
Engineering Applications of Artificial Intelligence 16 (2003) 709–716

ARTICLE IN PRESS
*Correspondi

2655199.

E-mail addre

0952-1976/$ - see

doi:10.1016/j.eng
Elicitation of classification rules by fuzzy data mining

Yi-Chung Hua,*, Gwo-Hshiung Tzengb

aDepartment of Business Administration, Chung Yuan Christian University, Chung-Li 320, Taiwan, ROC
b Institute of Management of Technology, National Chiao Tung University, Hsinchu 300, Taiwan, ROC

Received 25 November 2002; received in revised form 22 May 2003; accepted 18 September 2003
Abstract

Data mining techniques can be used to find potentially useful patterns from data and to ease the knowledge acquisition bottleneck

in building prototype rule-based systems. Based on the partition methods presented in simple-fuzzy-partition-based method

(SFPBM) proposed by Hu et al. (Comput. Ind. Eng. 43(4) (2002) 735), the aim of this paper is to propose a new fuzzy data mining

technique consisting of two phases to find fuzzy if–then rules for classification problems: one to find frequent fuzzy grids by using a

pre-specified simple fuzzy partition method to divide each quantitative attribute, and the other to generate fuzzy classification rules

from frequent fuzzy grids. To improve the classification performance of the proposed method, we specially incorporate adaptive

rules proposed by Nozaki et al. (IEEE Trans. Fuzzy Syst. 4(3) (1996) 238) into our methods to adjust the confidence of each

classification rule. For classification generalization ability, the simulation results from the iris data demonstrate that the proposed

method may effectively derive fuzzy classification rules from training samples.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Pattern classification is a problem that partitions a
pattern space into classes and then assigns a pattern to
one of those classes (Kim and Bang, 2000). In fact,
classification problems have played an important role in
industrial engineering such as the group technology
(Chuang et al., 1999), in engineering applications, such
as OCR recognition and facial recognition (Kim and
Bang, 2000).
Data mining is the exploration and analysis of the

data in order to discover meaningful patterns (Berry and
Linoff, 1997). The aim of this paper is to propose a
fuzzy data mining method that can automatically find a
set of fuzzy if–then rules for classification problems.
Actually, data mining problems involving classification
can be viewed within a common framework of rule
discovery (Agrawal et al., 1993a). The advantage for
mining fuzzy if–then rules for classification problems is
that knowledge acquisition can be achieved for users by
carefully checking these rules discovered from training
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patterns. Additionally, data mining can also ease the
knowledge acquisition bottleneck in building prototype
expert systems (Hong et al., 2000) or rule-based systems.
The discovery of association rule is an important

topic in data mining techniques. In addition, association
rules elicited from transaction databases have been
applied to help decision makers determine which items
are frequently purchased together by customers (Berry
and Linoff, 1997; Han and Kamber, 2001). Initially,
Agrawal et al. (1993b) proposed a method to find the
frequent itemsets. Subsequently, Agrawal et al. (1996)
proposed an influential algorithm named the Apriori
algorithm consisting two phases. In the first phase,
frequent itemsets are generated, whereas a candidate k-
itemset (kX1) containing k items, is frequent (i.e.,
frequent k-itemset) if its support is larger than or equal
to a user-specified minimum support. In the second
phase, association rules are generated by frequent
itemsets discovered in the first phase.
Additionally, the comprehensibility of fuzzy repre-

sentation by human users is also a criterion in designing
a fuzzy system. The simple fuzzy partition methods
are thus preferable (Ishibuchi et al., 1999). In this
method, each attribute, which is used to describe each
sample data, is viewed as linguistic variables (Zadeh,
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Nomenclature

d number of attributes used to describe each
sample data, where 1pd

k dimension of one fuzzy grid, where 1pkpd

K maximum number of various linguistic values
defined in each quantitative attribute, where
KX3

Axm
Ki ;jm

jmth linguistic value of Ki various linguistic
values defined in attribute xm; where
1pmpd; 3pKipK for the MTDM, Ki ¼ K

for the STDM, and 1pjmpKi

mxm

Ki ;jm
membership function of Axm

Ki ;jm
tp pth training sample, where tp ¼ ðtp1 ; tp2 ;?tpd

Þ;
and tpi

is the attribute value with respect to the
ith attribute.
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Fig. 1. K ¼ 3 for ‘‘Width’’ and ‘‘Length’’.
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1975a, b, 1976). Based on the partition methods used in
simple-fuzzy-partition-based method (SFPBM) (Hu
et al., 2002) this paper proposes a fuzzy data mining
method for eliciting fuzzy classification rules for
classification problems.
Since the classification performance can be improved

by adjusting the grade of certainty of fuzzy rules, the
adaptive rules proposed by Nozaki et al. (1996) are
incorporated into the proposed method to adjust the
fuzzy confidence of each fuzzy rule. For classification
generalization ability, the simulation results from the iris
data (Anderson, 1935) demonstrate that the proposed
method performs well in comparison with other fuzzy
classification methods. This shows that applications of the
proposed method to engineering problems are feasible.
The rest of this paper is organized as follows. STDM

and MTDM are introduced in Section 2. In Section 3,
we present definitions of the fuzzy support and the fuzzy
confidence, and the two phases of the proposed method
is presented in detail. In Section 4, the performance of
the proposed method is examined by computer simula-
tion on the iris data. Discussions and conclusions are
presented in Section 5.
2. Simple fuzzy partition methods

Concepts of linguistic variables (Zadeh, 1975a, b,
1976). Formally, a linguistic variable is characterized
by a quintuple (Pedrycz and Gomide, 1998; Zimmer-
mann, 1996) denoted by (x; TðxÞ; U ; G; M), in which x

is the name of the variable; TðxÞ denotes the set of
names of linguistic values or terms of x; U denotes a
universe of discourse; G is a syntactic rule for generating
values of x; and M is a semantic rule for associating a
linguistic value with a meaning.
Actually, each attribute can be partitioned by its

various linguistic values with pre-specified membership
functions, such as triangular shape functions. Simple
fuzzy grids or grid partitions (Ishibuchi et al., 1995; Jang
and Sun, 1995) in feature space are thus obtained. The
advantage of the simple fuzzy partition method is that
the linguistic interpretation of each fuzzy set is easily
obtained. Fuzzy partition methods have been widely
used in pattern recognition and fuzzy reasoning, such as
applications to pattern classification by Ishibuchi et al.
(1992, 1995, 1999), Ravi and Zimmermann (2000), and
Ravi et al. (2000), to fuzzy neural networks (Jang, 1993),
and to the fuzzy rule generation by Wang and Mendel
(1992).
If both x1 and x2 are partitioned by three various

linguistic values, then a feature space can be divided into
nine two-dimensional (2-dim) fuzzy grids, as shown in
Fig. 1. The shaded fuzzy subspace denoted by AWidth

3;1 �
A
Length
3;3 stands for a 2-dim fuzzy grid whose linguistic

value is ‘‘small AND large’’.
Two partition types used in SFPBM are employed in

the proposed method: one is the multiple type division
method (MTDM), and the other is the single type
division method (STDM). If K is the maximum number
of various linguistic values on each quantitative
attribute, then MTDM allow us to partition each
quantitative attribute into various (3+4+?+K) lin-
guistic values. In other words, we sequentially divide
each quantitative attribute into 3, 4, y ,K various
linguistic values. As for STDM, only K various linguistic
values are defined.
For simplicity, the membership function with trian-

gular shape is used for each linguistic value in the
quantitative attributes. However, we emphasize that
Pedrycz (1994) had pointed out the usefulness and
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effectiveness of the triangular membership functions in
the fuzzy modeling. A membership function such as
mWidth

K ;j1
is represented as follows:

mWidth
K ;j1

ðxÞ ¼ maxf1� jx � aK
j1
j=bK ; 0g; ð1Þ

where

aK
j1
¼ miþ ðma�miÞðj1 � 1Þ=ðK � 1Þ; ð2Þ

bK ¼ ðma�miÞ=ðK � 1Þ; ð3Þ

where ma is the maximum value of domain, and mi is
the minimum value. Each linguistic value is actually
viewed as a candidate one-dimensional (1-dim) fuzzy
grid in the proposed method. It is clear that the set of
candidate 1-dim fuzzy grids generated for a pre-specified
K by STDM is contained in that generated by MTDM.
For example, if we divide both ‘‘Width’’ (denoted by x1)
and ‘‘Length’’ (denoted by x2) by four various linguistic

values, then {AWidth
4;1 ; AWidth

4;2 ; AWidth
4;3 ; AWidth

4;4 ; A
Length
4;1 ;

A
Length
4;2 ; A

Length
4;3 ; A

Length
4;4 } is generated by STDM, and

{AWidth
3;1 ; AWidth

3;2 ; AWidth
3;3 ; A

Length
3;1 ; A

Length
3;2 ; A

Length
3;3 ; AWidth

4;1 ;

AWidth
4;2 ; AWidth

4;3 ; AWidth
4;4 ; A

Length
4;1 ; A

Length
4;2 ; A

Length
4;3 ; A

Length
4;4 } is

generated by MTDM when K ¼ 4:
A significant task is how to use the candidate 1-dim

fuzzy grids to generate the other frequent fuzzy grids
and the fuzzy classification rules. An effective method is
thus described in following section.
3. Discovering fuzzy classification rules

In the proposed method, frequent fuzzy grids and
fuzzy classification rules are generated by phases I and
II, respectively. One fuzzy partition method (i.e., STDM
or MTDM) must be specified before performing the
proposed algorithm.
The main difference between the proposed method

and SFPBM is that SFPBM did not consider all
information distributed in the pattern space during the
mining process. That is, SFPBM ignored those fuzzy
subspaces containing any two linguistic values belonging
to different Ki partitions. Thus, SFPBM cannot generate
a fuzzy space like Ax1

K1;j1
� Ax2

K2 ;j2
�?� A

xk�1
Kk�1 ;jk�1

�
A

xk

Kk ;jk
: For example, if two quantitative attributes, say

x1 and x2; are partitioned into 4 linguistic values (i.e.,
K ¼ 4) with MTDM, then fuzzy subspaces or candidate
fuzzy grids Ax1

K1;j1
� Ax2

K2 ;j2
are not considered by SFPBM

when K1 is not equal to K2 (e.g., AWidth
4;2 � A

Length
3;3 or

AWidth
3;1 � A

Length
4;1 ). However, it is possible that the

ignored subspaces, which are further considered in the
proposed method, are useful. It should be noted that
since Ki ¼ 2 is somewhat coarser, KiX3 is considered in
SFPBM and the proposed method.
In this section, we describe the individual phase of the

proposed method in Sections 3.1 and 3.2.
3.1. Phase I: generate frequent fuzzy grids

Suppose each quantitative attribute, xm; is divided
into K various linguistic values. Without loss of
generality, given a candidate k-dim fuzzy grid Ax1

K1 ;j1
�

Ax2
K2 ;j2

�?� A
xk�1
Kk�1 ;jk�1

� A
xk

Kk ;jk
which is a fuzzy set,

3pK1;K2;?;Kk�1;KkpK for the MTDM and K1 ¼
K2 ¼ ? ¼ Kk�1 ¼ Kk ¼ K for the STDM, the degree to
which tp belongs to this fuzzy grid (i.e.,
Ax2

K2 ;j2
�?� A

xk�1
Kk�1 ;jk�1

� A
xk

Kk ;jk
ðtpÞ) can be computed

as mx1
K1;j1

ðtp1 Þ 
 m
x2
K2 ;j2

ðtp2Þ?mxk�1
Kk�1;jk�1

ðtpk�1Þ 
 m
xk

Kk ;jk
ðtpk

Þ: To
check whether this fuzzy grid to be frequent or not,
the fuzzy support (Ishibuchi et al., 2001; Hu et al., 2002)
of Ax1

K1 ;j1
� Ax2

K2;j2
�?� A

xk�1
Kk�1 ;jk�1

� A
xk

Kk ;jk
with the alge-

braic product, which is a t-norm operator in the fuzzy
intersection, is defined as follows:

FS Ax1
K1;j1

� Ax2
K2 ;j2

�?� Ax2
K2 ;j2

� A
xk�1
Kk�1 ;jk�1

� A
xk

Kk ;jk

� �
¼

Xn

p¼1

mAx1
K1 ;j1

� Ax2
K2;j2

� A
xk�1
Kk�1;jk�1

ðtpÞ=n

¼
Xn

p¼1

mx1
K1;j1

ðtp1Þ 
 m
x2
K2 ;j2

ðtp2Þ?mxk�1
Kk�1;jk�1

"

� ðtpk�1Þ 
 m
xk
Kk ;jk

tpk

� �#
=nÞ: ð4Þ

When FSðAx1
K1 ;j1

� Ax2
K2;j2

�?� A
xk�1
Kk�1;jk�1

� A
xk

Kk ;jk
Þ is

larger than or equal to the user-specified minimum

fuzzy support (min FS), Ax1
K1;j1

� Ax2
K2;j2

�?� A
xk�1
Kk�1;jk�1

�
A

xk

Kk ;jk
is a frequent k-dim fuzzy grid. For any two

frequent grids, say Ax1
K1;j1

�Ax2
K2;j2

�?�A
xk�1
Kk�1 ;jk�1

�A
xk

Kk ;jk

and Ax1
K1 ;j1

� Ax2
K2;j2

�?� A
xk�1
Kk�1;jk�1

� A
xk

Kk ;jk
� A

xkþ1
Kkþ1 ;jkþ1

;

since m
A

x1
K1 ;j1

�A
x1
K2 ;j2

�?�A
xk�1
Kk�1 ;jk�1

�Axk
Kk ;jk

�A
xkþ1
Kkþ1 ;jkþ1

ðtpÞpmA
x1
K1 ;j1

�

Ax1
K2 ;j2

�?� A
xk

Kk�1 ;jk�1
� A

xk

Kk ;jk
ðtpÞ from (4), Ax1

K1 ;j1
�

Ax2
K2 ;j2

� ?� A
xk�1
Kk�1;jk�1

� A
xk

Kk ;jk
� A

xkþ1
Kkþ1;jkþ1

D Ax1
K1;j1

�

Ax2
K2 ;j2

�?� A
xk�1
Kk�1 ;jk�1

� A
xk

Kk ;jk
thus holds. It is obvious

that any subset of a frequent fuzzy grid must also be
frequent.
Like SFPBM, Table FGTTFS is implemented to

generate frequent fuzzy grids. FGTTFS consists of the
following substructures:
(a)
 Fuzzy grid table (FG): each row represents a fuzzy
grid, and each column represents a linguistic value
Axm

Ki ;jm
:

(b)
 Transaction table (TT): each column represents tp;
and each element records the membership degree of
the corresponding fuzzy grid.
(c)
 Column FS: stores the fuzzy support corresponding
to the fuzzy grid in FG.
An initial tabular FGTTFS is shown as Table 1 as an
example, from which we can see that there are two
samples t1 and t2; with two attributes x1 and x2: Both x1
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Table 1

Initial table FGTTFS for an example

Fuzzy grid FG TT FS

Ax1
3;1 Ax1

3;2 Ax1
3;3 Ax2

3;1 Ax2
3;2 Ax2

3;3 t1 t2

Ax1
3;1 1 0 0 0 0 0 mx1

3;1 (t11 ) mx1
3;1 (t21 ) FS(Ax1

3;1)

Ax1
3;2 0 1 0 0 0 0 mx1

3;2ðt11 Þ mx1
3;2(t21 ) FS(Ax1

3;2)

Ax1
3;3 0 0 1 0 0 0 mx1

3;3(t11 ) mx1
3;3(t21 ) FS(Ax1

3;3)

Ax2
3;1 0 0 0 1 0 0 mx2

3;1 (t12 ) mx2
3;1 (t22 ) FS(Ax2

3;1)

Ax2
3;2 0 0 0 0 1 0 mx2

3;2(t12 ) mx2
3;2(t22 ) FS(Ax2

3;2)

Ax2
3;3 0 0 0 0 0 1 mx2

3;3(t12 ) mx2
3;3(t22 ) FS(Ax2

3;3)
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and x2 are divided into three linguistic values (i.e.,
K ¼ 3). Assume that x2 is the attribute of class labels.
Since each row of FG is a bit string consisting of 0 and
1, FG[u] and FG[v] (i.e., uth row and vth row of FG) can
be paired to generate certain desired results by applying
the Boolean operations. For example, if we apply the
OR operation on two rows, FG[1]=(1, 0, 0, 0, 0, 0) (i.e.,
Ax1
3;1) and FG[4]=(0, 0, 0, 1, 0, 0) (i.e., Ax2

3;1), then (FG[1]
OR FG[4])=(1, 0, 0, 1, 0, 0) corresponding to a
candidate 2-dim fuzzy grid Ax1

3;1 � Ax2
3;1 is generated.

Then, FSðAx1
3;1 � Ax2

3;1 � Ax2
3;1Þ ¼ Ax1

3;1 � Ax2
3;1ðt1Þ þ Ax1

3;1�
Ax2
3;1 (t2)=½mx1

3;1ðt11Þ 
 m
x2
3;1ðt12Þ þ mx2

3;1ðt12Þ 
 m
x1
3;1ðt22Þm

x2
3;1ðt22Þ�=

2 ¼ ðTT½1� 
 TT½4�Þ is obtained to compare with the min
FS. However, any two linguistic values defined in the
same attribute cannot be contained in the same
candidate k-dim fuzzy grid (kX2). Therefore, for
example, (1, 1, 0, 0, 0, 0) and (0, 0, 0, 1, 0, 1) are invalid.
In the Apriori algorithm, two frequent (k21)-itemsets

are joined to be a candidate k-itemset, and these two
frequent itemsets share (k22) items. Similarly, two
frequent (k21)-dim grids that share (k22) linguistic
values can be used to derive a candidate k-dim
(2pkpd) fuzzy grid. For example, if Ax1

3;2 � Ax2
3;1 and

Ax1
3;2 � Ax3

3;3 are frequent, then these two grids share Ax1
3;2

can be used to generate Ax1
3;2 � Ax2

3;1 � Ax3
3;3: Then, Ax1

3;2 �
Ax2
3;1 � Ax3

3;3ðtpÞ ¼ Ax1
3;2ðtpÞA

x2
3;1ðtpÞA

x3
3;3ðtpÞ is computed.

3.2. Phase II: generate fuzzy classification rules

The general type R of the fuzzy associative classifica-
tion rule is stated as follows:

Rule R : Ax1
K1 ;i1

� Ax2
K2;i2

�?� A
xk�1
Kk�1 ;ik�1

� A
xk

Kk ;ik

) Axa
C;ia

with FCðRÞ; ð5Þ

where xa (1papd) is the class label and FC(R) is the
fuzzy confidence of rule Ax1

K1;j1
� Ax2

K2;j2
�?�

A
xk�1
Kk�1 ;jk�1

� A
xk

Kk ;jk
) Axa

C;ia
: The above rule represents

that: if x1 is Ax1
K1;j1

and x2 is Ax2
K2;j2

and y and xk is
A

xk

Kk ;jk
; then xa is Axa

C;ia
: The left-hand side of ‘‘) ‘‘ is the

antecedent part of R; and the right-hand side is the
consequent part. FC(R) can be viewed as the grade of
certainty of R. Since ðAx1

K1;j1
� Ax2

K2 ;j2
�?� A

xk�1
Kk�1;jk�1

�
A

xk

Kk ;jk
� Axa

C;ia
ÞDðAx1

K1 ;j1
� Ax2

K2;j2
�?� A

xk�1
Kk�1 ;jk�1

� A
xk

Kk ;jk
Þ

holds, R can be generated by Ax1
K1;j1

� Ax2
K2;j2

�?�
A
xk�1
Kk�1 ;jk�1

� A
xk

Kk ;jk
� Axa

C;ia
and Ax1

K1 ;j1
� Ax2

K2;j2
�?�

A
xk�1
Kk�1 ;jk�1

� A
xk

Kk ;jk
: We define the fuzzy confidence

(Ishibuchi et al., 2001; Hu et al., 2002) of R (i.e.,
FC(R)) as follows:

FCðRÞ

¼ FS Ax1
K1;j1

� Ax2
K2;j2

�?� A
xk�1
Kk�1;jk�1

� A
xk

Kk ;jk
� Axa

C;ia

� �
=

FS Ax1
K1;j1

� Ax2
K2 ;j2

�?� A
xk�1
Kk�1;jk�1

� A
xk

Kk ;jk

� �
: ð6Þ

Unlike SFPBM, the proposed method tries to reserve
all fuzzy rules because it is not easy to specify an
appropriate threshold for users. The user-specified
minimum fuzzy confidence (min FC) (Ishibuchi et al.,
2001; Hu et al., 2002) is set to zero for simplicity. We
still apply Boolean operations to obtain the antecedent
part and consequent part of each rule. For example, if
there exists FG[u]=(1, 0, 0, 0, 0, 0) and FG[v]=(1, 0, 0,
1, 0, 0) corresponding to frequent fuzzy grids Lu and Lv;
where LvCLu; respectively; then FG[u] AND FG[v]=(1,
0, 0, 0, 0, 0), corresponding to the frequent fuzzy grid
Ax1
3;1; is generated to be the antecedent part of rule, say R:

Then, FG[u] XOR FG[v]=(0, 0, 0, 1, 0, 0), correspond-
ing to the frequent fuzzy grid Ax2

3;1; is generated to be the
consequent part of rule R. Then, FSðAx1

3;1 � Ax2
3;1Þ=FSðA

x1
3;1Þ

is easily obtained by (6).
The redundant rules must be further eliminated in

order to achieve the goal of compactness (Hu et al.,
2002). If there exist two rules R and S; having the same
consequent part and the antecedent part of R is
contained in that of S, then R is redundant and can be
discarded, and S is temporarily reserved. For example, if
S is ‘‘Ax1

K1;j1
� Ax2

K2;j2
�?� A

xk�1
Kk�1;jk�1

) Axa
C;ia

’’, then R

can be eliminated. This is because that the number of
antecedent conditions should be minimized.
On the other hand, for improving the classification

performance of fuzzy rule-based systems, Nozaki et al.
(1996) proposed the adaptive rules to adjust the grade of
certainty of each rule. These useful rules are further
incorporated into the proposed methods. The adaptive
procedure for adjusting fuzzy confidences is presented as
follows:
Set the maximum number of iterations Jmax:
Set J to be zero.
Repeat
J ¼ J þ 1
For each training sample tp do
a.
 Find the ‘‘firing’’ fuzzy rule Rb:

b.
 If tp is correctly classified then FC(Rb) is adjusted as

follows:

FCðRbÞ ¼ FCðRbÞ þ Z1ð1� FCðRbÞÞ ð7Þ

otherwise, FC(Rb) is adjusted as follows:

FCðRbÞ ¼ FCðRbÞ þ Z2FCðRbÞ ð8Þ

where Z1 and Z2 are learning rates.
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Table 2

Simulation results by the proposed method with the MTDM with K ¼
6

Min FS Classification rate (%) Number of rules

0.05 100.00 101

0.10 100.00 71

0.15 100.00 48

0.18 96.67 35

0.20 96.00 28
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End. Until J ¼ Jmax
The firing rule is found by determining the class label

of tp through the use of fuzzy rules derived by the
proposed method. Without losing generality, if the
antecedent part of a fuzzy classification rule Rt is
Ax1

K1;i1
� Ax2

K2;i2
�?� Axt

Kt ;it
; then we can calculate its

firing strength ot for tp as follows:

ot ¼ mx1
K1;j1

ðtp1Þm
x2
K2;j2

ðtp2 Þ?mxt
K ;it

ðtpt Þ ð9Þ

Then tp can be determined to categorize to the class
label which is the consequent part of the ‘‘firing’’ rule,
say Rb; if

otFCðRbÞ ¼ max
j

fojFCðRjÞjRjATRg; ð10Þ

where TR is the set of fuzzy rules generated by the
proposed method. The adaptive rules are further
employed to adjust the fuzzy confidence of Rb: If tp is
correctly classified then FC(Rb) is increased; otherwise,
FC(Rb) is decreased. Nozaki et al. (1996) also suggested
that the learning rates should be specified as
0oZ15Z2o1: Actually, Z1 ¼ 0:001; Z2 ¼ 0:1 and Jmax ¼
500 are used in the experiment. In the subsequent
section, experimental results from the iris data demon-
strate the effectiveness of the proposed method. How-
ever, the aim of the experiment is to show the feasibility
and the problem-solving capability of the proposed
method for classification problems. That is, methods
about the acquisition of appropriate parameter specifi-
cations to obtain higher classification accuracy rates and
smaller number of fuzzy if–then rules are not considered
in this paper.
Table 3

Simulation results by the proposed method with the STDM with K ¼
6

Min FS Classification rate (%) Number of rules

0.05 97.33 30

0.10 97.33 17

0.15 95.33 11

0.18 93.33 5

0.20 93.33 5

Table 4

Classification rates (%) of SFPBM and the proposed method with

K ¼ 6 and various min FS

Min FS Division method

MTDM STDM

SFPBM The

proposed

method

SFPBM The

proposed

method

0.05 96.67 100.00 96.67 97.33

0.10 96.67 100.00 96.67 97.33

0.15 96.67 100.00 92.67 95.33

0.20 96.67 96.00 88.67 93.33
4. Experimental results

The classification performances of the proposed
method with two fuzzy partition types are examined
by computer simulations. We employ the proposed
method to find fuzzy classification rules from the iris
data that consists of three classes and each class consists
of 50 samples. Moreover, class 2 overlaps with class 3.
Suppose that the attributes ‘‘sepal length’’, ‘‘sepal
width’’, ‘‘petal length’’, and ‘‘petal width’’ are denoted
by x1; x2; x3; and x4 respectively. x5 denote ‘‘class label’’
(i.e., d ¼ 5) to which tp ¼ ðtp1 ; tp2 ;?; tp5 Þ; (1ppp150)
belongs. Only three linguistic values can be defined in
x5; they are Aclasslabel

3;1 : ‘‘Class 1’’, Aclasslabel
3;2 : ‘‘Class 2’’,

and Aclasslabel
3;3 : ‘‘Class 3’’ without doubt.

K ¼ 6 is first considered for each attribute except x5:
Simulation results with different user-specified minimum
supports are shown in Tables 2 and 3 using MTDM and
STDM, respectively. Tables 2 and 3 indicate that
classification rates are more sensitive to larger min FS
(i.e., min FS=0.18, 0.20). Therefore, the smaller min FS
for both MTDM and STDM should be a better choice
when all non-redundant rules are reserved. That is,
larger min FS may lead to discarding more useful fuzzy
grids, thus reducing the effectiveness of fuzzy rules.
From Tables 2 and 3, we can see that the best
classification rate 100.00% obtained by MTDM is
higher than that (i.e., 97.33%) obtained by STDM. In
comparison with STDM, MTDM uses more fuzzy if–
then rules to classify samples. The best results of
SFPBM and the proposed method are also summarized
in Table 4. Except for min FS=0.20, we can see that the
best results of the proposed method with MTDM
outperforms those of SFPBM with MTDM for each
value of min FS. It is obvious that the proposed method
with STDM outperforms SFPBM with STDM for each
value of min FS.
Simulation results with min FS=0.05 and different

values of K are shown in Tables 5 and 6 with MTDM
and STDM, respectively. From Tables 5 and 6, we can
see that the classification rates seem not to be sensitive
to K for both partition methods. Therefore, it seems that
K is not a serious problem from the viewpoint of
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Table 7

Simulation results by various fuzzy if-then rule-based classification

systems

Method Classification rate (%)

The proposed method with MTDM 100.00

The proposed method with STDM 99.33

Simple-fuzzy-grid 98.67

Multi-rule-table 95.33

Pruning 100.00

GA-based 99.47

SFPBM with MTDM 96.67

SFPBM with STDM 96.67

Table 8

Classification rates by the leave-one-out technique for MTDM and

STDM

Method Minimum fuzzy support

0.05 0.10 0.15

MTDM 95.33 96.67 95.33

STDM 92.67 94.00 95.33

Table 9

Simulation results by the leave-one-out technique for various fuzzy if-

then rule-based classification systems

Method Classification rate (%)

The proposed method with MTDM 96.67

The proposed method with STDM 95.33

Simple-fuzzy-grid 96.67

Multi-rule-table 94.67

Pruning 93.33

GA-based 94.67

SFPBM with MTDM 96.67

SFPBM with STDM 96.67
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classification rates. The classification rate of the MTDM
also outperform that of the STDM for each value of K,
and the best result (i.e., 99.33%) from the STDM is
slightly worse than that of the MTDM. From Tables 2–
6, we can also see that since the min FS and the min FC
are not optimized to reduce the number of rules, a large
number of rules are generated when the MTDM is used
for various K : Although how to set the appropriate
values to the min FS and the min FC is a significant
work, this topic is not discussed in this paper for
simplicity.
Some significant fuzzy if–then rule-based classifica-

tion systems using simple fuzzy partition methods have
been proposed, such as the simple-fuzzy-grid method
(Ishibuchi et al., 1992), the multi-rule-table method
(Ishibuchi et al., 1992), the pruning method (Nozaki
et al., 1996), and the GA-based method (Ishibuchi et al.,
1995). In addition, simulation results of the aforemen-
tioned methods demonstrated by Nozaki et al. (1996)
are summarized in Table 7. The best results of the
proposed method with MTDM or STDM are also
shown in this table. From the viewpoint of classification
rates, we can see that the proposed method with STDM
or MTDM works well in comparison with other fuzzy
if–then rule-based classifiers. It is noted that the best
results of SFPBM with MTDM or STDM can be
obtained by setting appropriate values to min FS and
min FC (e.g., min FS=0.10 and min FC=0.80).
In the above simulation, all 150 samples are used for

the training process to generate fuzzy rules. To examine
the generalization ability of the proposed method, we
perform the leave-one-out technique, which is an almost
unbiased estimator of the true error rate of a classifier
(Weiss and Kulikowski, 1991). In each iteration of the
leave-one-out technique, fuzzy if–then rules are gener-
ated from 149 training samples and tested on the single
remaining sample. This procedure is iterated until all the
Table 5

Simulation results by the proposed method with the MTDM with

various K

K Classification rate (%) Number of rules

4 100.00 46

5 100.00 71

6 100.00 101

7 100.00 131

Table 6

Simulation results by the proposed method with the STDM with

various K

K Classification rate (%) Number of rules

4 97.33 25

5 98.00 25

6 97.33 30

7 99.33 30
given 150 samples are used as a test sample. Now, we try
to choose another values of min FS to examine the
relationship between min FS and the generalization
ability of the proposed method. Simulation results with
lower values of min FS (i.e., 0.05, 0.10, 0.15) are shown
in Table 8. We can see that the proposed method with
MTDM seems not to be sensitive to min FS, and the
best classification rate is 96.67%; however, the proposed
method with STDM is more sensitive to min FS, and the
best classification rate is 95.33%. Therefore, from the
viewpoint of the generalization ability, we may conclude
that the proposed method with MTDM works more
robustly than with STDM does.
Based on the leave-one-out technique, we try to make

a comparison between the proposed method and the
above-mentioned fuzzy rule-based systems. We sum-
marize the simulation results in Table 9. The best result
of the proposed method with MTDM or STDM is also
shown in this table. From the viewpoint of classification
rates, we can see that the proposed method with MTDM
performs well in comparison with other fuzzy if–then
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Table 10

Classification accuracy rates of various fuzzy classification methods for the iris data

Fuzzy methods

Perceptron criterion Quadratic criterion Minimum operator Fast heuristic search Simulated annealing

95.33% 96.67% 96.00% 92.00% 91.33%

Fuzzy k-nearest neighbor Fuzzy c-means Fuzzy c-means for histograms Hierarchical fuzzy c-means

96.67% 93.33% 93.33% 95.33%

Y.-C. Hu, G.-H. Tzeng / Engineering Applications of Artificial Intelligence 16 (2003) 709–716 715
rule-based classifiers. However, it should be noted that
the classification performance of the GA-based method
can be highly improved by carefully tuning parameters
(e.g., 97.33%). We also find that the best rate (96.67%)
of SFPBM with STDM outperforms that of the
proposed method with STDM (95.33%). This means
that the reservation of all non-redundant rules for the
latter method may lead to overfitting.
On the other hand, classification rates of nine fuzzy

classification methods, including fuzzy integral with
perceptron criterion, fuzzy integral with quadratic
criterion, minimum operator, fast heuristic search with
Sugeno integral, simulated annealing with Sugeno
integral, fuzzy k-nearest neighbor, fuzzy c-means, fuzzy
c-means for histograms and hierarchical fuzzy c-means,
for the iris data estimated by the leave-one-out
technique were reported by Grabisch and Dispot
(1992). From the summarized results shown in
Table 10, we can see that the best result (i.e. 96.67%)
was obtained by using the fuzzy integral with quadratic
criterion or the fuzzy k-NNR method. It is clear that the
best result of the proposed method with MTDM (i.e.,
96.67%) is equal to the best result of these nine fuzzy
methods, whereas the best result of the proposed
method with STDM (i.e., 95.33%) is slightly worse than
those of the fuzzy integral with quadratic criterion, the
minimum operator and the fuzzy k-nearest neighbor.
5. Discussions and conclusions

In this paper, we propose a two-phase fuzzy data
mining technique that can find fuzzy association rules
for classification problems based on SFPBM proposed
by Hu et al. (2002). There are three main differences
between the proposed method and SFPBM. First,
ignored fuzzy subspaces are considered in the proposed
method. Second, all non-redundant fuzzy if–then rules
take part in the mining process by setting zero to min
FC. Specially, adaptive rules proposed by Nozaki et al.
(1996) are further incorporated into the proposed
method for improving the classification performance.
From summarized results shown in Table 4, we can see
that the proposed method with STDM or MTDM
performs well in comparison with SFPBM with STDM
or MTDM.
The generalization ability of the proposed method is
examined by the iris data, indicating that best classifica-
tion rate of the MTDM apparently outperforms that of
the STDM. Simulation results with various parameter
specifications (i.e., min FS and K) also demonstrate that
the proposed method may effectively derive fuzzy
classification rules.
On the other hand, we do not discuss how to set the

appropriate values to the min FS and the min FC for
simplicity. Actually, this is a significant work. Since the
parameter specification (i.e., min FS and min FC) is not
optimized to reduce the number of rules, as we have
shown in the previous section, a large number of rules
are generated when STDM or MTDM is used for
various K. Therefore, it is necessary to develop methods
such as the genetic algorithms (Goldberg, 1989) to
automatically determine the appropriate values of min
FS and the min FC to obtain higher classification
performances with a compact set of fuzzy if–then
classification rules. Then, the proposed method may be
viewed as an effective knowledge acquisition tool for
classification problems.
Moreover, since fuzzy knowledge representation can

facilitate interaction of the expert system and the users
(Zimmermann, 1996), it is necessary to extend the
proposed method to find other types of fuzzy associa-
tion rules to ease the fuzzy knowledge acquisition
bottleneck in building prototype expert systems or fuzzy
rule-based systems. The aforementioned issues are left
for future works. Additionally, Hong et al. (2001)
discussed the relationship between the computation time
and the number of rules for the fuzzy data mining
technique. We consider that their study will provide
useful suggestions to improve our method.
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