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BER Minimized OFDM Systems With Channel
Independent Precoders
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Abstract—We consider the minimization of uncoded bit error
rate (BER) for the orthogonal frequency division multiplexing
(OFDM) system with an orthogonal precoder. We analyze the BER
performance of precoded OFDM systems with zero forcing and
minimum mean squared error (MMSE) receivers. In the case of
MMSE receivers, we show that for quadrature phase shift keying
(QPSK), there exists a class of optimal precoders that are channel
independent. Examples of this class include the discrete Fourier
transform (DFT) matrix and the Hadamard matrix. When the
precoder is the DFT matrix, the resulting optimal transceiver
becomes the single carrier system with cyclic prefix (SC-CP)
system. We also show that the worst solution corresponds to the
conventional OFDM system; the conventional OFDM system has
the largest BER. In the case of zero forcing receivers, the design of
optimal transceiver depends on signal-to-noise ratio (SNR). For
higher SNR, solutions of optimal precoders are the same as those
of MMSE receivers.

Index Terms—BER optimal multicarrier, OFDM, precoded
OFDM, single carrier.

I. INTRODUCTION

T HE DISCRETE Fourier transform (DFT)-based trans-
ceiver has found applications in a wide range of

transmission channels, either wired [1]–[3] or wireless [4]–[8].
It is typically called discrete multitone (DMT) for wired
digital subscriber loop (DSL) applications and orthogonal
frequency division multiplexing (OFDM) for wireless local
area network (LAN) and broadcasting applications, e.g., digital
audio broadcasting [7] and digital video broadcasting [8].
The transmitter and receiver perform, respectively,-point
indiscrete Fourier transform (IDFT) and DFT computation,
where is the number of tones or number of subchannels.
At the transmitter side, each block is padded with a cyclic
prefix of length . The number is chosen to be no smaller
than the order of the channel, which is usually assumed to be
an FIR filter. The prefix is discarded at the receiver to remove
interblock ISI. As a result, a finite impulse response (FIR)
channel is converted into frequency-nonselective parallel
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subchannels. The subchannel gains are the-point DFT of the
channel impulse response.

For wireless transmission, the channel profile is usually not
available to the transmitter. The transmitter is typically channel
independent, and there is no bit/power allocation. Having a
channel-independent transmitter is also a very useful feature
for broadcasting applications, where there are many receivers
with different transmission paths. In OFDM systems, the
channel-dependent part of the transceiver is a set ofscalars
at the receiver, and the transmitter is channel independent.
In DSL applications, the channel does not vary rapidly. The
transmitter has the channel profile, which allows bit and power
allocation to be employed. Using bit allocation, the disparity
among the subchannel noise variances is exploited in the DMT
system for bit rate maximization. The DMT system has been
shown to a be very efficient technique in terms of transmission
rate for a given probability of error and transmission power.

In the context of transceiver designs for wireless applications,
the single carrier system with cyclic prefix (SC-CP) system [9]
is also a DFT-based transceiver with a channel independent
transmitting matrix, i.e., the identity matrix. A cyclic prefix
is also inserted like in the OFDM system. The receiver per-
forms both DFT and IDFT operations. It is demonstrated that
the SC-CP system has a very low peak to average power ratio
(PAPR). Furthermore, numerical experiments demonstrate that
it outperforms the OFDM system for a useful range of bit error
rate (BER) [10]. We will see later that the SC-CP system can
be viewed as the OFDM system with a DFT precoder. In [11],
precoded vector OFDM systems are proposed for combating
spectral nulls. When the channel has spectral nulls, the pro-
posed system outperforms the conventional OFDM system. In
the precoded vector OFDM scheme, more redundant samples
are needed than in the conventional OFDM system. In [12], de-
signs of linear precoding to maximize diversity gain are consid-
ered.

Design of more general block transceivers, which are optimal
in the sense of minimum transmission power or minimum total
noise power, has been of great interest. In [13], general block
transceivers, which are not constrained to be DFT matrices, are
investigated. For the class of zero-padding transceivers, an op-
timal solution that minimizes the total output noise variance is
given in [13]. The optimal receiver and zero-padding transmitter
can be given in terms of an appropriately defined channel matrix
and the autocorrelation matrix of the channel noise. Information
rate optimized DMT systems are considered in [14] and [15]. In
[16], intersymbol interference (ISI)-free block transceivers are
considered. Under an optimal bit allocation, optimal transmit-
ters and receivers that minimize transmission power for a given

1053-587X/03$17.00 © 2003 IEEE
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Fig. 1. Block diagram of the OFDM system over a channelP (z) with additive noise�(n).

bit rate and probability of error are derived. In all these systems
[13]–[16], it is assumed that the transmitter has the channel pro-
file.

Recently, based on the zero-forcing solution given in [13],
Ding et al.1 consider a class of optimal precoders in [17], in
which a precoder refers to the transmitting matrix. It is assumed
in both [13] and [17] that the transmitter has the channel profile.
The optimal transmitter that minimizes the output noise vari-
ance consists of a unitary matrix, a diagonal power loading ma-
trix, and a second unitary matrix that is arbitrary [13]. The first
unitary matrix exposes the eigenmodes of the channel, whereas
power loading exploits the eigenmodes to reduce the total noise
variance. The second unitary matrix is optimized in [17] to min-
imize BER. For high SNR, the DFT matrix has been found to
be optimal for BPSK modulation. The resulting transmitter is
channel dependent.

In this paper, we will consider the minimization of BER for
OFDM systems with orthogonal precoders. The underlying
system is, in fact, the class of cyclic prefixed block transceivers
with orthogonal transmitters. We will address the design of
optimal precoders with the assumption that there is no bit and
power allocation. Notice that the objective is BER, rather than
mean squared error (MSE). In the conventional single-band
transmission system, BER is directly tied to mean squared
error. For multisubchannel systems like OFDM and SC-CP
systems, this is no longer true. In the absence of bit and power
allocation, transceivers with the same total noise variance can
have different BER performances. This is because different
transceiver designs distribute the noise among the subchannels
differently. We will consider the design of optimal precoders
for zero forcing and for MMSE receivers. In the MMSE case,
we show that when the modulation symbols are QPSK, optimal
precoders are not unique. In this case, there exists a whole class
of channel-independent optimal precoders. Examples of pre-
coders in this class include the DFT matrix and the Hadamard
matrix. It turns out that when the precoder is chosen as the DFT
matrix, the resulting transceiver becomes the SC-CP system
[9]. On the other hand, we also show that the identity matrix is
the worst precoder, and the conventional OFDM system has the
largest BER. In the case of zero forcing receiver, solutions of
optimal precoders are SNR dependent. For higher SNR, there
also exists a class of channel-independent optimal precoders.
The optimal solutions are the same as those of the MMSE
receivers. We will derive the results for QPSK modulations.
Generalizations to phase amplitude modulation (PAM), phase
shift keying (PSK), and quadrature amplitude modulation
(QAM), based on approximated BER from symbol error rate
formulae, can be obtained with slight modifications. Some

1The authors would like to thank the anonymous reviewers for bringing this
reference to our attention.

preliminary results on the zero-forcing case can be found in
[23] and [24].

The sections are organized as follows. In Section II, we
present the schematic of an OFDM system with an orthogonal
precoder. We will state results of the conventional OFDM and
the SC-CP systems that will be useful for later discussion.
In Section III, we consider zero forcing receivers and derive
the optimal precoder for QPSK modulation. Extensions to
modulation schemes other than QPSK are given in Section IV.
The performance of a precoded OFDM system with an MMSE
receiver is analyzed in Section V. Numerical examples of BER
performances are given in Section VI. A conclusion is given in
Section VII.

A. Notations and Preliminaries

1) Boldfaced lower case letters represent vectors, and bold-
faced upper case letters are reserved for matrices. The no-
tation denotes transpose-conjugate of.

2) The function denotes the expected value of a
random variable .

3) The notation is used to represent the identity
matrix.

4) The notation is used to represent the unitary
DFT matrix given by

for

II. OFDM TRANSCEIVERSWITH ORTHOGONAL PRECODERS

The block diagram of the OFDM system is as shown in Fig. 1.
The modulation symbols to be transmitted are first blocked into

by 1 vectors, where is the number of subchannels. Each
input vector of modulation symbols is passed through an
by IDFT matrix, followed by the parallel to serial (P/S) oper-
ation and the insertion of redundant samples. The length of re-
dundant samples is chosen to be no less than the order of the
channel so that inter-block interference can be removed.
Usually the redundancy is in the form of a cyclic prefix. At the
receiving end the cyclic prefix is discarded. The samples are
again blocked into by 1 vectors for -point DFT compu-
tation. The scalar multipliers , for ,
are the only channel dependent part of the transceiver design,
where are the -point DFT of the channel
impulse response . In this case, ISI is canceled completely,
and the receiver is a zero-forcing receiver.

In this paper, we consider the class of block transceivers with
an orthogonal transmitter, followed by cyclic prefix in-
sertion. This class of system can be viewed as an OFDM system
with a unitary precoding matrix , as shown in Fig. 2, where
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Fig. 2. OFDM system with a precoderT.

Fig. 3. Illustration of noise path at a zero-forcing receiver.

is unitary with . The resulting block transceiver has a
unitary transmitting matrix . To have a zero-forcing
receiver, is cascaded to the end of the receiver. The transmit-
ting matrix and receiving matrix are as shown in Fig. 2. By
considering the optimal solution of the precoder, we are ad-
dressing the problem of designing optimal cyclic-prefixed block
transceivers with orthogonal transmitters.

Bit Error Rate: We assume that the channel noise is
complex circular AWGN with variance . The modulation
scheme is QPSK, and modulation symbols

with symbol energy . Let the receiver output vector
be as indicated in Fig. 2; then, the output error vector is

. The vector comes entirely from the channel noise
as the receiver is zero forcing. The noise vectorcan be ana-
lyzed by considering the receiver block diagram in Fig. 3. The

vector consists of a block of size of the noise process
. The elements of are uncorrelated Gaussian random vari-

ables with variance . The elements of continue to
be uncorrelated Gaussian random variables with variance,
due to the unitary property of . Therefore, the th element of
the noise vector has variance given by . The
output noise is related to by

where denotes the th element of . As are un-
correlated, theth subchannel noise variance

. That is

for (1)

The real and imaginary parts of have equal variance. Let
, which is the SNR of theth subchannel; then

where (2)

As is unitary, we have . Using this
fact, we can write the average mean square error (MSE)

as

(3)

The average MSE is independent of. All zero-forcing OFDM
transceivers with a unitary precoderhave the same MSE given
in (3).

For QPSK modulation, the BER of theth subchannel is [19]

where

The average BER is

Although the MSE is the same regardless of, the choice of
affects how the same amount of noise is distributed among

the subchannels. We look at two important cases ofand the
respective BER analysis.

• OFDM System:The unitary precoder is . We have

(4)

For the th subchannel, the SNR is

(5)

where is the SNR . The BER of the OFDM system
becomes

(6)

• SC-CP System:When the unitary precoder is the DFT
matrix , the transmitting matrix . The unitary
matrix appended to the receiver is . The resulting
system shown in Fig. 4 becomes the SC-CP system [9].
The SC-CP system can be viewed as a precoded OFDM
system with precoder . All the elements in the
DFT matrix have the same magnitude, which is equal to

. Using this fact and (1), we see that the noise vari-
ances in all the subchannels are the same, and they are
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Fig. 4. Block diagram of the SC-CP system over a channelP (z) with additive noise�(n).

equal to the average MSE . As a result, all
the subchannels have the same SNR- or

-

The BER of the SC-CP system can be written as

- - (7)

The BER performance of the precoded system is determined
by subchannel SNRs. The unitary property ofallows us to
establish upper and lower bounds on the subchannel SNRs.

Lemma 1: For any unitary precoder , the th subchannel
SNR is bounded by

for (8)

where is the th subchannel SNR of the
OFDM system.

Proof: Using (1) and (4), we observe that the variance of
the th subchannel is given by

In addition, by using the fact that is unitary with ,
the columns of have unit energy, i.e., , for
all . We have

Similarly, we can show that
. The bounds of SNR

follow directly from the bounds of .
These relations hold for any unitary precoder. For a dif-

ferent choice of , the noise variances are distributed differ-
ently, but they are always bounded between and

. For any precoder , the best subchannel is no
better than the best subchannel of the OFDM system, and the
worst subchannel is no worse than the worst subchannel of the
OFDM system. In the next section, we derive the optimalsuch
that the average BER is minimized.

III. OPTIMAL PRECODERS

For the convenience of the following discussion, we introduce
the function

(9)

Fig. 5. Plot off(y) = Q(1=
p
y) for 0 � y � 1.

The subchannel BER can be expressed as

. The BER performance is

closely related to the behavior of the function . Important
properties of are given in the following lemma. A proof
is given in Appendix A.

Lemma 2: The function is monotone in-
creasing. It is convex when and concave when .

A plot of is shown in Fig. 5. Each subchannel is oper-
ating in the convex or the concave region of the function,
depending on subchannel SNR . In particular, when
, the th subchannel is operating in the convex region of

and . If , the th subchannel
is operating in the convex region, and . We de-
fine three useful SNR quantities

By definition, they satisfy . We also define three
SNR regions:

When , we have - , i.e., the subchannels of the
SC-CP system operating on the boundary between the convex
and the concave regions of . For the two SNR regions
and , the following can be observed.

• For the SNR region , , and all the subchannels
in the OFDM system have SNR for all .
In addition, using Lemma 1, we know that for
any unitary precoder . Therefore, all the subchannels are
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operating in the concave region of for any precoder
.

• For the SNR region , . In this case, all the
subchannels in the OFDM system have SNR
. Moreover, the results in Lemma 1 imply that for an

arbitrary unitary precoder , we always have ;
all the subchannels are operating in the convex region of
the function for any precoder .

For and , we can establish the following relations
among the BER performances of the three systems OFDM,
SC-CP, and an OFDM system with an arbitrary unitary precoder

. A proof is given in Appendix B.
Theorem 1: Let be the BER of the OFDM system with a

unitary precoder in Fig. 2. Then

- for

- for

Each of the two inequalities relating and - becomes
an equality if and only if subchannel noise variances are
equalized, i.e., , where is as given in (3).

Channel - Independent Transmitters Achieving - :
Theorem 1 states that we have - if and only if

are equalized, i.e., ,
where is as given in (3). In particular, to have channel
independent solutions of , we can choose

(10)

In this case, all the subchannel BERs are the same:
- . There are many unitary matrices satisfying (10).

Two well-known solutions satisfying (10) are the DFT matrix
and the Hadamard matrix [18]. When , the trans-

mitting matrix , and the transceiver in Fig. 2 becomes the
SC-CP system in [9]. The Hadamard matrices can be generated
recursively for , that is, a power of 2. The 2 2 Hadamard
matrix is given by

The Hadamard matrix can be given in terms of the
Hadamard matrix by

The Hadamard matrix is real with elements equal to. The
resulting transmitting matrix will be complex.
The implementation of Hadamard matrices requires only addi-
tions. The complexity of the transceiver is slightly more than the
OFDM system due to the two extra Hadamard matrices.

When we have a unitary that has the equal magnitude prop-
erty in (10), we can use to generate other unitary matrices
satisfying the equal magnitude property. For example, consider
a matrix with

for arbitrary real choices of and . The new matrix is
also unitary, and it has the equal magnitude property.

BER of Precoded OFDM Systems in Different SNR Re-
gions: The results in Theorem 1 imply that the conventional
OFDM system ( ) is the optimal solution for in .
When all the subchannels are operating in the concave region
of , the OFDM system has the smallest error rate. Forin

, it is the worst solution; when all the subchannels are
operating in the convex region of , the OFDM system has
the largest error rate. However, as we will see next, the SNR
region corresponds to a high error rate, whereas
corresponds to a more useful range of BER. The error rate
behavior can be analyzed by considering the value ofin the
following three regions.

1) The case : In this range, the OFDM system is the op-
timal solution. All the subchannels have , and
hence, . In this range of SNR,
the error rate is at least 0.0416, which is a BER that
is too large for many applications. Furthermore, the min-
imum error rate 0.0416 can be achieved only when all the
subchannels have , which is true only in
the special case .

2) The case : For this range, the OFDM system has the
largest BER, and the BERs of all precoded OFDM systems
are lower bounded by - . All subchannels are operating
in the convex region of , and . The subchannel
error rate is less than , and the average

. Notice that when , the worst subchannel
of the OFDM system has an error rate ,
and the average BER is at least . Therefore,
is also the minimum SNR to have an error rate lower than

in the OFDM system. For example, for ,
is the smallest SNR for the OFDM system, to achieve an

error rate . For , is the
smallest SNR for achieving a BER

. The SNR region corresponds to a more useful
range of BER.

3) The case : We can plot - and as functions
of . The curves of and - cross in this range as

is smaller than - for and larger than
- for . In most of our experiments, the crossing

of the two curves happens at an SNR close to, i.e., the SNR
for which the subchannels of the SC-CP system fall in the
convex region of the function .

Remarks: When the channel has a spectral null, say ,
the subchannel noise variances in the SC-CP system given in
(3) go to infinity. The average probability of error is half in all
subchannels, regardless of the value of SNR. In this case,
goes to infinity, and the SC-CP system is not an optimal solution
for any SNR. Such cases can be avoided by using an MMSE
receiver, to be discussed in Section V.

IV. OTHER MODULATION SCHEMES

The derivations in Sections II and III are carried out for
QPSK modulation. Using approximations of BER obtained
from symbol error rate (SER), we can extend the results to
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PAM, QAM, and PSK with slight modifications. Optimal pre-
coders are obtained based on BER approximation formulae. We
will take QAM modulation as an example. Suppose the inputs
are ary QAM symbols with variance . The subchannel
SER can be approximated by [19]

(11)

where is the SNR in theth subchannel. When
Gray code is used, BER can be approximated from SER
as [19]. Therefore, we have

where

and (12)

The subchannel SNRs observe the same bounds given in (8),
. When SNR is

large enough such that all the subchannels satisfy
, equalizing the subchannel noise variances will minimize the

approximated BER given in (12). The condition for this is

where (13)

On the other hand, when for all , the conven-
tional OFDM system is the optimal transceiver. The condition
for this is , where is now . The
conditions now depend on the QAM constellation. For a large
constellation, i.e., larger , both and also become larger.

Similarly, the above technique is valid for any modulation
scheme in which the subchannel symbol error probability can
be either approximated or expressed as

for some constants and that are independent of subchannels.
Examples of such a case include PAM, QAM, and PSK modu-
lation schemes. Once the error probability is in such a form,
we can invoke the convexity and concavity of to obtain the
SNR ranges for which the OFDM system or the SC-CP system
is optimal.

Remark: For real modulation symbols, e.g., PAM, the noise
relevant for symbol detection of theth subchannel is only the
real part of but not the imaginary part. The subchannel noise

has equal variance in real and imaginary parts. Therefore, the
relevant noise variance is , which should be used in
the evaluation of , i.e., .

V. MMSE TRANSCEIVERS

In this section, we consider the case that the receiver is
one that has MMSE. We will show how to derive the optimal

precoder for an MMSE receiver. We will see that using an
MMSE receiver improves the system performance, especially
when the channel has spectral nulls. The following lemma gives
the MMSE receiving matrix for a given unitary precoder (the
proof is given in Appendix C).

Lemma 3: Consider the precoded OFDM transceiver in
Fig. 2. Suppose the inputs have zero mean and variance,
with real and imaginary parts having equal variances . The
noise is circular complex Gaussian with variance. Let
be the receiver output, and let the error vector . For
a given unitary transmitting matrix , the optimal
receiving matrix that minimizes is given by

where diag

(14)

The real and imaginary parts of have equal variance. The
average MSE is

. In this case, theth receiver output can be expressed
as

where

(15)

For the th subchannel, the variance of interference plus noise
is . The subchannel signal-to-interference-noise-ratio
(SINR) is given by

(16)

From the above lemma, we see that the average MSEis also
independent of the choice of like the zero forcing case. The
MMSE receiver can be easily obtained from the zero forcing re-
ceiver by replacing the channel-dependent scalars from
to given in (14).

When an MMSE receiver is used, the system is not ISI free,
and the error does not come from channel noise alone. The term

is a mixture of channel noise and signals from all the other
subchannels. However, Gaussian tail renders a very nice approx-
imation of BER [20]–[22], as we will see later in examples. The
approximation is extremely good for a reasonably large, e.g.,

. Throughout the rest of the paper, we will use the
Gaussian assumption.

The computation of BER depends on the modulation scheme
used. We will use QPSK as an example. The results in Lemma
3 tell us that subchannel errors have equal variances in real and
imaginary parts; therefore, the real and imaginary parts of the
QPSK symbols have equal probability of error. The BER of the
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th subchannel is . To simplify derivations, let us de-
fine

Then, the subchannel BER is

Using (16), we can verify that the argument of in the above
equation can be expressed as

(17)

Therefore, we have

where

(18)

For the conventional OFDM system, the precoderis the
identity matrix. We can see from (16) that the subchannel SINR
is : the same as that in the zero-forcing case (5); an OFDM
system with a zero-forcing receiver has the same performance
as that with an MMSE receiver. For the SC-CP system,is the
DFT matrix with . Using the definition of ,
the BERs of OFDM and SC-CP systems are given, respectively,
by

- (19)

Lemma 4: The function defined for
is convex with and .

The lemma is proved in Appendix D. A plot of for
is given in Fig. 6. We only need to consider that the

interval as the argument of in (18) is in this
range. Using the convexity of , we can show the following
theorem.

Theorem 2: Let , as given in (18), be the BER of
the MMSE-equalized precoded OFDM systems with a unitary
precoder . Then

-

The first inequality becomes an equality if and only if sub-
channel SINRs are equalized.

Proof: Using (17) and the fact that the SINR
, we can see that

Fig. 6. Plot ofh(y) = Q(
p
y � 1) for 0 � y � 1.

for

As in the proof in Theorem 1, we can use the convexity of
to show that

The lower and upper bounds are, respectively,- and
, which are given in (19).

As we mentioned in the previous section for the zero forcing
receiver, the output noise becomes infinitely large in the pres-
ence of spectral null. In the MMSE case, the expression of sub-
channel SINR in (16) indicates that even if the channel has
spectral nulls, is not zero.

Optimal Precoders:Theorem 2 states that the minimum
- is achieved, if and only if are equalized.

Observing (16), we see that can be equalized by choosing
, which has the equal magnitude property in (10). The same

class of achieving - in the zero forcing case is also
optimal for the MMSE case. Again, the Hadamard matrix
along with the DFT matrix are examples of such solutions.
On the other hand, the conventional OFDM system, although
optimal for low SNR in zero-forcing case, is the worst solution
in MMSE case for all SNR .

Other Modulation Schemes:For modulations other
than QPSK, we can use approximations of BER from
SER as in Section IV. The results will be stated without
proofs. We will use -ary QAM as an example. By (11),

, where is as given in (16).
Let us define

Then
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Similar to the QPSK case, we can use (16) to express the
argument of in the above equation as

. Therefore, we have

where

(20)

To exploit the convexity and the concavity of , we define

and

where

and

We can show that is convex over and , and it is
concave over . Notice that when , the th
subchannel is operating in the convex regionof . For the
conventional OFDM system, the condition for this is

(21)

Similarly, when and are such that

(22)

the th subchannel of the conventional OFDM system is oper-
ating in the convex region . When SNR is high enough so that
(21) is true for all or when the SNR is low enough so that (22)
is true for all , all the subchannels of the conventional OFDM
system will operate in one of the convex regions of . In this
case, we can invoke the convexity of to show that the class
of unitary matrices satisfying the equal magnitude property in
(10) are optimal. It can be verified that the casecorresponds
to a very high error rate, whereas corresponds to a more
useful range. To have all subchannels operating in, we need

where

It can be further verified that is less than the value of
given in (13). This means that - becomes the min-
imum BER at a smaller SNR than - .

VI. SIMULATION EXAMPLES

We will assume that the noise is AWGN with variance
. The modulation symbols are QPSK with values equal

to and SNR . The number
of subchannels is 64. The length of cyclic prefix is
3. Two channels with four coefficients will be
used in the first three examples: ,

, , ,
and , ,

, . The magnitude
responses of the two channels and are shown in

Fig. 7. Frequency responses of the two channelsp (n) andp (n).

Fig. 8. Example 1. Performance comparison ofP , P , P ,
P - , andP - for the channelp (n).

Fig. 7. The BER performance is obtained through Monte Carlo
simulation, unless otherwise mentioned.

Example 1: We will use in this example. We compute
the values of , ,
and , respectively, as , 8.85, and 14.74
dB.

Fig. 8 shows and - as functions of SNR . We
also show the BER for the case when the transmitting matrix

is a unitary type II DCT matrix, which is denoted as .
In this case, the precoder given by does not have the
unit magnitude property in (10). Whenever SNR
is larger than dB, - given in (7) becomes the
minimum BER for any unitary precoder. For , the
conventional OFDM system is the optimal solution. For ,
we observe that . In this case, the OFDM system
is optimal only for BER larger than 0.2. For either SNR range,

or , and the performance of is in between
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Fig. 9. Example 2. Performance comparison ofP , P , P ,
P - , andP - for the channelp (n).

and - . The BER performances of MMSE receivers
and - are also shown in the same plot.

In each case, the BER of the MMSE receiver is lower than the
zero-forcing receiver for all SNR. For the OFDM system, an
MMSE receiver does not improve BER: .
In addition, observe that the crossing of - and occurs
around BER and dB, which is a value very close
to dB.

Example 2: The channel in this example has a spec-
tral null around (see Fig. 7). The DFT coefficients around

are very small. The values of , , and are, respectively,
1.4, 33.8, and 51.9 dB. Fig. 9 shows the five BER performance
curves as in the previous example, , , ,

- , and - . Due to the zero close to the unit circle,
the BERs of the three zero forcing systems , , and

- become small only for large SNR. However, there is no
serious performance degradation in the SC-CP system with an
MMSE receiver. Notice that the crossing of - and
occurs around dB, which is a value closer to
dB than to dB or dB. The BER corre-
sponding to the crossing is .

Example 3: In this example, the channel is , like in
Example 1. We plot the actual BER and the approximation

computed from (18) (see Fig. 10). For the SNR grid
considered in the plot, the actual BER is obtained by Monte
Carlo simulation. Two cases are shown: the SC-CP system and
the case that the transmitting matrixis a DCT matrix. We can
see that in both cases, the approximations are indistinguishable
from the actual BER. This example demonstrates that even
though output errors consist of ISI terms and channel noise,
the BER is well approximated by Gaussian tail for all SNR.
We will use (18) in the next example to compute BER over a
fading channel.

Example 4: We use a multipath fading channel with four
coefficients. The coefficients are obtained from independent
circular complex Gaussian random variables with zero mean
and variances given, respectively, by 8/15, 4/15, 2/15, and

Fig. 10. Example 3. Comparison of the actual BER and the BERP

computed from (18). For the DCT case, the actual BER is the dotted line, and
P is the dotted line marked with “�.” For the SC-CP system, the
actual BER is the solid line, andP - is the solid line marked with
“�.”

Fig. 11. Example 4. BER performancesP , P , and
P - over a four-tap fading channel.

1/15. We compute the BER performances , ,
and using (18) and average the results for
20 000 random channels (see Fig. 11). For high SNR range,

- requires a significantly smaller transmission
power than for the same BER. The performance of

is in between - and for all SNR.

VII. CONCLUSIONS

In the context of transceiver designs, the optimality addressed
in most of the earlier works is in the sense of mean squared
error minimization. In the paper, we consider directly the min-
imization of uncoded BER for the class of OFDM transceivers
with unitary precoders. For QPSK signaling and MMSE recep-
tion, there exist channel-dependent optimal precoders. This is
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the class of unitary matrices with the equal magnitude prop-
erty, i.e., , for . One of the
solutions is the DFT matrix, and the resulting transceiver is the
SC-CP system. In the case of zero-forcing receivers, the solution
of optimal precoders depends on SNR. For higher SNR associ-
ated with a practical range of BER, the optimal precoders that
are channel independent are also the set of unitary matrices with
the equal magnitude property. In the presence of channel spec-
tral nulls, the performance of zero-forcing receivers exhibits se-
rious degradation. Robustness against channel spectral nulls can
be achieved by using MMSE receivers.

APPENDIX A
PROOF OFLEMMA 2

Let for ; then, . The
lemma can be proved by computing the first and second deriva-
tive of . The function for is convex
with first derivative and second deriva-
tive . The function for is also
convex with and

The first derivative is given by
, which means that

is strictly monotone increasing. We can verify that
can be expressed

as

Therefore, for and for ,
which proves the lemma.

APPENDIX B
PROOF OFTHEOREM 1

We will use the concavity and convexity of to prove
Theorem 1. Given a set of numbers with

, the strictly monotone increasing property and
the convexity of imply

where and

Similarly, given with , the concave
property of for implies

where and

Let us first consider the case . For this range, the
subchannel SNR of the OFDM system . For a
general unitary precoder, we can use (8) to see that whenever

a subchannel has SNR satisfying , it is operating in the
convex region of . We have

(23)

On the other hand, using (2), we have

The inequality follows from the fact that is in the
convex region of for . Therefore

(24)

where we have used the fact that for any unitary, its rows have
unit energy for all . Combining (23) and
(24), we obtain - for . Similarly,
when , we can use the concavity of to show that

- .

APPENDIX C
PROOF OFLEMMA 3

Proof: Without loss of generality, we can consideras the
interconnection , where is a general non-
singular matrix, and is a diagonal matrix with th diagonal
element . Let be the output vector of the matrix

. If we choose , then becomes the zero forcing so-
lution. In the absence of channel noise, we have . There-
fore, can be expressed as , where is
a noise vector from the channel noise alone, and .
By the orthogonality principle, should be orthogonal to the
observation vector , i.e., . This yields

. Solving this equation, we get

(25)

where is a diagonal matrix with the th diagonal element
equal to . Therefore, the optimal is

. Letting , we obtain the expression of
given in (14). Using as in (25), we can further verify that

can be written as . Hence
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The input symbols are assumed to be uncorrelated with real and
imaginary parts having the same variance; the vector has
the same statistics, which are implied by the unitary property of

. Therefore, we have

Therefore, the MSE is as given in
the lemma. We also observe that the error vector consists of two
parts and . With the assumption that the
input have equal variance in real and imaginary parts, we can
verify that the vector also has the property that the
real and imaginary parts have the same variance. Similarly, the
noise vector has the same property, and also has the
same property. Therefore, we conclude thathas equal variance
in real and imaginary parts.

As , the th element has the
expression in (15). The variance of is

The above expression means that and that
. The th subchannel

SINR

Using the expression of in (15), we obtain , as given in
(16).

APPENDIX D
PROOF OFLEMMA 4

We will prove the lemma by showing that
and . The function can be written as

, where . The first and second
derivatives of are, respectively,
and , which are both larger than zero
for . The first and second derivatives of are
computed in Appendix A. As and , the
first derivative . We can verify that
the second derivative can be rearranged as

which is larger than or equal to zero.
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