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Abstract. A composite fiber Bragg grating (FBG) structure with several
apodized sections is utilized for designing dense wavelength division
multiplexing (DWDM) multiband transmission filters. A learning genetic
algorithm (LGA) is also developed to determine the optimum design pa-
rameters of these filters. By taking advantage of a knowledge base (KB)
that stores the FBG parameter sets and the corresponding transmission
profile feature sets, our LGA can generate a suitable initial population
and perform evolutionary optimization starting from it. This has made the
LGA evolve more quickly to more accurate results than the methods
without using the KB. The LGA can also store new results into the KB
according to its decision procedure and improve its precision of initial
prediction as it works through more and more examples. © 2003 Society of
Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1602087]
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1 Introduction

One of the focused efforts for dense wavelength divis
multiplexing ~DWDM! technology development is the po
sibility of achieving denser wavelength channels and low
crosstalks among adjacent channels. As a DWDM add-d
device, a filter made of a fiber Bragg grating~FBG! is
typically designed to provide high reflection in the refle
tion band and low sidelobe loss outside the band.1,2 The
advantages of using FBG filters mainly come from the f
that their reflection profile can be selectively designed a
the bandwidth can be narrower than other types of filte3

Changing the profile sharpness and the sidelobe chara
istics is typically achieved by applying suitable apodizati
on the refractive index modulation profile of the FBG. B
cause of this, determining the optimized apodization sh
becomes an important issue for actually fabricating h
performance FBG filters.4

In the literature, there are some developments for F
inverse-design synthesis, including the Gel’fand-Levita
Marchenko~GLM! integral equations used for both the e
act solutions in Ref. 5 and the iterative solutions in Ref.
the Fourier transform techniques in Ref. 7, and the bina
coded genetic algorithm~GA! in Ref. 8. The real-coded GA
work in Ref. 9 as an inverse-design tool is used to gene
the optimized FBG parameters that can produce stop ba
with steep edges and low sidelobes.9 Based on the theoret
ical model in Ref. 10, Ref. 9 used several apodized sect
of uniform FBGs with a constant periodL to realize a
single-band filter. In the present work, the FBG structure
Ref. 9 is extended to a composite structure with seve
cascading units that have a pitch period differenceDL be-
tween adjacent units. Moreover, a learning genetic al
rithm ~LGA! is developed by utilizing a knowledge bas
~KB! that stores pairs of the FBG parameter set~including
the unit-lengthL and the refractive index modulation dep
2856 Opt. Eng. 42(10) 2856–2860 (October 2003) 0091-3286/2003/$
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dn) and the FBG transmission profile feature set~including
the depth of stop bandD and the stop-band widthsB1, B2,
andB3 as shown in Fig. 1!. Here the depth of stop bandD
represents the transmission loss in decibels within the s
band. The stop-band widthsB1, B2, andB3 are the widths
of the stop band at 0.1, 0.5, and 0.9 total depth, resp
tively. The central wavelength of the first stop band is d
termined by the grating periodL, and the wavelength dif-
ference between two adjacent stop bands is determine
the grating period differenceDL. These two parameters ar
determined at the first step when the retrieving proced
starts. At the evolutionary optimization stage, they are co
bined with the parameter set from the KB to form a se
parameter set. This seed is then applied with some pe
bations to generate a suitable initial population for start
the LGA.

2 Structure of the Knowledge Base

2.1 Modeling of Composite FBGs

Figure 2 shows the composite FBG structure used in
present work. The apodized function as a function of
section indexi has a form, as shown in Eq.~1!.

A~ i !51/2$cos2@p~ i 2120.5Ns!/Ns#

1cos2@p~ i 20.5Ns!/Ns#%. ~1!

HereNs is the total number of sections in a unit. The tran
mission matrix of a FBG unit withNs sections can be cal
culated by multiplying theNs transmission matrices of th
unit. Let the unit length beL. The arbitraryi ’ th section has
the lengthl i , and
15.00 © 2003 Society of Photo-Optical Instrumentation Engineers
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The net transmission matrix of the whole unit can
represented as shown in Eq.~2!.

@T#5@Tl1#@Tl2#@Tl3#...@Tli #...@TlNs#. ~2!

If k units are lined up together to form a FBG fiber wi
the total lengthkL, then the total transmission matri
@T# total will be the product of all unit transmission matrice
as shown in Eq.~3!.

Fa~0!

b~0!G5FT11 T12

T21 T22
G Fa~kL!

b~kL!G . ~3!

The transmissionT(l) as a function of the wavelengt
can be calculated according to Eq.~4!.

T~l!51/uT11u2. ~4!

Fig. 1 The feature parameters of a spectrum.

Fig. 2 The composite FBG structure consists of k units with Ns
sections of uniform gratings in each unit.
oaded From: http://opticalengineering.spiedigitallibrary.org/ on 05/01/2014 T
2.2 Influences of Length L and Modulation Depth
dn on the Transmission Profiles

We can get a transmission profile from a parameter
(L,dn), and thus by variatingdn andL we can construct a
series of profiles. The transmission profiles plotted in F
3~a! are calculated with the same parameters listed in Ta
1, except that the refraction index modulation depthdn is
set to be 0.7231024, 1.2231024, 1.7231024, 2.22
31024, and 2.7231024, respectively, from the inside to
the outside profiles. The right-hand side profiles in Fig. 3~b!
have the same parameters as the left-hand side pro
except with a larger FBG lengthL. The increased FBG
length deepens the stop bands as a larger refractive in
will also do. This graph shows how the transmission fe
tures of the filters will depend onL anddn. The knowledge
base will use these two parameters as a characteristic s
store various kinds of filter profile features.

2.3 Formation of the Knowledge Base

Figure 4 is drawn by calculating 100 parameter sets in
form of (L,dn) to get the corresponding feature sets in t
form of (D,B1,B2,B3). The LGA uses these paramet
sets and the corresponding feature sets as part of the
The relationship between the profile features and the
rameters (L,dn) can be seen clearly from Fig. 4. Here th
top-left plot is for featureD, the top-right for featureB1,
the bottom-left for featureB2, and the bottom-right for fea
ture B3. After the KB is set up offline, the target spectru
can be compared with these sets before evolution to for
suitable initial population for the LGA.

Fig. 3 The influence of the unit length L and the modulation depth
dn on the transmission spectra: (a) L52.04 and (b) L52.54 cm.

Table 1 Parameter sets for the two channel transmission profiles in
Fig. 3.

Parameters L(cm) L(nm) dn DL(nm)

Fig. 3(a) 2.04 534 1.2231024 0.231

Fig. 3(b) 2.54 534 1.2231024 0.231
2857Optical Engineering, Vol. 42 No. 10, October 2003
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Fig. 4 The influence of the unit length L and the modulation depth dn on the feature parameter set
stored in KB: top-left plot for D, top-right for B1, bottom-left for B2, and bottom-right for B3.
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3 Learning Genetic Algorithm

3.1 Learning Evolution

Generally speaking, the LGA takes the target spectrum
the input and produces the calculated parameter
(L,L,dn,DL) as the output. Like all GA approaches,11–14

an error function has to be defined first for performing ev
lution. Following Ref. 9, the expression in Eq.~5! is used
as the criteria to determine which individual in the popu
tion is superior, so it has a larger probability for offsprin

Gi5(
l

@Tt arget~l!2Ti~l!#2. ~5!

Throughout this work, the spectral coordinate is d
cretized into a dimension size of 512 grid points, and
summation in Eq.~5! is over all these grid points. Th
agenda of GA is to reduce the error between the target
the calculated transmission spectra, and the final best i
vidual parameter set is generated as the solution. After e
evolution, the decision procedure in the system deci
whether the features of the newly calculated spectrum fr
the best individual parameter set are different enough w
compared to the templates in the KB. If it is so, the para
eter set will be stored in the KB. The LGA has two choic
about expanding the KB: it can expand each time when
filter is evolved, or it can adjust the criteria for differe
situations. For example, when the LGA deals with alm
similar spectra and high accuracy is required, then the L
ngineering, Vol. 42 No. 10, October 2003
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could decide to expand even when the difference betw
the evolved filter and the stored filters is not large. Wh
the spectrum that is the same as one of the templates in
is fed, the LGA outputs the parameter set directly. Wh
the spectrum is similar to one of the templates in the K
the LGA uses previous experiences to shorten the retriev
time as well as to increase the convergent correctness.

3.2 Recognizing a Spectrum by Features

The structure of the LGA is shown in Fig. 5. As an e
ample, the spectrum in Fig. 1 is used as a target, and

Fig. 5 The LGA flow chart.
erms of Use: http://spiedl.org/terms
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generated feature set by the retrieving procedure is sh
in Table 2. Then the feature comparison procedure ge
ates a similarity array that records the degree of simila
between the features of the input spectrum and those st
in the KB. The parameter set with the highest degree
similarity is fed to the population generation procedure
generate a suitable population for this spectrum. Rand
numbers in a suitable range stored in the setting base o
KB are generated to perturb the parameter set for form
other individuals in the initial population.

3.3 Achievement by Feature Retrieving

The overall speed of the whole design system depend
the weighting criteria for a special application. To demo
strate the advantages of using the KB, two systems
adopt the same error weighting, selection, mutation,
crossover rules are compared in the following tests. On
computer, when the feature and parameter base in the
has the size of 100, the total time consumed for both fea
retrieving and comparison has the value of 5 ms total
both population sizes of 6 and 75. The time required
generating a suitable population for the population size o
is about 3.7 s, and for the population size of 75 is 48.9
The comparison between the evolutions with and with
KB is shown in Fig. 6. The dashed line represents the e
convergence without the help of KB, and the solid li
represents the case with KB. The time for one generatio
evolve in this case is 3.0 s for the population size of 6, a
32.4 s for the population size of 75. For the evolution w
the population size of 6 in Fig. 6~a!, to get the error value in
the range of 1025 to 1026, the KB helps speed up th
evolution by about 400 generations. Also as shown in F
6~b!, with the population size of 75, the KB can improve

Table 2 Feature set for the spectrum in Fig. 1.

Features D B1(nm) B2(nm) B3(nm)

Values 247.77 dB 0.6156556 0.5467710 0.4778865

Fig. 6 Error comparison for cases with and without KB: (a) popula-
tion size56 and (b) population size575.
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tunsatisfactory GA evolution to finally become an extreme
accurate solution. Overall, the LGA greatly reduces
convergence error and the time consumed as compare
the previous work.9 Because the time consumed for fe
tures comparison is much smaller than the time was
without the KB, it may be advantageous to store a lar
dimension of feature sets. When the relationship betw
the design parameters and the filter characteristics is kn
more completely, the KB can be expanded to include t
knowledge.

4 Design of Multiband FBG Transmission Filters

4.1 Influence of the Channel Number

As a practical design example, several multiband FB
transmission filters with 0.1-nm, 3-dB bandwidth, an
0.28-nm channel spacing and with different channel nu
bers have been designed by using the approach stated
fore. From the top to the bottom of Fig. 7, the numbers
stop bands are 2, 10, and 20, respectively. The case
two stop bands has a clean profile that is not influenced
the side bands of individual FBGs. The influence of t
side bands of individual FBGs increases as the total num
of stop bands increases. When the total number is 20,
transmission at some points of the stop bands can actu
go beyond220 dB. Table 3 shows the FBG paramete
retrieved by the LGA.

4.2 Influence of the Channel Spacing

Transmission profiles with 20 stop bands and the same
rameter set but with differentDL are shown in Fig. 8. The
pitch-period differenceDL between each graph is 0.6 nm
The channel spacing of the designed filters are 0.67, 2

Fig. 7 Designed multiband FBG filters with 0.1-nm bandwidth and
0.28-nm channel spacing. The channel number52, 10, and 20, re-
spectively.

Table 3 Parameter set for the spectrum in Fig. 7.

Parameters L(cm) L(nm) dn DL(nm)

Retrieved 4.57 534 1.2531024 0.0971
2859Optical Engineering, Vol. 42 No. 10, October 2003
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4.14, 5.87, and 7.6 nm, respectively. It is found that
influence from the individual side bands decreases as
channel spacing increases. This clearly shows the trad
between the denser wavelength division multiplicati
channels and the lower transmission loss. In principle, i
possible to include in the evolutionary design the influen
of the channel number and the channel spacing on
transmission stop-band loss. However, to save the com
tation time, it is normal to first design a profile with lowe
loss and with a lower number of stop bands. The requi
number of stop bands is then generated by cascading
period-shifted solutions.

5 Conclusion

An efficient approach for designing FBG filters in DWDM
fiber communication systems is developed. The uniquen
of our method is the adoption of a KB in the initializatio
stage and a LGA tool in the design stage. When more
more examples of the FBG spectra and the correspon
design parameters are experienced, the LGA can autom
cally include the new knowledge like a learning expert.
a design expert, the LGA can also provide suggestions
the parameter range according to the given spectra,
evolve accurately to search the optimized parameter se
utilizing the learnt knowledge. This kind of FBG expe
design system should be a handy tool for designing co
plicated FBG filters for different application purposes.
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