the direction
of the negative gradient of a performance index I
which is defined as a function of e and _e

I =
g

k=1

e2(k) + h[ _e(k)]2 (11)

where k is the kth time interval, g is the total number
of time intervals, and h > 0 is a weighting factor. The
partial derivatives of I with respect to e and _e can be
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Fig. 8. Engagement responses of OLFLC CLOS guidance law.

obtained as follows:

@I

@e(k)
=

e(k)

e2(k) + h[_e(k)]2
(12)

@I

@ _e(k)
=

h _e(k)

e2(k) + h[_e(k)]2
: (13)

The negative gradient for the optimal performance can
be expressed as

I =
e(k)

e2(k)+ h[ _e(k)]2
+h

_e(k)

e2(k) +h[ _e(k)]2
:

(14)

Based on the optimal control, the adjust control signal
±u is chosen as

±u(k) = ´( I )
e(k)

_e(k)
(15)

where ´ is the learning rate with positive constant.
The modification algorithm for each fuzzy control

rule is proposed as follows:

¢½i(k) = ±u(k)
wi
n
i=1wi

(16)

where ¢½i is a modification value to be added to the
ith control rule in (9), i.e.

½i(k+1) = ½i(k) +¢½i(k): (17)

Equation (16) represents that the modification value of
each control rule is proportional to its firing weight of
fuzzy inference. This is more reasonable than the rule
modification methods proposed in [10–12].

Taking a summary, the fuzzy rules of SOFLC are
given in (9) with the control efforts ½i updated with
(17). And then the defuzzified control force is given
in (10).

VI. SIMULATION RESULTS

For simulations, the simplified dynamics of target
motion can be represented in the inertial frame as
follows [4]:

ẍt = atysÃt atzsµtcÃt

ÿt = atycÃt atzsµtsÃt

z̈t = atzcµt g

_Ãt = aty=(vtcµt)

_µt = (atz gcµt)=vt

(18)

1148 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 39, NO. 4 OCTOBER 2003



TABLE I
Initial Data Used for Simulations

State Scenario Scenario 1 Scenario 2

xt(0),yt(0),zt(0) [m] 2500,5361:9,1000 5000,5000,10000
_xt(0), _yt(0), _zt(0) [m/s] 0, 340,0 0,0, 750
Ãt(0),µt(0) [deg] 90,0 90,0

xm(0),ym(0),zm(0) [m] 14:32,39:34,3:36 14:44,17:20,26:52
_xm(0), _ym(0), _zm(0) [m/s] 70:84,151:92,28:32 250,250,450
Ãm(0),µm(0) [deg] 65,9:59 45,54:73
¢¾(0),¢°(0) [deg] 5, 5 5, 5

TABLE II
Parameter Data Used for Simulations

(T D)=M 340 m/s2 0< t < 2

44:1 m/s2 t > 2
for scenario 1;

100 m/s2 0< t < 10

44:1 m/s2 t > 10
for scenario 2

Ámc 0 deg

guidance command
frequency

50 Hz

autopilot damping
ratio

0.6

autopilot natural
frequency

6¼ rad/s

where vt is given by

vt
¢
=(_x2t + _y

2
t + _z

2
t )
1=2: (19)

It should be emphasized that the derivation of
self-organizing fuzzy learning CLOS guidance law
does not need to use the missile model in (1) and
target model in (18). These models are used only for
simulations. The pitch and yaw autopilot dynamics
are chosen as the second-order time invariant linear
systems and the ground tracker as a simplified
differential tracking system with damping ratio 0.6
and nature frequency 6¼ rad/s as depicted in Fig. 3.
The ground tracker provides the estimated values
of ¾t, °t, _¾t, and _°t as well as the measurement data
of ¢¾ and ¢°. In the follows, the estimated value
is distinguished from its true value by inserting the
upper to the corresponding variable. Two simulation
scenarios are examined to justify the proposed design
methods. The detailed data used for the simulations
are listed in Tables I and II. For simulations, a 30g
(g = 9:8 m/s2) limiter is included to represent the
maneuverability of the missile. Thus, the acceleration
commands are expressed as

ãyc = sat(ayc,30g) (20)

and
ãzc = sat(azc,30g) (21)

Fig. 9. Performance index of OLFLC and SOFLC guidance laws.

where

sat(a,b) =
a for a b

b sgn(a) for a > b
(22)

and ãyc and ãzc denote the acceleration command
for azimuth-loop and elevation-loop, respectively.
Scenario 1 represents an antiaircraft scenario. Assume
that the target maneuvers with aty = 5g and atz = g
for the first 2.5 s and then with aty = 5g and atz = 5g
until interception. For scenario 2, assume that the
target maneuvers with aty = 0g and atz = 1g for the
first 2.5 s and then with aty = 0:5g and atz = 1g until
interception, which represents a simplified model
of intercontinental ballistic missile with a lateral
maneuver in the final aiming phase.

A comparison between an FLC, an OLFLC, and
the proposed SOFLC guidance laws is made. The
performance evaluation consists of miss distance and
the responses of tracking errors. The FLC CLOS
guidance system is depicted in Fig. 4 and its fuzzy
inference rules are summarized in Table III where
triangular membership functions are employed. The
fuzzy labels used in this paper are negative big (NB),
negative small (NS), zero (ZO), positive small (PS),
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TABLE III
Fuzzy Inference Rules

_e

e NB NS ZO PS PB

NB 1.00 1.00 1.00 0.43 0.00
NS 1.00 1.00 0.43 0.00 0:43
ZO 1.00 0.43 0.00 0:43 1:00
PS 0.43 0.00 0:43 1:00 1:00
PB 0.00 0:43 1:00 1:00 1:00

TABLE IV
Miss Distances (m) for Fuzzy-Logic-Based Guidance Laws

Scenario

Design Method Scenario 1 Scenario 2

fuzzy logic control guidance law 2.0345 4.0690

optimal learning fuzzy logic
control guidance law

2.0315 4.0542

self-organizing fuzzy logic
control guidance law

1.9709 3.9059

and positive big (PB). By using the FLC guidance
law, the simulation results are depicted in Fig. 5(a)
to Fig. 5(c) for scenario 1, and Fig. 5(d) to Fig. 5(f)
for scenario 2, respectively. The proposed SOFLC
CLOS guidance system is depicted in Fig. 6. By
using the proposed SOFLC guidance law with ´ =
0:1 and h= 10, the simulation results are shown in
Fig. 7(a) to Fig. 7(c) and Fig. 7(d) to Fig. 7(f) for
scenario 1 and scenario 2, respectively. By using
the OLFLC guidance law with ´ = 0:1 and h= 10,
in which only one rule is modified at each inferring
process, the simulation results are shown in Fig. 8(a)
to Fig. 8(c) and Fig. 8(d) to Fig. 8(f) for scenario
1 and scenario 2, respectively. The comparison of
simulation results is summarized in Table IV, which
shows that the SOFLC guidance law can achieve
smaller miss distance than the other fuzzy-logic-based
guidance laws. However, the SOFLC pays the price
of larger transient responses of tracking errors and
control efforts than the FLC at the initial learning
phase, since the control rules are initiated from zero.
The performance index I in (11) for the OLFLC
and SOFLC guidance laws are shown in Figs. 9(a)
and 9(b) and Figs. 9(c) and 9(d) for scenario 1 and
scenario 2, respectively. From the simulations, it is
shown that the performance index of the proposed
SOFLC is smaller than that of the OLFLC. This also
shows that the learning algorithm of the proposed
SOFLC is better than the OLFLC.

VII. CONCLUSIONS

In this paper, a new SOFLC learning method
is developed and this design method is applied
for the CLOS guidance law design. A comparison

between an FLC, an optimal learning FLC, and the
proposed SOFLC guidance laws for two engagement
scenarios is made. Simulation results demonstrate
that the proposed SOFLC guidance law can achieve
satisfactory performance for different engagement
scenarios. Furthermore, the proposed SOFLC
guidance law is found to perform better than the other
fuzzy-logic-based guidance law in terms of the miss
distance and performance index. It is revealed that the
proposed SOFLC learning algorithm is suitable for the
CLOS guidance law design.
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