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A Neural Fuzzy Resource Manager for Hierarchical
Cellular Systems Supporting Multimedia Services
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Abstract—Using intelligent techniques to perform radio
resource management is an effective method. This paper pro-
poses neural fuzzy control for radio resource management in
hierarchical cellular systems supporting multimedia services. A
neural fuzzy resource manager(NFRM) is designed, which mainly
contains a neural fuzzy channel allocation processor(NFCAP),
and NFCAP is in a two-layer architecture: a fuzzy cell selector
(FCS) in the first layer and a neural fuzzy call-admission and rate
controller (NFCRC) in the second layer. The FCS chooses not only
the handoff failure probabilities and the resource availabilities
in both microcell and macrocell but also the mobility of user as
input linguistic variables. The NFCRC takes the handoff failure
probability and the resource availability of the selected cell as
input variables to perform call admission control and rate control
for the call. Simulation results show that NFRM can always
guarantee the quality of service (QoS) requirement of handoff
failure probability for all traffic loads. Also, NFRM improves the
system utilization by 31.1% while increasing the handoff rate
by 2% over the overflow channel allocation (OCA) scheme [3];
it enhances the system utilization by 6.3% and 1.4%, and still
reduces the handoff rate by 14.9% and 6.8%, as compared to the
combined channel allocation (CCA) scheme [20], [21] and fuzzy
channel allocation control (FCAC) scheme [9], respectively, under
a predefined QoS constraint.

Index Terms—Call admission, hierarchical cellular systems,
macrocell, microcell, neural fuzzy, resource management.

I. INTRODUCTION

T HE future mobile communication system will provide not
only voice and low-speed data services but also high-speed

multimedia services [1], [2]. A way to provide a wide variety of
services is to flexibly aggregate multiple channels (time-slot or
spreading code), without changing the spectrum division, mod-
ulation, and burst structure. A mobile station (MS) specifies the
required capacity and desired capacity in the setup request or
handoff request message. The required and desired capacities
characterize the service requirements of an application, or the
patience of a user. Based on the availability of resources in a cell
and the quality-of-service (QoS) requirement, the network gives
the MS a number of channels between the required capacity and
desired capacity. On the other hand, a hierarchical cellular struc-
ture, which contains overlaid microcells for high-teletraffic area
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and overlaying macrocells for low-teletraffic region, has merits
of enhancing system capacity and improving coverage [3]–[6].
Such a wireless network must be adaptive and robust to support
resource demands.

Nowadays, the intelligent techniques have been widely
applied to nonlinear, time-varying, and complicated problems
that were challenging using conventional algorithmic methods.
These techniques such as fuzzy logics, neural networks,
and neural fuzzy networks have been shown to outperform
algorithmic methods. The advantages of intelligent techniques
are numerous, most notably learning from experience and the
scalability, adaptability, and ability to extract rules without the
need for detailed or precise mathematical modeling [7]–[16].

In this paper, we propose aneural fuzzy resource manager
(NFRM) for hierarchical cellular systems providing multimedia
services. The NFRM utilizes the learning capability of the
neural network to reduce the decision error of these conven-
tional channel assignment schemes resulting from modeling,
approximation, and unpredictable statistical fluctuations of
the system. It also employs the control rule structure of fuzzy
logic, which absorbs benefits of those conventional channel
assignment schemes, to provide robust operation and to prevent
operating errors due to the learning of incorrect training
data. The NFRM contains aneural fuzzy channel allocation
processor (NFCAP), a resource estimator, a performance
evaluator, and base-station interface modules. NFCAP is a
two-layer neural fuzzy logic controller that consists of afuzzy
cell selector(FCS) in the first layer and aneural fuzzy call-ad-
mission and rate controller(NFCRC) in the second layer. The
FCS considers the handoff failure probability, the resource
availability in both macrocell and microcell, and the mobility
of users as input linguistic variables, and applies themax-min
interference method to determine which cell, macrocell or
microcell, to serve the call request; FCS intends to enhance the
channel utilization by balancing utilization between macrocell
and microcells. The NFCRC takes the handoff failure proba-
bility and the resource availability of the selected cell as input
variables; NFCRC intends to guarantee the QoS and provides
an appropriate rate for users. Simulation results show that
NFRM can guarantee the QoS requirement of handoff failure
probability for all traffic loads. NFRM improves the system
utilization by 31.1% while increasing the handoff rate by 2%
over theoverflow channel allocation(OCA) scheme proposed
in [3]; and it enhances the system utilization by 6.3% and
1.4%, and still reduces the handoff rate by 14.9% and 6.8%, as
compared to thecombined channel allocation(CCA) andfuzzy
channel allocation control(FCAC) scheme proposed in [20],
[21] and [9], respectively, under a defined QoS constraint.
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Fig. 1. The NFRM for hierarchical cellular systems.

The rest of this paper is organized as follows. Section II
presents the functions of NFRM. Section III gives the design of
NFCAP. Section IV shows simulation results and discussions.
Conclusions are given in Section V.

II. NEURAL FUZZY RESOURCEMANAGER (NFRM)

Fig. 1 shows the functional block diagram of NFRM for hier-
archical cellular systems supporting multimedia services, where
the hierarchical cellular system contains a large geographical
region tessellated by cells, referred to as macrocells, each of
which overlays several microcells. The overlaying macrocell is
denoted by cell 0 and its overlaid microcells are denoted by cell
, . The NFRM contains functional blocks such as

base-station interface module(BIM), resource estimator, per-
formance evaluator,andneural fuzzy channel allocation pro-
cessor(NFCAP). BIM is to interface with macrocell or micro-
cell base stations. It is installed in the base-station controller
(BSC) or mobile switching center (MSC). Note that for sim-
plicity, NFRM is drawn to do the resource management for only
one macrocell here.

Cell in the macrocell is equipped with a pool of inde-
pendent communication channels, . Assume all the
channels are shared by new calls and handoff calls. The new call
requests generated in each MS is modeled as a Poisson process
with mean rate , in which the arrival rate of the new voice
calls is and the arrival rate of the new data calls is

, . The call durations for the two
streams are assumed to be exponentially distributed with aver-
ages equal to 1 and 1 . We assume that all the data (voice)
call requests have identical required capacity and desired ca-
pacity, denoted by and ( and ), respectively.

A. Base-Station Interface Modules (BIM)

Assume that each BIM provides complete-partitioning buffers
for queueing new and handoff calls, which are originated in the
corresponding cell and temporarily have no free channel to use.
In the BIM for cell 0 are a new-call buffer with capacity

for new calls originating in the macrocell-only region, a
handoff-call buffer with capacity for handoff calls from
adjacent macrocells, an overflowed handoff- call buffer with
capacity for overflowed handoff calls from overlaid mi-
crocells, and an overflowed new-call buffer with capacity
for overflowed new calls from overlaid microcells. In the BIM
for cell (BIM ), , there are a new-call buffer
with capacity for new call originations, an underflowed
handoff-call buffer with capacity for underflowed handoff
calls from the overlaying macrocell, and a handoff-call buffer
with capacity for handoff calls from adjacent microcells.
No buffer is provided for the reversible handoff calls. Reneging
of new calls and dropping of handoff calls are considered be-
cause of new calls’ impatience and handoff calls’ moving out the
handoff area. The patience times are exponentially distributed.

Whenever BIM receives a call request, , it sends
the necessary calling information to the resource estimator, the
performance evaluator, and the NFCAP. The calling information
can distinctly indicate from which cell and in what type the call
is originated. The type of call is defined as: denotes a
new call originating in macrocell-only region; denotes a
handoff call from adjacent macrocell to macrocell-only region;

denotes a handoff call from microcell to macrocell-only
region; denotes new call originating in microcell;
denotes handoff call from adjacent macrocell to an overlaid mi-
crocell; denotes handoff call from microcell to microcell;
and denotes reversible handoff. Note that the macro-
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TABLE I
THE CALCULATION OF AVAILABLE RESOURCE

cell-only region is the area inside macrocell 0 but outside all
microcells. The first three types of calls are to use channels in
macrocell, while other types of calls can use channels either in
macrocell or in microcell.

B. Resource Estimator

The resource estimator calculates the available resources in
macrocell 0 and microcellwhen it receives calling information
of type- call from BIM at time instant, which are denoted by

and , respectively. The resource estimator knows
system parameters of , , , , , and , ,

, , , and it obtains and by
formulas shown in Table I.

In Table I, is the number of occupied channels in
at time ; ( , , ) is the number

of waiting calls in the new-call buffer (handoff-call buffer,
overflowed handoff-call buffer, overflowed new-call buffer) of
BIM , at time ; and ( , ) is the number of
waiting calls in the new-call buffer (underflowed handoff-call
buffer, handoff-call buffer) of BIM at time , .

C. Performance Evaluator

The performance evaluator is to calculate the handoff failure
probability for NFCAP. The handoff failure probability in
macrocell (microcells) at time, denoted by ,
is defined as

(1)

where is the number of blocked handoff calls
in macrocell 0 (microcell) at time ; is the
number of dropped handoff calls in macrocell 0 (microcell) at
time ; and is the number of handoff calls in
macrocell 0 (microcell) at time .

D. Neural Fuzzy Channel Allocation Processor (NFCAP)

NFCAP performs the channel allocation using neural fuzzy
logic control to attain QoS guaranteed, high channel utilization,
and good user satisfaction. In the neural fuzzy logic control, a
reinforcement learning is designed to adjust the mean and the
variance of the membership functions to cope with the input
traffic fluctuation. The detailed design of NFCAP is described
in the next section.

III. D ESIGN OFNFCAP

NFCAP contains two functional blocks: FCS in the first layer
and NFCRC in the second layer, as shown in Fig. 2.

A. Fuzzy Cell Selector (FCS)

NFCAP chooses five input linguistic variables for FCS:
available resources in macrocell 0 and in microcell

, handoff failure probabilities in macrocell 0
and in microcell , and mobile speed , and has one
output linguistic variable for FCS: the selection of macrocell
or microcell . The available resource of cells can indicate
the remaining capacity, the handoff failure probability can
show the QoS, and the mobile speed can implicate the handoff
rate. Term sets for both and are

{More Enough, Slightly Enough, Not
Enough} , term sets for both
and are {Low,
Medium, High} , and the term set for is

Slow, Fast . A trapezoidal function
is chosen to implement the membership

function, which is given by

for
for
for
otherwise

(2)
where in is the left (right) edge of the trapezoidal
function and is the left (right) width of the trapezoidal
function.

Denote , ,
and as the membership functions
for , , and in , respec-
tively, and define , , ,

, , and as

(3)

(4)

(5)

(6)

(7)

(8)

The maximum possible“More Enough” value of available
resource would be the sum of buffer size and
allocation channels, would be a safety margin of
available resource in macrocell (microcells) in QoS require-
ment and traffic fluctuation, would be set to be a
fraction of available resource in macrocell (microcells),

, and
and
are provided

to tolerate the change of traffic in macrocell (microcells).
Denote , and ,

, and to be the membership functions
for , , and in , respectively, and
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Fig. 2. The block diagram of NFCAP.

TABLE II
THE INFERENCERULES FOR THEOVERLAY REGION

define , , , ,
, and as

(9)

(10)

(11)

(12)

(13)

(14)

would be set to be provided to guarantee the QoS
requirement in macrocell (microcells), would be set
to be a safety margin of the handoff failure probability in QoS
requirement in macrocell (microcells),

, and
and

are provided to tolerate the
dynamic behavior of the handoff failure probability in macrocell
(microcells).

The membership functions for termsand in , denoted
by and , are given by

(15)

(16)

where would be a fraction of slow (fast) speed of mobile
user, is provided to tolerate the change of slow (fast)
speed, and would be the fastest speed.

There are different call types in hierarchical cellular sys-
tems. For calls that can use only macrocell channels, FCS
has to choose the macrocell, and send and to
NFCRC. For calls that could use channels either in macrocell
or microcell, FCS determines the serving cell according to
input linguistic variables of , , , ,
and . The output linguistic variable if the macro-
cell is assigned and if the microcell is allocated.

. The fuzzy rule base with dimension

is shown in Table II, where denotes the number of terms
in .

The design idea of the fuzzy rule structure listed in Table II
is described as follows. If the available resource in macrocell

is larger than that in microcell , the call would
be directed toward the macrocell , and vice versa

. If the available resources in both macrocell and
microcell have the same fuzzy terms in the premises of the
fuzzy rule, the call will be directed to a cell withlow handoff
failure probability ( or ), instead of the one with
high handoff failure probability. If the available resource and
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handoff failure probability in both macrocell and microcell have
the same fuzzy terms in the premises of the fuzzy rule, then the
call is to be biased toward macrocell if the speedis fast,for
lessening frequent handoff, and vice versa. Note that the symbol
“-” in the table represents no impact on the output of the fuzzy
cell selector.

Membership functions for and in are defined
as

(17)

(18)

We adopt themax-mininference method and apply thecenter-
of-area defuzzification method for output variable [9],
which are not further described here. There are and
output to NFCRC determined by : if the call is with channels
in the macrocell , and ;
otherwise, the call is with channels in the microcell ,
and , .

B. Neural Fuzzy Call-Admission and Rate Controller
(NFCRC)

The NFCRC takes the handoff failure probability
and available resource as input linguistic variables. The
handoff failure probability shows the QoS, and the available
resource implicates the traffic load intensity. This is a feedback
control system that the handoff failure probability acts as a
QoS index feedback to indicate how effectively the NFCRC is
managing the radio resource.

We adopt a five-layer neural fuzzy controller to design
the NFCRC. The best structure of NFCRC can be obtained
via structure learning, which measures the degree of fuzzy
similarity and decides the size of the fuzzy partition of the
linguistic [17], [18]. Usually, a hybrid learning algorithm is
applied to construct the NFCRC. The algorithm is a two-phase
learning scheme. In phase I, a self-organized learning scheme
is used to construct the presence of rules and to locate the initial
membership functions; in phase II, a reinforcement learning
scheme is used to optimally adjust the membership functions
for desired outputs. To initiate the learning process, the size of
the term set for each input/output linguistic variable, the fuzzy
control rules, and training data must be provided. In the self-
organized training phase, the initial structure of the controller
could be constructed via Kohonen’s feature-maps algorithm
and theN nearest neighborsscheme [19] to provide a rough
estimate of the structure, if the controller is not provided with
an initial knowledge base. However, in this paper, we construct
an initial form of the controller based on the domain knowledge
obtained from the fuzzy channel allocation control scheme
proposed in [9]. Only a slight modification for the structure is
needed in the self-organized training phase.

The rule structure for NFCRC is shown in Table III. The de-
sign strategy in Table III is that if the handoff failure proba-
bility is Low (L) or Medium (M)and the available resource is
notNot Enough (NE),the call would have a chance to enter the
system; if the available resource isNot Enough (NE),the call
would beRejected (R)or Weakly Rejected (WR);if the handoff

TABLE III
THE INFERENCERULES FORNFCRC

failure probability isHigh (H)and the available resource isMore
Enough (ME),the call would beWeakly Accepted (WA)for in-
creasing channel utilization. If the handoff failure probability
is High (H) or available resource isNot Enough (NE),the call
would be allocatedBasic Rate (BR);if the handoff failure prob-
ability is Medium (M) and the available resource isSlightly
Enough (SE),the call would be allocatedLow Medium Rate
(LM); if the handoff failure probability isMedium (M) (Low
(L)) and the available resource isMore Enough (ME) (Slightly
Enough (SE)),the call would be allocatedHigh Medium Rate
(HM); if the handoff failure probability isLow (L)and the avail-
able resource isMore Enough (ME),the call would be allocated
High Rate (HR).

The connectionist structure of the NFCRC is constructed in
Fig. 3. The NFCRC has the nodes in layer one as input linguistic
nodes. It has two pairs of nodes in layer five, where each pair
of output nodes has two kinds of linguistic nodes. One is for
feeding training data (desired output) into the net and the other
is for pumping decision signals (actual output) out of the net.
The nodes in layer two and layer four are term nodes, which act
as membership functions of the respective linguistic variables.
The nodes in layer three are rule nodes; each node represents one
fuzzy rule and all nodes form a fuzzy rule base. The links in layer
three and layer four function as an inference engine; layer-three
links define preconditions of the rule nodes and layer-four links
define consequences of the rule nodes. The links in layer two
and layer five are fully connected between the linguistic nodes
and their corresponding term nodes.

NFCRC has a net input function and an activation

output function for node in layer , where de-
notes the input to nodein layer from node in layer ( 1).
The layers are described in the following.

Layer 1: In this layer, there are two input nodes with the
respective input linguistic variables and .

Define

(19)

where and .
Layer 2:The nodes in this layer are used as the fuzzifier.
The term set used to describe the handoff failure proba-
bility is defined as {Low (L), Medium (M),
High (H)}. And the term set for the available resource is de-
fined as {More Enough (ME), Slightly Enough
(SE), Not Enough (NE)}. Thus we have six nodes in this
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Fig. 3. The structure of the NFCRC controller.

layer. Each node performs a bell-shaped function defined
as

and

(20)

where , , and and
are the mean and the standard deviation of theth term of
the input linguistic variable from nodein the input layer,
respectively, if and if .
Layer 3: The links perform precondition matching of
fuzzy control rules. According to fuzzy set theory, the
fuzzy rule base forms a fuzzy set with dimensions

. Thus, there are nine rule nodes
in this layer. And each rule node performs the fuzzyAND

operation defined as

and

(21)

where and all that are precondition
nodes of theth rule.
Layer 4:There are two groups of output in this layer: one
group for the output of admission control and the other
group for the output rate control . Nodes in this layer
have two operating modes:down-upandup-down. In the
down-up operating mode, the links perform consequence
matching of fuzzy control rules. In order to provide a soft
admission decision, the term set of the output linguistic
variable is defined as {Reject (R), Weakly

Reject (WR), Weakly Accept (WA), Accept (A)}. Simi-
larly, the term set of the output linguistic variable is
defined as Basic Rate (BR), Low Medium Rate
(LM), High Medium Rate (HM), High Rate (HR)}. Thus,
there are eight nodes in this layer. And each node performs
a fuzzyORoperation, which integrates the fired strength of
rules that have the same consequence and is defined as

and

(22)

where and all that have the same
consequence of theth term in the term set of and .
The up-down operating mode is used during learning pe-
riods, which will be described later.
Layer 5: There are two pairs of nodes in this layer. One
node in each pair performs the down-up operation for the
decision signals and . The node and its links act
as the defuzzifier. The function used to simulate a center-
of-area defuzzification method for signal is approxi-
mated by

and

(23)

where , is the decision threshold, and

if
otherwise.

(24)
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Clearly, , and a new connection will be accepted
only if . Similarly, the signal is also to simulate
a center-of-area defuzzification method approximated by

and

(25)

where ; is the number of desired channels
for a call; denotes the voice call; and denotes
the data call. Clearly, and a new connection
is assigned to use a number of channels. The other
node performs the up-down operation during the learning
period.

The procedure to locate the mean of the th mem-
bership function for linguistic variable, ,
is described below, given a set of training datafor ,

. It employs the statistical clustering technique
of Kohonen’s feature-maps algorithm [19]. This is the ini-
tial definitions of membership functions required to drive
the reinforcement learning algorithm.

Obtain by using Kohonen’s feature-maps
algorithm
Step 1: Set initial values of for all

membership functions, , such
that

Set an initial learning rate .
Step 2: Set .
Step 3: Present training data and com-

pute the distance , .
Step 4: Determine the th membership func-

tion that has the minimum distance
. Update by

Step 5: If , , Goto Step 3
ELSE

Decrease and Goto Step 2 .
EndIf

The above procedure will stop until . The determination
of which is minimum at Step 4 can be quickly accomplished
in constant time via a winner-take-all circuit [19]. The adaptive
algorithm can be independently performed to obtainfor each
input and output linguistic variable.

As for the corresponding standard deviationsof the th
membership function of, since and will be finely tuned
in the reinforcement learning phase, we just use a first nearest-
neighbor heuristic to estimate, which is given by

(26)

where

for
otherwise

(27)

and is called an overlap parameter used to describe the degree
of overlapping with two membership functions.

C. Reinforcement Learning Algorithm

Since there are no measurable output values fed back to in-
struct the NFCRC to learn, a reinforcement learning algorithm
is adopted and an evaluative handoff failure probability is used
as a reinforcement signal. Fig. 3 also shows the diagram of the
reinforcement learning for NFCRC, where the hierarchical cel-
lular system provides the reinforcement signal as a desired
output to NFCRC and receives the call admission control value

and rate control value from NFCRC. The reinforcement
signal is here defined as

(28)

where denotes the QoS requirement of the desired handoff
failure probability and is the actually measured handoff
failure probability at time .

The reinforcement learning is applied to adjust parameters of
input and output membership functions optimally, according to
the input training data, the reinforcement signal, and the fuzzy
logic rules. It derives updating rules for the mean and the stan-
dard deviation of the bell-shaped membership functions so as to
minimize the error function, defined as

(29)

For each training data set, starting at the input nodes, the
down-upoperation can compute to obtain the actual outputs of
call admission control and rate control , and consequently

is measured. On the other hand, from the output node,
the up-down operation is used to compute
for all hidden nodes, where is the adjustable parameters
such as the mean and the standard deviation for the input
and output bell-shaped membership functions. We adopt the
general learning rule

(30)

where is the learning rate. In the following, we show the com-
putations of layer by layer, starting at the output
nodes, and use the bell-shaped membership functions with cen-
ters and the width as the adjustable parameters for these
computations.

Layer 5:The updating rule for can be obtained by

(31)
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the updating rule for by

(32)

An error signal in this layer , propagated to the proceeding
layer, is given by

(33)

Layer 4: In this layer, only the error signal needs to be
computed. is derived as

(34)

Layer 3: As in layer 4, only the error signal needs to be
computed as

(35)

Layer 2: The adaptive rule of is derived as

(36)

and the adaptive rule of becomes

(37)

where . if
is minimum in the th rule node’s inputs; , other-

wise.

IV. SIMULATION RESULTS AND DISCUSSIONS

In the simulations, a hierarchical cellular system with
microcells constructed along the Manhattan streets is assumed,
and the handoff behavior of users is characterized by a teletraffic
flow matrix [3], defined as shown in the equation at the bottom
of the page, where , , represents the probability of a
handoff call originated in cell and directed to cell,

, and denotes the probability of this handoff call directed
to the adjacent macrocell, . and
would be zero.

The number of mobile stations in each cell is assumed to
be 550, and , . Suppose
and for voice calls and and
for data calls. Low- and high-mobility users are generated
in a ratio of 7:3, and the cell dwell time is exponentially
distributed with mean 180 s (18 s) and 1440 s (144 s) for
high- and low-mobility users in macrocell (microcells),
respectively. The speed of mobile users is assumed to be
uniformly distributed in the range of 0–40 km (40–80 km) for
low- (high-) mobility users. We also assume that the mean
unencumbered session duration is s for voice
call and s for data call, and the patience time for
queued voice (data) calls is in the range of 5–20 s. One hundred
fifty channels are fixedly allocated to macrocell and micro-
cells with a pattern of .
If the OCA and CCA schemes are applied, the system re-
serves a number of channels as guard channels for
handoff calls in cell , , which are denoted by

. We do some simulations and obtain the
appropriate for OCA
scheme and for CCA
schemes at . Since the reneging (dropping)
process is considered, it is not necessary to provide a large
buffer size for new and handoff calls [9], [20], [21]; all buffer
sizes in macrocell and microcells are assumed to be three.
Note that in the following performance comparison, the OCA
scheme provides no buffer and the CCA and FCAC schemes
support the same buffering scheme and capacity as NFRM
does.
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Based upon the QoS requirement and knowledge of
CCA [20], [21] and FCAC [9] mechanisms, parameters
of membership functions for input linguistic variables
in the FCS are selected as follows: ,

,
, and

for , , , ,
, and in (9)–(14); ,
, ,

and , for , , and
in (3)–(5); , ,

, and , for
, , and in (6)–(8).

In NFCAP, the initial values of membership functions of term
sets for are chosen according to QoS requirement and
then properly adjusted via the learning algorithm. Thus, the
mean value in the membership function of

of is set to be 0.05 (0.02, 0), and let
. In

order to utilize the resource as much as possible and to guar-
antee the QoS requirement, the initial values of membership
functions of , , and for are set to be ,

, and ( , , and )
if the call is assigned to use the channels in macrocell (micro-
cell), and let and

.
The initial membership functions of the mean of the

term set are set to be equally spaced in the range of
[0,1], and let . The decision threshold in (23) is
set to be for handoff call and for new call because
handoffs are given higher priority than new calls. The use of dif-
ferent may drastically reduce the training time required in the
learning phase. As for and , their initial membership
functions were heuristically set and required further optimiza-
tion in the learning phase. Thus, was used.

Five performance measures such as the system utilization, the
new-call blocking probability, the handoff failure probability,
the forced termination probability, and the handoff rate are ob-
served. The system utilization at time, denoted by , is de-
fined as

(38)

where is the average number of busy channels in
macrocell 0 (microcell ) at time and is the channel
capacity for macrocell 0 (microcell). The new-call blocking
probability at time , denoted by , is defined as

(39)

where is the number of blocked (reneging)
new calls in cell and is the number of new
calls originating in microcell (macrocell-only region), at time

Fig. 4. U(t) for NFRM, FCAC, OCA, and CCA schemes.

.Similarly, the handoff failure probability at time, denoted by
, is given by

(40)

A call will be forced termination if it is corrupted due to a
handoff failure during its conversation time. The forced termi-
nation probability at time, denoted by , is defined as

(41)

where is the number of blocked (dropped)
handoff calls in cell and is the number of admitted
new calls originated in cell, at time . The handoff rate at time
, denoted by , is defined as

(42)

Fig. 4 shows the system utilization versus the calling
rate per user for schemes of NFRM, FCAC, OCA, and
CCA at time . It reveals that the system utilization of
NFRM gains 31.1%, 6.3%, and 1.4% improvement over the
OCA, CCA, and FCAC methods, respectively. The superior
performance of NFRM is because FCS in NFRM refers much
more effective information than other conventional controllers,
and it adopts fuzzy logic theory to balance traffic load between
macrocell and microcells and provide a soft and accurate con-
trol during traffic fluctuation. In addition, NFCRC in NFRM
possesses the learning capability of neural networks to reduce
the decision error and the fuzzy logic theory to qualitatively
represent control rules naturally in the neural network to
overcome some uncertainty and imprecision, and NFCRC
contains the rate control function, which has the flexibility of
rate assignment.

Fig. 5 shows the new-call blocking probability and
the handoff failure probability for schemes of NFRM,
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Fig. 5. P (t) andP (t) for NFRM, FCAC, OCA, and CCA schemes.

Fig. 6. P (t) for NFRM, FCAC, OCA, and CCA schemes.

FCAC, OCA, and CCA versus the calling rate per userat time
. It can be seen that, asvaries, of NFRM and

FCAC remains constant at around , denoting that the
system QoS requirement is guaranteed; and of NFRM is
minimal, denoting that the system utilization is maximum, com-
pared to FCAC, OCA and CCA. This is because NFRM uses
neural fuzzy control to the allocation of channels. Neural net-
works have merits of ability to learn from examples and to cope
with incomplete input data. Fuzzy logic is a soft logic that is
appropriate to represent in determining if a given requirement
constraint is complied or violated. This in effect removes the
imposition of worse case assumption from the decision-making
of channel selection. The neural networks used in fuzzy call ad-
mission control and rate manager can effectively estimate the
optimal call admission and appropriately allocate a number of
channels for each call. The other schemes are inadaptive to de-
termine the number of guard channels to maintain, but not to
overprotect, the QoS requirement as the traffic load is fluctu-
ating and the changing is unpredictable.

Fig. 6 shows the forced termination probability versus
the calling rate per user for schemes of NFRM, FCAC, OCA,

Fig. 7. R (t) for NFRM, FCAC, OCA, and CCA schemes.

and CCA at time . It is found that of NFRM
has a flat curve under 2%. The reason is that NFRM obtains the
unchanged , shown in Fig. 5.

Fig. 7 shows the handoff rate versus the calling rate per
user for schemes of NFRM, FCAC, OCA, and CCA at time

. It reveals that NFRM has more handoff rate than OCA
by an amount of 2%. The reason is that the design of NFRM is
based on the knowledge of FCAC and CCA, which combines
overflow, reversible, and underflow. Fortunately, the signaling
overheads for these handoffs might not cost so much as those for
conventional handoffs between macrocells since most of these
handoffs occur in the same macrocell. It also reveals that NFRM
achieves less handoff rate than CCA and FCAC by an amount
of 14.9% and 6.8%, respectively. It is not only because of more
information, such as the speed of mobile station considered in
NFRM, but also because of the neural fuzzy logic control that
can provide decision support and expert system with powerful
reasoning and learning capabilities.

V. CONCLUDING REMARKS

In this paper, we propose a neural fuzzy resource manager
for hierarchical cellular systems providing multimedia services.
The NFRM mainly contains a neural fuzzy channel allocation
processor, which is designed to be a two-layer controller. There
is a fuzzy cell selector in the first layer and a neural fuzzy
call-admission and rate controller in the second layer. The FCS
uses soft logic to determine which cell, macrocell or micro-
cell, to serve a call with channels. Then the NFCRC adopts
a five-layer neural network with fuzzy logic control to deter-
mine whether the call is accepted or not and how many channels
are allocated. Simulation results show that the proposed NFRM
improves the overall channel utilization by an amount 31.1%
higher than the OCA scheme, 6.3% better than the CCA scheme,
and 1.4% larger than the FCAC scheme, while maintaining the
QoS requirement. It still reduces the handoff rate by an amount
of 14.9% under the CCA mechanism and 6.8% below the FCAC
scheme, but increases the handoff rate by an amount of 2% over
the OCA mechanism.
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