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Abstract

Motivated by the reconstruction of phylogenetic tree in biology, we study the full Steiner tree
problem in this paper. Given a complete graph G = (V; E) with a length function on E and
a proper subset R ⊂ V , the problem is to 4nd a full Steiner tree of minimum length in G,
which is a kind of Steiner tree with all the vertices of R as its leaves. In this paper, we show
that this problem is NP-complete and MAX SNP-hard, even when the lengths of the edges are
restricted to either 1 or 2. For the instances with lengths either 1 or 2, we give a 8

5 -approximation
algorithm to 4nd an approximate solution for the problem.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Given a graph G=(V; E), a subset R⊆V of vertices, and a length (or distance)
function d:E→R+ on the edges, a Steiner tree is a connected and acyclic subgraph
of G which spans all vertices in R. The vertices in R are usually referred to as terminals
and the vertices in V\R as Steiner (or optional) vertices. Note that a Steiner tree might
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contain the Steiner vertices. The length of a Steiner tree is de4ned to be the sum of the
lengths of all its edges. The so-called Steiner tree problem is to 4nd a Steiner minimum
tree (i.e., a Steiner tree of minimum length) in G. The Steiner tree problem has been
extensively studied in the past years because it has many important applications in
VLSI design, network routing, wireless communications, computational biology and
so on [5–7,14]. This problem is well known to be NP-complete [15], even in the
Euclidean metric [8] or rectilinear metric [9]. However, it has many approximation
algorithms with constant performance ratios [11,14].
Motivated by the reconstruction of phylogenetic (or evolutionary) tree in biology, we

study a variant of the Steiner tree problem, called the full Steiner tree problem (FSTP),
in this paper. A Steiner tree is full if all terminals are the leaves of the tree [14]. The
FSTP is to 4nd a full Steiner tree with minimum length. If we restrict the lengths of
edges to be either 1 or 2, then the problem is called the (1,2)-full Steiner tree problem
(FSTP(1,2)). From the viewpoints of biologists, the terminals of a full Steiner tree T
can be regarded as the extant taxa (or species, morphological features, biomolecular
sequences), the internal vertices of T as the extinct ancestral taxa, and the length
of each edge in T as the evolutionary time along it. Then T might correspond to
an evolutionary tree of the extant species, which trends to minimize the tree length
according to the principle of parsimony (i.e., nature always 4nds the paths that require
a minimum evolution) [10]. Hence, the problem of reconstruction of such kind of
phylogenetic tree can be considered as the FSTP, if the extant taxa and their possible
ancestral taxa are given. We refer the readers to [12,16,19,20] for other models of
evolutionary trees and time-complexities of their constructions.
In fact, the computation of the full Steiner tree also plays a very important role

in the Steiner tree problem because any Steiner tree can be decomposed into many
smaller components by splitting all the non-leaf terminals such that these components
are full Steiner trees (hence they are called the full components) [11,14]. A Steiner
tree is called k-Steiner tree if all of its full components contains at most k terminals.
Obviously, every Steiner tree is a k-Steiner tree if k is the number of the terminals.
Borchers and Du [4] showed that an optimum k-Steiner tree is a good approximation
for a Steiner minimum tree if k is suJciently large. Unfortunately, the problem of
4nding an optimum k-Steiner trees was shown to be NP-hard for k¿4 [11]. In this
paper, we will show that the computation of an optimum full Steiner tree is not easier
than that of an optimum k-Steiner tree.
To our knowledge, little work has been done on the FSTP. Hwang [13] gave a

linear-time algorithm for constructing a relatively minimal full Steiner tree T with
respect to G in the Euclidean metric, where G is the given topology of T. In this
paper, we show that the FSTP is NP-complete and MAX SNP-hard, even when the
lengths of edges are restricted to be either 1 or 2. However, we give a 8

5 -approximation
algorithm for the FSTP(1,2).
The rest of this paper is organized as follows. In Section 2, we give the formal

de4nition of the problem and introduce some de4nitions used in this paper. Then we
prove the NP-completeness and MAX SNP-hardness results of the problem in Section 3.
In Section 4, we describe a 8

5 -approximation algorithm for the FSTP(1,2). Finally, we
give the concluding remarks in Section 5.
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2. Preliminaries

To make sure that a full Steiner tree exists, we restrict the given graph G=(V; E)
to be complete and R to be a proper subset of V (i.e., R⊂V ) in the FSTP.
FSTP (Full Steiner tree problem)
Instance: A complete graph G=(V; E), a length function d:E→R+ on the edges,

a proper subset R⊂V , and a positive integer bound B.
Question: Is there a full Steiner tree T in G such that the length of T is less than

or equal to B?
The length function d is called a metric if it satis4es the following three conditions:

(1) d(x; y)¿0 for any x; y in V , where equality holds if and only if x=y,
(2) d(x; y)=d(y; x) for any x; y∈V ,
(3) d(x; y)6d(x; z) + d(z; y) for any x; y; z in V (triangle inequality).
If we restrict that all edge lengths are either 1 or 2 (i.e., d:E→{1; 2}), then we

call this restricted FSTP as FSTP(1,2), where such length function is a metric. For
convenience, we use MIN-FSTP and MIN-FSTP(1,2) to be referred as the optimization
problems of FSTP and FSTP(1,2), respectively. Their formal de4nitions are as follows.
MIN-FSTP (Minimum full Steiner tree problem): Given a complete graph G=

(V; E) with a length function d:E→R+ on the edges and a proper subset R⊂V of
terminals, 4nd a full Steiner tree of minimum length in G.
MIN-FSTP(1,2) (Minimum (1,2)-full Steiner tree problem): Given a complete

graph G=(V; E) with a length function d:E→{1; 2} on the edges and a proper subset
R⊂V of terminals, 4nd a full Steiner tree of minimum length in G.
Given two optimization problems �1 and �2, we say that �1 L-reduces to �2 if

there are polynomial-time algorithms f and g and positive constants � and � such that
for any instance I of �1, the following conditions are satis4ed:
(1) Algorithm f produces an instance f(I) of �2 such that OPT(f(I))6�OPT(I),

where OPT(I) and OPT(f(I)) stand for the optimal solutions of I and f(I),
respectively.

(2) Given any solution of f(I) with cost c2, algorithm g produces a solution of I with
cost c1 in polynomial time such that |c1 − OPT(I)|6�|c2 − OPT(f(I))|.

A problem is said to be MAX SNP-hard if a MAX SNP-hard problem can be
L-reduced to it. Arora et al. [1] showed that if any MAX SNP-hard problem has a
PTAS (polynomial time approximation scheme), then P=NP, where a problem has
a PTAS if for any 4xed �¿0, the problem can be approximated within a factor of
1+ � in polynomial time [2]. In other words, it is very unlikely for a MAX SNP-hard
problem to have a PTAS. On the other hand, if �1 L-reduces to �2 and �2 has a
PTAS, then �1 has a PTAS [17].

3. Hardness results

In this section, we will only show that the optimization problem of FSTP(1,2),
referred to as MIN-FSTP(1,2), is MAX SNP-hard by an L-reduction from the ver-
tex cover-B problem (VC-B for short), which was shown to be MAX SNP-hard by
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Fig. 1. An L-reduction of VC-B to MIN-FSTP(1,2), where only the edges of length 1 in G2 are shown.

Papadimitriou and Yannakakis [17]. From the proof of this MAX SNP-hardness, it can
be easy to see that the decision problem FSTP(1,2) is NP-hard.
VC-B (Vertex cover-B problem): Given a graph G=(V; E) with degree bounded by

a constant B, 4nd a vertex cover of minimum cardinality in G.
Let G1 = (V1; E1) and B be an instance I1 of VC-B with V1 = {v1; v2; : : : ; vn}. (With-

out loss of generality, we assume that G1 is connected and n¿3.) Then we transform
I1 into an instance I2 of MIN-FSTP(1,2), say G2 and R, as follows.
• A complete graph G2 = (V2; E2) with V2 =V1 ∪{zi; j | (vi; vj)∈E1}, and R=V2\V1 =

{zi; j | (vi; vj)∈E1}.
• For each edge e∈E2; d(e)=

{
1 if e∈E;

2 otherwise;

where E= {(vi; vj) | 16i¡j6n}∪ {(vi; zi; j); (zi; j ; vj) | (vi; vjy)∈E1}.
See Fig. 1 for an example of the reduction, where G1 is a C5 (i.e, a cycle of

length 5).

Lemma 3.1. Let T be a solution of length c to MIN-FSTP(1,2) on the instance I2
which is obtained from a reduction of an instance I1 of VC-B. Then in polynomial
time, we can ;nd another solution T′ of length no more than c to MIN-FSTP(1,2)
on instance I2 such that T′ contains no edge of length 2.

Proof. In the following, we only show how to replace an edge of length 2 from T
with some edges of length 1 in polynomial time without increasing the length of the
resulting T. Then by repeatedly applying this procedure to T, we will 4nally obtain
T′ in polynomial time. Let (x; y) be an edge of length 2 in T. Since both x and y
cannot belong to R or V1 at the same time, one of them must be a terminal and the
other must be a Steiner vertex according to the rules to construct G2. Without loss of
generality, we assume that x is a terminal and y is a Steiner vertex. Since we assume
that G1 is connected and n¿3; x must be connected to some one terminal z with a
path of two edges of length 1, say (x; v) and (v; z). Let u be the Steiner vertex of T
which is adjacent to z. Then we consider the following two possibilities.
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Case 1: u= v. Then we replace (x; y) with (x; u) of length 1.
Case 2: u �= v. Then we replace (x; y) with (x; v) and (v; u) of length 1.
It is easy to see that the resulting T is still a full Steiner tree of G2, which can be

obtained in polynomial time, without increasing the length.

Theorem 3.1. MIN-FSTP(1,2) is a MAX SNP-hard problem.

Proof. Let f denote the polynomial-time algorithm (as described in the beginning of
this section) to transform an instance I1 of VC-B to the instance I2 of MIN-FSTP(1,2)
(i.e., f(I1)= I2). We design another polynomial-time algorithm g as follows. Given a
full Steiner tree T in G2 of length c, we transform it into another full Steiner tree
T′ using the method described in the proof of Lemma 3.1. Clearly, T′ contains no
edge of length 2 and its length is no more than c, which implies that the number of
vertices in T′ is less than or equal to c+ 1 (since T′ is a tree). Then the collection
of those internal vertices of T′ which are adjacent to the leaves of T′ corresponds to
a vertex cover of G1 whose size is less than or equal to c− |E1|+ 1. Next, we prove
that algorithms f and g are an L-reduction from VC-B to MIN-FSTP(1,2) by showing
the following two inequalities.
(1) OPT(f(I1))6�OPT(I1), where �=2B. Note that BOPT(I1)¿|E1| since each ver-

tex in G1 covers at most B edges. Let u be a vertex in G1 whose degree is B. Then
we can build a star T with u as its center and R as its leaves. Clearly, T is a feasible
solution of MIN-FSTP(1,2) on f(I1) whose length is B + 2(|E1| − B)= 2|E1| − B.
Hence,

OPT(f(I1))6 2|E1| − B6 2|E1| = 2B
|E1|
B
6 2BOPT(I1):

(2) |c1 − OPT(I1)|6�|c2 − OPT(f(I1))|, where �=1. Given a vertex cover C in
G1 of size c, we can create a full Steiner tree T in G2 of length c + |E1| − 1 in
the following way. Connect each edge of E1 (corresponding a terminal in G2) to an
arbitrary vertex in C (corresponding a Steiner vertex in G2) and connect all vertices of
C by c−1 edges of length 1 in G2. Hence, OPT(f(I1))6OPT(I1)+|E1|−1. Conversely,
by algorithm g, a full Steiner tree T of G2 with length c2 can be transformed into a
vertex cover of G1 of size c1 less than or equal to c2−|E1|+1 (i.e., c16c2−|E1|+1).
Then

c1 − OPT(I1)6 (c2 − |E1|+ 1)− OPT(I1)

= c2 − (OPT(I1) + |E1| − 1)

6 c2 − OPT(f(I1)):

Hence, |c1 − OPT(I1)|61·|c2 − OPT(f(I1))|.

Clearly, the proof of Theorem 3.1 can be applied to show that MIN-FSTP is still
MAX SNP-hard, even though the length function is metric.



60 C.L. Lu et al. / Theoretical Computer Science 306 (2003) 55–67

4. A 8
5 -approximation algorithm for MIN-FSTP(1,2)

For MIN-FSTP(1,2), it is not hard to see that any star with an arbitrary Steiner vertex
as its center and all terminals as its leaves is an approximate solution with performance
ratio within 2 of the optimal one. In this section, we give a 8

5 -approximation algorithm
for MIN-FSTP(1,2) using the so-called average length (or distance) heuristics [3,18].
Let Steiner star be a star T with a Steiner vertex as its center(T) and the terminals

as its leaves(T), where center(T) and leaves(T) denote the center and the leaves
of T, respectively. For a Steiner star T with |leaves(T)|¿2, we de4ne its average
length f(T) as follows:

f(T) =

∑
v∈leaves(T) d(center(T); v)

|leaves(T)| − 1
:

In fact, the above de4nition of average length is a kind of scoring function for
Steiner stars, which will help us to distinguish the Steiner stars according to their
average lengths such that we are able to design our approximation algorithm by a
greedy method. For convenience, we use Xk -star to denote a Steiner star T with k
leaves and d(center(T); v)= 1 for each v of leaves(T).

Lemma 4.1. Let T be a Steiner star with k terminals, where k¿2. If T contains
no leaf at distance 1 from center(T), then f(T)= 2 + 2=(k − 1).

Proof. By de4nition, f(T)= 2k=(k − 1)=2 + 2=(k − 1).

Lemma 4.2. Let T be a Steiner star with k terminals, where k¿2. If T contains
only one leaf at distance 1 from center(T), then f(T) = 2 + 1=(k − 1).

Proof. By de4nition, f(T)= (1 + 2(k − 1))=(k − 1)=2 + 1=(k − 1).

Lemma 4.3. Let T be a Steiner star with k terminals, where k¿2. If T contains
exactly two leaves at distance 1 from center(T), then f(T)= 2.

Proof. By de4nition, f(T)= (2 + 2(k − 2))=(k − 1)=2.

Lemma 4.4. Let T be a Xk -star with k¿3. Then f(T)= 1 + 1=(k − 1).

Proof. By de4nition, f(T)= k=(k − 1)=1 + 1=(k − 1).

Lemma 4.5. Let T1 be an Xk -star with k¿3 and let T2 be the Steiner star obtained
from T1 by adding a new terminal z with d(center(T1); z)= 2. Then f(T1)¡f(T2).

Proof. By de4nition, f(T1)= k=(k − 1) and f(T2)= (k + 2)=k, and hence f(T2) −
f(T1)= (k − 2)=(k(k − 1))¿0.
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Next, we describe our approximation algorithm for MIN-FSTP(1,2) in the following
algorithm APX-FSTP(1,2).

APX-FSTP(1,2)
Input: A complete graph G=(V; E) with d:E→{1; 2} and a set R⊂V

of terminals.
Output: A full Steiner tree TAPX for R in G.
Step 1: Let E be an empty set;
Step 2: /* Choose a Steiner star with the minimum average length */

if there are two or more remaining Steiner vertices then
Find a Steiner star T with the minimum average length;
if f(T)= 2 then /* Transform T into an X2-star */

Remove from T those leaves at distance 2 from
center(T) if they exist;

end if
else
Let T be the Steiner star with the only Steiner vertex as its center
and all remaining terminals as its leaves;

end if
Step 3: /* Perform a reduction */

Let E=E∪{(center(T); v) | v∈ leaves(T)};
Replace the Steiner star T by a single new terminal, say z;
Let d(z; u)=d(center(T); u) for each remaining vertex u;

Step 4: if there is still more than one terminal then
Go to Step 2;

else
Let TAPX be the full Steiner tree induced by E;

end if

According to Lemmas 4.1–4.5, our algorithm APX-FSTP(1,2) always selects an
Xk -star with maximum k, where k¿3, to do the reduction if it exists, since its average
length must be minimum. If only X2-stars are found in the (resulting) instance, then
the average length of the minimum Steiner star must be 2 by Lemmas 4.1–4.3. In this
case, the minimum Steiner star selected by APX-FSTP(1,2) might contain some leaves
at distance 2 from the center. To avoid this situation, APX-FSTP(1,2) will transform
it into an X2-star without changing its average length by Lemma 4.3. If the (resulting)
instance does not contain a Xk -star with k¿2, then APX-FSTP(1,2) will perform only
one reduction by Lemmas 4.1 and 4.2. As discussed above, we can 4nd that APX-
FSTP(1,2) is a greedy algorithm, which will always select an Xk -star with maximum
k, where k¿2, to do the reduction except the last one.
We analyze the time-complexity of APX-FSTP(1,2) as follows. Let n and m be the

numbers of the terminals and the Steiner vertices in G, respectively (i.e., n= |R| and
m= |V\R|). Clearly, the time complexity of APX-FSTP(1,2) is dominated by the cost
of Step 2, which needs to 4nd a Steiner star with minimum average length. It can
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Fig. 2. Add edge (center(T); v) to build T′ after removing those dashed lines.

be implemented by 4rst 4nding an optimal Steiner star with each Steiner vertex as
the center and then selecting the best one among these optimal Steiner stars. For each
Steiner vertex v, we can 4nd an optimal Steiner star with v as its center in O(n′) time,
where n′ denotes the number of the resulting terminals. The reason is that we just
calculate the number of terminals at distance 1 from v and then we are able to know
what its optimal Steiner star is by Lemmas 4.1–4.5. Suppose that there are m′ Steiner
vertices in each reduction. Then Step 2 can be done in O(n′m′ +m′) time. Since each
reduction eliminates one Steiner vertex and at least one terminal, the number of the
iterations is at most min{n; m} and hence the total time-complexity of APX-FSTP(1,2)
is polynomial.
In the following, we analyze the performance ratio of our approximation algorithm

APX-FSTP(1,2). Let the performance ratio of our approximation algorithm APX-
FSTP(1,2) for instance I be ratio(I)=APX(I)=OPT(I), where OPT(I) denotes the
length of an optimal full Steiner tree for I and APX(I) denotes the length of TAPX ob-
tained by APX-FSTP(1,2). In the following, we assume that I is a worst-case instance
among all instances. That is, ratio(I ′)6ratio(I) for each I ′ �= I .

Lemma 4.6. If instance I contains an Xk -star for k¿6, then ratio(I)6 3
2 .

Proof. Let T be an arbitrary Xk -star in I whose k is maximum and let E(T) be the
set of its edges. Then by Lemmas 4.1–4.5, the 4rst iteration of our algorithm APX-
FSTP(1,2) will reduce T since its average length f(T) is minimum. Let I ′ be the
resulting instance of APX-FSTP(1,2) after T is reduced. Clearly, we have APX(I ′)=
APX(I)− k.
Let TOPT be an optimal full Steiner tree of I , and let H be the resulting graph

obtained by adding the k edges of E(T) to TOPT. Then by removing from H some
edges not in E(T) and adding some one edge if possible, we can build a full Steiner
tree T′ of I such that it contains all edges of E(T). See Fig. 2 for an illustration
to the worst case in which the k edges of E(T) and the center(T) are not in TOPT.
Then we need to add edge (center(T); v) to build a full Steiner tree T′, where v is a
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Steiner vertex in TOPT. Clearly, the length of T′ is less than or equal to OPT(I) + 2
since d(center(T); v)62. If we reduce T in T′, then we obtain a full Steiner tree
T′′ of instance I ′ whose length is less than or equal to OPT(I)−k+2. In other words,
OPT(I ′)6OPT(I)−k+2. Hence, ratio(I ′)=APX(I ′)=OPT(I ′)¿(APX(I)−k)=(OPT(I)−
k + 2). Recall that ratio(I ′)6ratio(I). Then we have

APX(I)− k
OPT(I)− k + 2

6
APX(I)
OPT(I)

⇔ k OPT(I)¿ (k − 2)APX(I)

⇔ k
k − 2

¿
APX(I)
OPT(I)

= ratio(I):

Hence, we have ratio(I)6 3
2 .

According to Lemma 4.6, if any instance I of MIN-FSTP(1,2) contains an Xk -star
with k¿6, then our algorithm APX-FSTP(1,2) always produces a full Steiner tree of
length less than or equal to 3

2 OPT(I). In the following, we assume that I contains no
such an Xk -star with k¿6 and we will then show that ratio(I)6 8

5 .
Given an instance I consisting of G=(V; E) and R⊂V , we say that a vertex v∈V

1-dominates (or dominates for simplicity) itself and all other vertices at distance 1
from v. For any D⊆V , we call it as a 1-dominating set (or dominating set) of R if
every terminal in R is dominated by at least one vertex of D. A dominating set of R
with minimum cardinality is called as a minimum dominating set of R.

Lemma 4.7. Given an instance I of MIN-FSTP(1,2), let D be a minimum dominating
set of R. Then OPT(I)¿n+ |D| − 1, where n= |R|.

Proof. Let TOPT be an optimal full Steiner tree of I (i.e., OPT(I)= |TOPT|) and let
R′ ⊆R be the set of terminals that are dominated by the vertices of D′, where D′ ⊆V\R
is the set of Steiner vertices in TOPT. See Fig. 3 for an illustration. Note that for those
vertices in D′, TOPT needs to contain at least |D′| − 1 edges to connect them. Clearly,
the length of TOPT is |TOPT|¿|R′| + (|D′| − 1) + 2|R\R′|= |R| + |D′| + |R\R′| −
1. Since the union of D′ and R\R′ is a dominating set of R and they are disjoint,
|D|6|D′ ∪ (R\R′)|= |D′| + |R\R′|. In other words, we have OPT(I)¿|R| + |D| − 1=
n+ |D| − 1.

Let D be a minimum dominating set of R. Then we can partition R into many subsets
in a way as follows. Assign each terminal z of R to a member of D which dominates
it. If two or more vertices of D dominate z, then we arbitrarily assign z to one of
them. Let C1;C2; : : : ;Cq be the partitions consisting of exactly 5 terminals. Clearly, we
have 06q6 n

5 .

Lemma 4.8. OPT(I)¿5n=4− q=4− 1.
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Fig. 3. The illustration of the proof of Lemma 4.7, where the solid lines are edges of length 1 and the
dashed lines are edges of length 2.

Proof. According to the partition of R, we have 5q+4(|D|−q)¿n, which means that
|D|¿(n− q)=4. Recall that OPT(I)¿n+ |D| − 1 by Lemma 4.7. Then,

OPT(I)¿ n+
n− q
4

− 1 =
5n
4

− q
4
− 1:

Hence, we have OPT(I)¿5n=4− q=4− 1.

Lemma 4.9. If instance I contains no Xk -star with k¿6, then ratio(I)6 8
5 .

Proof. Assume that APX-FSTP(1,2) totally reduces jXki -stars, where 16i6j and
ki¿2. Even though the instance I contains no Xk -star with k¿6, the reduced
Xki -star may be an X6-star for each i¿2. This is because that the new terminal
z created by reducing Xki−1 -star is at distance 1 from the center of an X5-star in
the instance I such that the reduced Xki is an X6-star formed by adding z into the
X5-star. However, it is impossible that Xki -star is an Xk -star with k¿7. The reason
is that when an X6-star is created by a reduction, it will be selected by our algorithm
APX-FSTP(1,2) for the next reduction, which may create another X6-star (i.e., there is
at most one X6-star in each resulting instance).
Note that Xki is a subtree of the full Steiner tree TAPX produced by APX-FSTP(1,2)

and its length is ki. Since the reduction of Xki merges ki old terminals into a new one,
the number of the terminals is decreased by ki − 1. After reducing Xkj , the number
of the remaining terminals is n − ∑j

i=1(ki − 1). To reduce these terminals, APX-
FSTP(1,2) creates a Steiner star with length less than or equal to 2(n−∑j

i=1(ki− 1)).
Hence, the total length of TAPX is less than or equal to (

∑j
i=1 ki) + (2(n−∑j

i=1(ki −
1)))= 2n − ∑j

i=1(ki − 2). In other words, we have APX(I)62n − p, where we let
p=

∑j
i=1(ki − 2).
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Recall that we partition R into many disjoint subsets in which C1;C2; : : : ;Cq, where
06q6 n

5 , are the partitions with each consisting of exactly 5 terminals. In other words,
there are at least q disjoint X5-stars in I . Next, we claim that p¿11q=10. The best situa-
tion is that each partition Ci, where 16i6q, corresponds to an Xkl -star, where 16l6j
and kl=5 or 6, which will be reduced by APX-FSTP(1,2). In this case, each such
an Xkl -star contributes at least 3 to p and hence we have p¿3q¿11q=10. Otherwise,
we consider the general case with the following 4ve properties, where for simplic-
ity of illustration, we assume that q2 ≡ 0 (mod 2); q3 ≡ 0 (mod 3); q4 ≡ 0 (mod 4); q5
≡ 0 (mod 5) and q1 + q2 + q3 + q4 + q5 = q.
(1) There are q1 partitions Ci1 ;Ci2 ; : : : ;Ciq1 in which each partition Cih corresponds to

an Xkl -star reduced by APX-FSTP(1,2), where 16h6q1.
(2) There are q2 partitions Ciq1+1 ;Ciq1+2 ; : : : ;Ciq1+q2 in which every other two consecutive

partitions Ciq1+h+1 and Ciq1+h+2 correspond to an Xkl -star reduced by APX-FSTP(1,2),
where 06h6q2 − 2 and h≡ 0 (mod 2).

(3) There are q3 partitions Ciq1+q2+1 ;Ciq1+q2+2 ; : : : ;Ciq1+q2+q3 in which every other three
consecutive partitions Ciq1+q2+h+1 ; Ciq1+q2+h+2 and Ciq1+q2+h+3 correspond to an Xkl -star
reduced by APX-FSTP(1,2), where 06h6q3 − 3 and h≡ 0 (mod 3).

(4) There are q4 partitions Ciq1+q2+q3+1 ;Ciq1+q2+q3+2 ; : : : ;Ciq1+q2+q3+q4 in which every other
four consecutive partitions Ciq1+q2+q3+h+1 ;Ciq1+q2+q3+h+2 ; : : : ;Ciq1+q2+q3+h+4 correspond
to an Xkl -star reduced by APX-FSTP(1,2), where 06h6q4 − 4 and h≡
0 (mod 4).

(5) There are q5 partitions Ciq1+q2+q3+q4+1 ;Ciq1+q2+q3+q4+2 ; : : : ;Ciq1+q2+q3+q4+q5 in which ev-
ery other 4ve consecutive partitions Ciq1+q2+q3+q4+h+1 ;Ciq1+q2+q3+q4+h+2 ; : : : ;Ciq1+q2+q3+q4+h+5

correspond to an Xkl -star reduced by APX-FSTP(1,2), where 06h6q5 − 5 and
h≡ 0 (mod 5).

It is not hard to see that the reduction of Xkl -stars of property (1) (respectively, (2)
–(5)) will contribute at least 3q1 (respectively, 3q2=2; 3q3=3; 3q4=4 and 3q5=5) to p
and in the worst case, produce 0 (respectively, q2=2; 0; q4=4 and 0) X3-star and produce
0 (respectively, 0; 2q3=3; 3q4=4 and 5q5=5) X4-star in the remaining instance. In the
worst case, the (0 + q2=2 + 0 + q4=4 + 0= (2q2 + q4)=4) produced X3-stars and the
(0+0+2q3=3+3q4=4+5q5=5= (8q3 +9q4 +12q5)=12) produced X4-stars will further
contribute 1((2q2 + q4)=4)=3 and 2((8q3 +9q4 +12q5)=12)=4, respectively to p. Hence,
we have

p¿ 3q1 +
3q2
2

+
3q3
3

+
3q4
4

+
3q5
5

+
2q2 + q4

12
+

8q3 + 9q4 + 12q5
24

= q1 +
480q1 + 400q2 + 320q3 + 290q4 + 264q5

240

= q1 +
480(q1 + q2 + q3 + q4 + q5)− (80q2 + 160q3 + 190q4 + 216q5)

240

¿ q1 +
264q
240
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(since q1 + q2 + q3 + q4 + q5 = q and 80q2 + 160q3 + 190q4 + 216q5

6 216q)

¿
11q
10
:

As discussed above, we have p¿11q=10. Recall that OPT(I)¿5n=4 − q=4 − 1 by
Lemma 4.8. Then we have

ratio(I) =
APX(I)
OPT(I)

6
2n− p

5n=4− q=4− 1
=

8n− 4p
5n− q− 4

6
8n− 4(11q=10)
5n− q− 4

=
40n− 22q

25n− 5q− 20
:

It is easy to verify that (40n− 22q)=(25n− 5q− 20)6 8
5 if q¿ 16

7 . Since 06q6n=5;
ratio(I)6 8

5 for n¿ 80
7 . Note that for n¡ 80

7 , the optimal solution can be found by an
exhaustive search in polynomial time. Hence, we have ratio(I)6 8

5 .

According to Lemmas 4.6 and 4.9, we have the following theorem immediately.

Theorem 4.1. APX-FSTP(1,2) is a 8
5 -approximation algorithm for MIN-FSTP(1,2).

5. Conclusion

In this paper, we studied the algorithmic complexities of the problem of 4nding an
optimal full Steiner tree for a given set of terminals and a complete graph with a length
function on the edges. We showed that this problem is NP-complete and MAX SNP-
hard, even when the lengths of the edges are restricted to either 1 or 2. If the lengths
of edges are either 1 or 2, then we gave a 8

5 -approximation algorithm for the problem.
It would be interest to know if our 8

5 -approximation algorithm for MIN-FSTP(1,2) can
be further improved, and if there is an approximation algorithm within a constant ratio
for MIN-FSTP (i.e., the FSTP without any constraint on the length function).
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