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Abstract—This paper presents a generalized earliest-first (GEF) addition algorithm to accelerate carry propagation addition (CPA). A

set of operators and notations have been developed to describe and analyze traditional carry-lookahead or conditional-sum-based

algorithms. The proposed GEF algorithm schedules bit-level operations of CPA in an earliest-first manner to reduce the overall latency.

With the aid of the developed operators and notations, the algorithm can be generalized to any algorithm based on carry-lookahead or

conditional-sum rule. An adder generated by using the GEF algorithm outperforms traditional algorithms when inputs do not arrive

simultaneously.

Index Terms—Carry-propagation adder, final adder, carry-lookahead, conditional-sum.

æ

1 INTRODUCTION

FAST carry-propagation addition (CPA) is one of the most
fundamental operations in modern digital computers

and has been used ubiquitously in various applications.
Although it has been studied extensively in the literature,
there are still new algorithms being proposed to further
improve the performance.

Conventionally, fast addition is achieved by using
parallel prefix parallel adders, which can be categorized
into two classes: carry-lookahead and conditional-sum-
based algorithms. However, there are two major problems
for the traditional algorithms. At first, it is hard to compare
or evaluate their performance and determine the circuit as
well as the routing complexity for different adder algo-
rithms at algorithm-level. Therefore, different optimization
techniques have been developed for each algorithm. For a
specific application, a designer or a circuit optimization
program has to evaluate various adder schemes to
determine which of them is the best one. The second
problem is that traditional algorithms only consider the
special case where all the inputs arrive simultaneously.
When some of the inputs arrive earlier than the others, they
cannot benefit from the unequal delay profile.

In this paper, we will propose a generalized addition
algorithm to solve the two problems. For the first problem,
we present a set of operators and notations to describe
several popular fast addition algorithms, including carry-
lookahead adder (CLA), conditional-sum adder (CSMA),
conditional-carry adder (CCA), and ELM adder (ELMA) [1],
[1], [2], [3], [4], [5], [6], [7]. By using the algorithm-level
representation, we can show that the performance of each
adder algorithm can be determined and be compared by the

operators. We can also compare the topology and the
required routing resource at algorithm level.

The second problem has been identified in the research
work for the final adder of parallel multiplier, and several

techniques have been developed to exploit the unequal
delay profile property [8], [9], [10]. The Left-to-Right-Carry-
Free algorithm proposed in [8] requires n-level conversions
to generate n-bit MSB products. It was improved in [9] by

reducing the levels required. However, this approach still
cannot fully exploit the unequal delay profile because it
applies to the MSB-part only. In [10], a hybrid adder
structure, which consists of ripple-carry adder, carry-skip

adder, and conditional-sum adder blocks, was proposed.
However, their empirical methodology is not general
enough and requires many trials to determine the final
adder partition boundary for different sizes of multiplier,

thus increasing design effort. More importantly, these
designs were developed specific to the final addition of
multiplier and, therefore, they are not general enough to
handle other different unequal delay profiles.

To take the advantage of unequal delay profile, two

algorithms based on the developed representation are
presented herein. The first one, dual-bit forward prediction
(DFP) algorithm, constructs two-bit block in each iteration
and builds the adder from LSB to MSB. It is a generalized

version of the MLCSMA algorithm presented in [11]. In
order to fully exploit the unequal delay profile, a general-
ized earliest-first (GEF) algorithm is proposed to improve
DFP algorithm. It processes two or more terms at each

iteration and builds the adder from the earliest arriving
signals without having to process less significant bits first.

The organization of this paper is as follows: Section 2
reviews some important previous works and Section 3

derives the operators and the notations to describe conven-
tional addition algorithms. Section 4 presents the proposed
DFP and GEF algorithms. The relationships between the
previously proposed MLCSMA algorithm and the DFP

algorithm are demonstrated in Section 4.1. The GEF algo-
rithm and its hardware complexity analysis are presented in
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Section 4.2 and in Section 4.3, respectively. The conclu-

sions are presented in Section 5.

2 PREVIOUS WORK

Among various addition algorithms, carry-lookahead adder

(CLA) and conditional-sum adder (CSMA) are the two most

popular schemes. The major difference of the two algo-

rithms results from the generation of carry signal. They can

be formulated as follows: Let A and B be the inputs for an

L-bit parallel adder in two’s complement format. Sum and

carry signals can be computed using the following

equations:

si ¼ pi � ciÿ1 ð1Þ

ci ¼ ciÿ1 � ri þ ciÿ1 � gi ð2Þ

ci ¼ gi þ pi � ciÿ1 ð3Þ

ci ¼ gi þ ri � ciÿ1; ð4Þ

where the pi, gi, and ri are defined as pi ¼ ai � bi, gi ¼ ai � bi,
and ri ¼ ai þ bi, respectively. Note that c0 ¼ g0 and the

subscript “i” denotes the bit position starting from LSB.

Equation (1) is used to generate sum and (2) and (3) (or (4))

are used to generate carry for CSMA and CLA, respectively.

Both (3) and (4) can be used to generate carry for CLA. To

distinguish the two CLA schemes, we use “CLA_I” if (3) is

used and “CLA_II” if (4) is used. “CLA” is used to refer to

both of them.
Apart from the two algorithms, there are two alternative

adder structures proposed to improve the speed or the area-

time performance [4], [12]. The conditional-carry adder

(CCA) proposed in [4] is based on (2) and the ELMA

proposed in [12] is based on (3). Though the developers of

new algorithms always claim that the proposed algorithms

are superior to old ones via some benchmarks, no proof on

the optimality at algorithm level is given. On the other

hand, all of the mentioned algorithms were developed

assuming that all bits of the two operands will arrive

simultaneously. The assumption is invalid in some cases,

e.g., the final addition of parallel multiplication. The

resulting latency of the addition will be as long as if all of

the inputs arrived at the same time as the slowest one.
To clarify the relationships among these adders, we

develop a set of notations and operators to obtain the

equations for them in Section 3. Then, the GEF algorithm is

proposed in Section 4 to generate faster adder for unequal

delay profile.

3 ANALYSIS OF TRADITIONAL ALGORITHMS

It is important to develop algorithm level representations

for carry-generation, which is the major difference among

the traditional algorithms. This section presents algorithm

representations for CLA, ELMA, CSMA, and CCA. The

definitions of CCA and ELMA can be found in [4] and [12],

respectively.

3.1 Algorithm Formulation

To simplify the analysis, three ternary operators, “
,” “5,”
and “4,” are defined:

a � bþ a � c ¼ a
 ðb; cÞ ð5Þ
bþ ðc � aÞ ¼ a5 ðb; cÞ ¼ c5 ðb; aÞ ð6Þ
b� ðc � aÞ ¼ a4 ðb; cÞ ¼ c4 ðb; aÞ: ð7Þ

Note that the “5” operator and the “4” operator

correspond to the “G” cell and the “S” cell, respectively,

in [12] and the “5” operator is equivalent to the “o”

operator defined in [14]. Moreover, if the ternary operator

operates on two pairs of Boolean variables, the following

rules are applied:

ða; bÞ ¼ ð�; �Þ 
 ð
; �Þ )
a ¼ �
 ð
; �Þ
b ¼ � 
 ð
; �Þ

�
ða; bÞ ¼ ð�; �Þ 5 ð
; �Þ )

a ¼ �5 ð
; �Þ
b ¼ � � �

�
ða; bÞ ¼ ð�; �Þ 4 ð
; �Þ )

a ¼ �4 ð
; �Þ
b ¼ � � �:

� ð8Þ

All of the ternary operators defined above obey the
following two important properties:

1. Associativity
½ða; bÞ oop ðc; dÞ� oop ðe; fÞ ¼ ða; bÞ oop ½ðc; dÞ oop ðe; fÞ�

2. Noncommutative
(a,b) op (c,d) 6¼ (c,d) op (a,b),

where the op represents any one of the ternary operators.

The associative property of the “5” operator was proven in

[14] and the property of the “
” operator in [6]. The proof

for the “4” operator is omitted for conciseness. The proof

for the properties of the “4” operator is as follows.

Proof of Associativity. To prove this property, the follow-
ing equation must hold:

½ða; bÞ 4 ðc; dÞ� 4 ðe; fÞ ¼ ða; bÞ 4 ½ðc; dÞ 4 ðe; fÞ�:

Expand the left-hand side (L.H.S.) using (8) to obtain

L:H:S: ¼ ða4 ðc; dÞ; bdÞ 4 ðe; fÞ
¼ ða4 ðc; dÞ 4 ðe; fÞ; bdfÞ:

Similarly, the right-hand side (R.H.S.) can be rewritten as

R:H:S: ¼ ða; bÞ 4 ðc4 ðe; fÞ; dfÞ
¼ ða4 ðc4 ðe; fÞ; dfÞ; bdfÞ:

The second term of both L.H.S. and R.H.S. is equivalent.

Thus, the property holds if the two first terms are

equivalent, i.e.,

a4 ðc; dÞ 4 ðe; fÞ ¼ a4 ðc4 ðe; fÞ; dfÞ:

The L.H.S. can be expanded using (7):

L:H:S: ¼ c� ða � dÞ 4 ðe; fÞ
¼ e� ððc� adÞ � fÞ
¼ e� ½fðc� adÞ�:
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Similarly, for the R.H.S.,

R:H:S: ¼ ðc4 ðe; fÞÞ � ða � dfÞ
¼ ½e� ðc � fÞ� � ðadfÞ
¼ e� ½ðcfÞ � ðadfÞ�
¼ e� ½fðc� adÞ�:

Since L.H.S. = R.H.S., ½ða; bÞ 4 ðc; dÞ� 4 ðe; fÞ ¼ ða; bÞ 4
½ðc; dÞ 4 ðe; fÞ� holds. tu

Proof of Noncommutative. To prove this property, the

following equation must hold:

ða; bÞ 4 ðc; dÞ 6¼ ðc; dÞ 4 ða; bÞ:

The L.H.S. can be simplified to

L:H:S: ¼ ða4 ðc; dÞ; bdÞ ¼ ðc� ðadÞ; bdÞ:

Similarly, the R.H.S. can be rewritten as

R:H:S: ¼ ðc4 ða; bÞ; bdÞ ¼ ða� ðcbÞ; bdÞ:

The two first terms of L.H.S. and R.H.S. are obviously not

equivalent. tu
With the aid of the defined operators and the two

important properties, the algorithm level representations
for the algorithms can be obtained. For CSMA or CCA, the
carry signal generation can be written as:

ci ¼ c0 
 ðr1; g1Þ 
 � � � 
 ðriÿ1; giÿ1Þ 
 ðri; giÞ: ð9Þ

Similarly, for CLA or ELMA, the carry signal generation can

be rewritten as:

ci ¼ c0 5 ðg1; p1Þ 5 � � � 5 ðgiÿ1; piÿ1Þ 5 ðgi; piÞ: ð10Þ

Equations (9) and (10) illustrate that any structure used to
generate carry signal for CSMA or CCA can also be used to
generate carry signals for CLA or ELMA and vice versa.

Now, we consider the generation of sum signals. For
CCA, the equation can be obtained by using (1) and (9).

si ¼ pi � ½c0 
 ðr1; g1Þ 
 � � � 
 ðriÿ2; giÿ2Þ 
 ðriÿ1; giÿ1Þ�: ð11Þ

Alternatively, this equation can be rewritten as (12) for the

CSMA structure.

si ¼ c0 
 ðr1; g1Þ 
 � � � 
 ðriÿ2; giÿ2Þ 
 ½ðpi � riÿ1; pi � giÿ1Þ�:
ð12Þ

Similarly, the equation for CLA can be written as:

si ¼ pi � ½c0 5 ðg1; p1Þ 5 � � � 5 ðgiÿ2; piÿ2Þ 5 ðgiÿ1; piÿ1Þ�:
ð13Þ

To obtain the equation for ELMA, we have to use the

following equation found in [5]:

ci ¼ gi þ pi � ciÿ1 ¼ gi � ðpi � ciÿ1Þ ¼ ciÿ1 4 ðgi; piÞ: ð14Þ

Note that (14) holds only if the “gi” and “pi” are defined as
ai � bi and ai � bi, respectively. With the aid of (14), (13) can
be rewritten as

si ¼ ½c0 5 ðg1; p1Þ 5 � � � 5 ðgiÿ2; piÿ2Þ� 4 ððpi � giÿ1Þ; piÿ1Þ:
ð15Þ

This is the equation for ELMA. To remove or to change the
position of the square brackets in (15), the following rule
has to be applied.

½ciÿk 5 � � � 5 ðgiÿ1; piÿ1Þ� 4 ða; bÞ
¼½ciÿk 5 � � � 5 ðgiÿ2; piÿ2Þ� 4 ðgiÿ1; piÿ1Þ 4 ða; bÞ
¼ciÿk 4 ðgiÿkþ1; piÿkþ1Þ 4 � � � 4 ðgiÿ1; piÿ1Þ 4 ða; bÞ:

ð16Þ

To further simplify the equation, a pair of subscript
indices is defined to denote the r, g, and p terms generated
from primitive r, g, and p terms. For example, the (r, g) pair
is defined as:

ðrj;k; gj;kÞ ¼
ðrj; gjÞ if k ¼ j;
ðrj; gjÞ 
 ðrk; gkÞ if k ¼ jþ 1;
ðrj;mÿ1; gj;mÿ1Þ 
 ðrm;k; gm;kÞ if k � m > j;

8<:
ð17Þ

where the indices, j, m, and k, are all nonnegative integers.
The defined operators and notations can express the adder
algorithms concisely. For example, the equations for the s7

of the algorithms can be expressed as

CLA I: s7 ¼ p7�½c1 5 ðg2;3;p2;3Þ 5 ðg4;5;p4;5Þ 5 ðg6;p6Þ� ð18aÞ

CLA II: s7 ¼ p7�½c1 5 ðg2;3;r2;3Þ 5 ðg4;5;r4;5Þ 5 ðg6;r6Þ� ð18bÞ

CCA: s7 ¼ p7�½c1 
 ðr2;3;g2;3Þ 
 ðr4;5;g4;5Þ 
 ðr6;g6Þ� ð18cÞ

ELMA: s7 ¼ c1 4 ðg2;3;p2;3Þ 4 ðg4;5;p4;5Þ 4 ððp7�g6Þ;p6Þ ð18dÞ

CSMA: s7 ¼ c1 
 ðr2;3;g2;3Þ 
 ðr4;5;g4;5Þ 
 ððp7�r6Þ;ðp7�g6ÞÞ ð18eÞ

Equations (9) and (10) show the similarity of carry-
generation between conditional-sum-based and carry-loo-
kahead-based algorithms. By using different operators and
exchanging the order of combining the pi term for si as
shown in (18), these popular addition algorithms can be
derived. Taking CLA I as an example, the derivation of
(18a) is as follows:

s7 ¼ p7 � c6

¼ p7 � ½c0 5 ðg1; p1Þ 5 ðg2; p2Þ � � � 5 ðg6; p6Þ�;

according to (10). By combining two adjacent terms we can
obtain

s7 ¼ p7 � ½c1 5 ðg2;3; p2;3Þ 5 ðg4;5; p4;5Þ 5 ðg6; p6Þ�:

The derivation for the other four equations is quite similar,
and detailed derivation steps for these algorithms can be
found in [13].

Equation (18) demonstrates the relationships among the
five adder schemes. CLA has the same configuration as
CCA and ELMA has the same configuration as CSMA. By
comparing (11), (12), (13), and (15), we can see that, for CCA
and CLA, the “pi” is combined with “ciÿ1” to generate sum
at the last step; for CSMA and ELMA, “pi” is combined with
the other terms at the beginning of addition. These results
are summarized in Table 1.

3.2 Performance Analysis

According to these equations, we depict the generation of
the last sum bit for four of the adder schemes in Fig. 1. The
dashed lines indicate the estimated critical paths. The real
critical path depends on the real implementation. Note that
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the operators used at the last step of generating carry signal
are slightly faster than the others because they operate on
three operands only.

For CLA and CCA adder types, the pi is always
merged at the last step. When the wordlength, L, is even,
the (gLÿ2; rLÿ2) term can only be combined with the other
terms at the second level, which causes inefficiency. In
contrast, for CSMA and the ELMA, the (gLÿ2; rLÿ2) term
can always be combined with pi at the beginning. Hence,
if L does not equal (2n+1), CSMA and ELMA can save
one operator on the critical path compared to CLA or
CCA. Based on the equations and the graphs, the latency
required for these adder types is derived and summar-
ized in Table 2. The r denotes the fan-in which refers to
the number of bits that can be processed in one complex
logic gate. Table 3 lists the properties of the related logic
gates and the three ternary operators for the same driving
strength with standard output loading according to the
0:35�m cell library [15]. When the subscript of the timing
parameter begins with a lowercase “c,” it means that it is

the critical path for a logic gate or an operator. Note that
tcAO < tMUX < tcMUX < tELM < tcELM .

According to the equations, CSMA always has the fewest

operators on the critical path. However, when L is greater

than eight, the number of ternary operators will be greater
than three on the critical path. The CLA_II will be faster

than CSMA because 5 � tcAO < 4 � tcMUX according to Table 3.
Therefore, we conclude that the CLA_II adder will be the

fastest one when L > 8 according to our cell library and the
efficiency of the 5 operator.

To summarize, with the aid of the defined operators,

notations, and the revealed properties, we can compare and

evaluate the addition algorithms at algorithm level. For
example, (18d) and (18e) show that ELMA and CSMA can

have exactly the same structure for sum-generation and
they can also use same structure to generate carry signals

according to (9) and (10). Therefore, a designer can easily
choose the right addition algorithm according to the cost

and the performance of the 4, the 5, and the 
 operators.

Furthermore, the designer may predict the cost of routing
according to the properties of the operators. For example,

when the two addition algorithms have the same structure,
the 
 operator will consume more routing resources than

either 4 or 5 operator according to the definitions given in
(5)-(8).

4 PROPOSED ALGORITHMS

We have demonstrated that the traditional algorithms can
be expressed using the defined operators and notations. In
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TABLE 1
Summary of the Four Addition Algorithms



this section, we want to move one step further to show that
the unequal delay profile problem can be solved through
the manipulation of the operators and the equations.

This section describes two optimization algorithms based
on the developed equations and operators in Section 3. We
will demonstrate that lower area-time complexity than the
previously mentioned five adder algorithms can be
achieved without performance loss. More importantly, the
two algorithms are both capable of generating new adder
structures for unequal delay profile.

To facilitate the discussion, we define Delay Profile as
follows:

Delay Profile (DP). Given two L-bit operands, A and B, the
input delay profile, DP, is an array consisting of L elements in
total. The value of each element is given by

DP ½i� ¼ maxðtðaiÞ; tðbiÞÞ for i ¼ 0; � � � ; Lÿ 1:

That is, the value of the i-th element is determined by the
latest arrived signal of ai and bi. The function max
ðvalue1; value2Þ returns the larger one of the two values
and the tð�Þ function returns the arrival timing of the given
argument. ”Equal delay profile” refers to the case when all
bits of the two operands arrive simultaneously. In contrast,
”unequal delay profile” refers to the condition when any bit
of the two operands arrives earlier or later compared with
the other bits. The inputs may be either primitive terms, i.e.,

r, g, and p terms, or operands in two’s complement format,
e.g., ai and bi. The time unit is normalized with respect to
the latency of a ternary operator.

4.1 Dual-Bit Forward Prediction Algorithm

The dual-bit forward prediction (DFP) algorithm optimizes
the adder starting from the LSB and considers at most two
bits in each iteration. At each iteration, it examines the
arrival timings of the next two bit positions to determine
whether it is advantageous or not to combine the next two
bits before combining the signal at current bit position with
the next bit. We will use 
 operator to illustrate the
algorithm. However, any one of the three operators can be
used for this algorithm. We assume that both the latency of
a two-input AND gate and a two-input OR gate are 0.5 unit
delays and the latency of a two-input XOR gate is one unit
delay.

To illustrate the algorithm, let us consider the following
three cases. Similar examples can be found in [11]. The first
one is shown in Fig. 2. The intermediate r and g terms are
generated according to the equations mentioned in
Section 2. From the figure, we can see that when the
incoming carry signal arrives almost concurrently as the
next two bits, it will not be beneficial to use the ternary
operator. Instead, a full-adder will be the best choice.

The next case is shown in Fig. 3. Because the next four
bits arrive two time units earlier than the incoming carry
signal, they can be combined using (8). Only two time units
are required to complete the eight-bit addition.

The last case is shown in Fig. 4. In this case, the next two
bits arrive earlier than the incoming carry by two and half
time units. After (r26;27, g26;27) has been generated, there is
still one unit delay between the generated (r26;27, g26;27)
terms and the incoming carry. Therefore, (r26;27, g26;27)
combines with (r28;31, g28;31), generated by the next four bits,
to generate (r26;31, g26;31). Finally, (r26;31, g26;31) combines
with the incoming carry to generate c31. Again, an 8-bit
block can be computed within two time units.

The three figures demonstrate that the latency of
addition can be reduced by arranging the order of bit-level
operations carefully. The ternary operator can be replaced
by the other ternary operators, as we have discussed in
Section 3. That is, we can apply similar scheduling
algorithms to optimize the five discussed addition algo-
rithms. The MLCSMA algorithm presented in [11] is just a
special case which employs 
 operator. Therefore, the DFP
algorithm can also employ the hybrid adder scheme, which
uses CCA and CSMA at the same time to save area without
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causing performance degradation as discussed in [11]. To
summarize, the DFP algorithm employs the associative
property of the ternary operator and examines two bits at a
time to determine the order of bit-level computation.

4.2 Generalized Earliest-First Algorithm

Although the DFP algorithm improves the adder perfor-
mance in terms of area and speed, it does not guarantee the
optimality of the performance in anyway. In addition, it
only considers the next two bits at each iteration. However,
sometimes it may be beneficial to combine the bits other
than the next two bits first to produce better DP in the next
iteration. In this section, we present a novel algorithm
which considers the order of combination at all possible bit
positions in each iteration.

The basic idea of the generalized earliest-first (GEF)
algorithm are based on two facts. At first, when some bits
arrive earlier than the rest of the other bits, we can combine
them first to improve the performance and the generated
intermediate terms, e.g., (r, g), can still be treated as
primitive terms. Second, the computation does not have to
start from LSB as long as it does not violate associative and
noncommutative properties.

The new algorithm consists of five steps for an L-bit
addition:

1. Setup: Initialize an array with L elements, P_list. For
0 � i � Lÿ 1, let P_list[i] = DP[i]. Each entry in
P_list consists of the arrival timing and the bit

position. Initialize T_list with zero element and the
structure of each entry is the same as the P_list.

2. Generate new T_list: Sort P_list in ascending order
according to the arrival timing. Move the elements
that are equivalent to P_list[0] from P_list to T_list.
Sort T_list in ascending order according to the bit
position. Retain the bit position information.

3. Combine adjacent bits: In T_list, if there are signals
adjacent to each other, combine them with ternary
operator. Insert the generated new terms with bit
positions and timings back into P_list.

4. Repeat. Repeat Steps 2 and 3 until only one element
left in P_list.

5. Generate sum signals and finish

The algorithm guarantees the optimality in each step
and, hence, the generated adder structure is optimized in
terms of speed. Note that two terms are considered as
adjacent to each other when there is no other term between
them. They can have inconsecutive bit positions. When
there are more than two adjacent terms in T_list in Step 2,
fan-in greater than two is allowed as long as the generated
structure is optimal based on the available technology. For
example, if there are three adjacent bits in the T_list, we can
cascade two ternary operators to compute the 3-bit block,
i.e., r = 3. An r = 4 example can be found in [3]. However,
greater fan-in does not always result in better performance.
Also, if the LSB of the adjacent bits is a carry signal, it is
possible to use ripple carry adder instead when the

1238 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 10, OCTOBER 2003

Fig. 2. cnþ2 will be generated at t = 5 if ternary operator is used; full adders can be used instead to generate cnþ2 at t = 4.

Fig. 3. cnþ8 is generated at t = 14. An eight-bit addition is completed within two time units.



conditions of using ripple carry adder are met as discussed

in Section 4.1.
Besides, when the r has been determined and the number

of candidates to be merged is greater than r but is not a

multiple of r, which of them should be merged first to

generate better DP? This happens only when no two adjacent

terms of the candidates arrive earlier than the others.

Otherwise, the two adjacent terms must have been merged

in earlier iterations. Therefore, we can just treat these adjacent

signals as normal equal DP and use traditional algorithms to

construct this part of the adder.
A simple delay profile is used to demonstrate the

advantages of the GEF algorithm over the DFP algorithm.

Assume that the delay profile DP = {0, 1, 2, 2, 3, 3, 4, 5, 4, 3, 2, 1}

and fan-in is always two. Note that the inputs are already

primitive terms and the first term is the incoming carry signal.
Therefore, all we have to do is to find the optimal order of
computation using ternary operators.

If traditional algorithm is applied without considering
the unequal delay profile, the last carry signal will be
available at t = 9 (¼ 5þ dlog212e). For the DFP algorithm,
Table 4 shows the status in each iteration. The two selected
terms to be combined in current iteration are in bold-face
type. The term generated in the previous iteration is
underlined. Eleven iterations are required and the final
carry is generated at t = 8.

Similarly, Table 5 shows the status of the GEF algorithm in
each iteration. We repeat Step 2 and Step 3 until T_list has
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Fig. 4. Determine whether the next two bits should be combined prior to combining them with incoming carry. Apply the rule recursively to determine

the order of combination.

TABLE 4
Example of Dual-Bit Prediction Algorithm

TABLE 5
Example of GEF Algorithm



enough adjacent bits for computation. For example, in

iteration 0, only DP[0] has been moved from P_list to T_list

after the first pass. However, since there are no adjacent terms

for computation, DP[0] is kept in the T_list. After the second

pass, DP[1] and DP[11] are moved into T_list. In each

iteration, we store the generated terms back into P_list

directly without further combining the generated terms using

another ternary operator, because the timing of the generated

terms may be equal to that of the terms in the P_list.

The DFP algorithm generates the last carry signal at t = 8

while the GEF algorithm is at t = 7. The DFP algorithm is

unable to combine the early arrived terms at higher bit

positions to reduce the latency. If the signals from bit

position 8 to 11 were combined first, the DFP algorithm

would have been able to generate the last carry signal at t = 7.

It is interesting to note that, if the slope of DP is negative

one, we can perform the addition backward from MSB to

LSB and the structure of the generated adder will be similar

to a ripple-carry adder.
The associativity of the ternary operators enables us to

perform addition from both directions and at any bit position.

When dealing with unequal DP, GEF algorithm can combine

all of the early arrived signals using any one of the ternary

operators. The generated profile can be treated as an equal DP

case. When fan-in greater than two is allowed, the overall

performance may be further improved for both algorithms.

However, the GEF algorithm will still outperform the DFP

algorithm due to the same reasons. Only the generation of

carry signal has been discussed because the generation of sum

signals becomes trivial when all carry signals have been

generated, as we will show in the next section.
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Fig. 5. The generation of carry signals for the GEF-based adder. Each circle represents a ternary operator and the number inside the circle shows

the timing normalized with respect to the operator.



4.3 Hardware Complexity Analysis

We have shown that the proposed algorithm can reduce the
critical path for unequal DP. In this section, we present a
simple methodology to generate CPA based on the GEF
algorithm. The hardware complexity is then analyzed
according to the generated adder.

The following steps are used to generate the GEF-based
adder.

1. Choose the best ternary operator according to the
available process and cell library.

2. Generate the MSB carry signal using the GEF
algorithm. Store the information of the intermediate
terms and carry signals generated from any ternary
operator.

3. Generate the other carry signals that have not been
generated from MSB to LSB. Use previously gener-
ated intermediate terms to save area and also store
the information of the new intermediate terms.

4. Generate sum signals if the current adder architec-
ture is based on CCA or CLA rules.

We use a 17-bit adder based on CLA or CCA to illustrate the
generation of carry signals for equal DP. The generation of
sum signals is trivial when all carry signals are ready.

Fig. 5a shows the generation of the MSB carry; c15. c0, c1,
c3, and c7 are also generated as the inputs show equal DP. In
Fig. 5b, the second MSB carry signal is generated and three
additional operators are used. The common resource
sharing can be achieved easily by decomposing the
equation into intermediate terms according to the subscript
notation. For example, if “5” operator is chosen, the
decomposition of c14 is as follows:

c14 ¼ c13 5 ðg14; r14Þ ¼ c7 5 ðg8;14; r8;14Þ:

c7 is the nearest generated carry from lower bit positions. The
second term can be further decomposed into ðg8;11; r8;11Þ,
ðg12;13; r12;13Þ, and ðg14; r14Þ because these terms have been
generated for the MSB.

c7 5 ðg8;14; r8;14Þ ¼
c7 5 ðg8;11; r8;11Þ 5 ðg12;13; r12;13Þ 5 ðg14; r14Þ:

After the carry has been represented using the previously
generated terms, the GEF algorithm is used again to
schedule the order of operation. The structure after all
carry signals have been generated is shown in Fig. 5c.

The number of ternary operators required to construct an
L + 1 bit adder for equal DP can be deduced from the
figures.

Ntop ¼
L

r
� logrL; ð19Þ

where L ¼ 2n, n is a positive integer, and r is the fan-in of
ternary operator. Among the L

r logrL operators, L - 1 are
used to generate carry signals at the last step. Take L = 2 as
an example. Only one ternary operator is used as 2

2 log22 ¼ 1.
c0 and c1 are generated and the last sum signal can be
generated as s2 ¼ c1 
 p2, according to (1). Although the
above analysis holds for CLA and CCA only, the case for
CSMA and ELMA is quite similar.

The above analysis shows the equal DP case for the GEF
algorithm and the generated adder shows the same
complexity as a traditional adder. In the unequal DP case,
the number of ternary operators can be reduced because the
required intermediate terms can be generated sequentially
and can be shared to reduce the cost. The routing may
become less regular, but the required routing resource will
be less than that of traditional adders.

5 CONCLUSION

In this paper, we have explored the design space for fast
addition at algorithm level. We have developed a set of
operators and notations to formulate the five popular
addition algorithms in Section 3. The derived equations
are useful when comparing and evaluating performance
and hardware cost. By eliminating the effects of using
different connection or topology, we can evaluate each
addition algorithm at algorithm level. Hardware cost and
timing performance can be estimated by counting the
number of primitive terms and the ternary operators used
as demonstrated in Section 3 and Section 4.

Unlike the traditional addition algorithms assuming that
all the inputs arrive simultaneously, the two proposed
algorithms are capable of generating faster structure
according to the incoming delay profile. The first algorithm
is generalized from MLCSMA algorithm. It examines two
bits at a time and constructs the adder from LSB.
Consequently, it cannot fully exploit the unequal timing
profile to reduce the latency of addition. The GEF algorithm
is developed to solve this problem by considering global
timing properties and multiple bits in each iteration and
optimal performance can be achieved. The proposed GEF
algorithm can be implemented by using any one of the
ternary operators and is suitable for both equal and unequal
DP. The example demonstrated in Section 4.2 shows 22.2
percent performance improvement when the GEF algo-
rithm is applied.
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