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Fig. 4. Computational complexity of the demodulation for the ML, SDPR-P,
and SDPR-D detectors.
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where K is the number of users. In effect, the computational com- DFT-Based Implementation

plexity for the ML detector increases exponentially with the number

of users, whereas that of the SDPR detectors is of polynomial order. Yuan-Pei Lin and See-May Phoong
It should be mentioned here that the computational effort pertaining

to the SDPR-D detector can be further reduced by taking the special

structure of matriXA; into consideration, but this possibility has yetto = Abstract—The implementation of OFDM transmitters typically consists
be explored. of a discrete DFT matrix and a digital-to-analog (DAC) converter. Many
existing results on the analysis of OFDM systems, e.g., spectral roll-off, are
based on a convenient analog representation. In this paper, we show that the
VI. CONCLUSION analog representation and the DFT-based OFDM transmitters are equiva-
lent only in special cases. Using the analog system to analyze the DFT-based

A multiuser detector for DS-CDMA systems based on SDP h&CDM system may not be valid if there is no equivalent analog represen-
been proposed. It has been shown that the ML detection can 63&0”
carried out by “relaxing” the associated integer programming problemindex Terms—Analog representation, DFT-based implementation,
to a dual SDP problem, which leads to a detector of polynomiQFDM, pulse shaping, window.
complexity. Computer simulations that demonstrate that the proposed
detector offers near-optimal performance with considerably reduced |
computational complexity, compared with that of existing primal SDP

relaxation-based detectors, have been presented. The orthogonal frequency division multiplexing (OFDM) systems
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some restricted cases. Therefore, analyses of OFDM systems directly

e SR M2 general. The analog and DFT-based transmitters are equivalent only in
X u-mp (7)

X M2 ———» t . o .
gt using the DFT-based schematic in Fig. 2 are more useful than using the

ejﬂ"(—wz“)t analog schematic in Fig. 1. For example, designirig] andi(t) to
X u-a1(t) improve a spectral roll-off is more useful than designirig). A nec-

essary and sufficient condition for the equivalence of the analog and

X _upni——» g(t)

. DFT-based transmitters will be derived. An example of a seft(of,
) o /A MI2-1)t " w[n], andh(t) that satisfies the condition will be given.
% Upn1 (1) -
Xu-1 > &) X) » Il. ANALOG VERSUSDFT-BASED TRANSMITTERS

Consider the DFT-based implementation of an OFDM transmitter in
Fig. 2. Given a discrete window[n] and a reconstruction filte(t),
we will see that there may not exist a corresponding pulse For the
commonly used case of a rectangular windojx] and an ideal low-
ting the subcarrier spacing bk, the output of the transmitter is given passi(t), it is mentioned in [3] that the equivalent shaping filtgt)
by is not the rectangular pulse. In fact, as we will show in the following
lemma, in this case, there does not exist a corresponding analog pulse

Fig. 1. Baseband analog representation of the OFDM transmitter With
subcarriers and pulse shaping filtgit).

M/2—-1 ikt g(t) atall; itis not possible to analyze the DFT-based transmitter using
2(t) = Z rrg(t)e @ an equivalent analog transmitter.
k=—M/2 Lemma 1: Let the OFDM transmitter in Fig. 2 have a rectangular
window wn]

assumingV/ is even. The pulse-shaping filte(t) is usually a rectan-

gular pulse of lengtly = 27 /{2. Many studies on OFDM systems . {1’ 0<n<M-1
win

are carried out using the expression in (1), e.g., the spectral roll-off -
9 P (1), eg b 0, otherwise

of the outputs of OFDM transmitters [3], [4], the effect of carrier fre-
quency offset [5], and crest factors of the transmitter outputs [_6]. And an ideal lowpass reconstruction filteft) with

number of nonrectangular pulse shapé9 has been proposed to im-

prove the spectral rolloff of the transmitted signédt), e.g., [4] and . 1, |9 < x/Ts

[6]. Although the analog representation is convenient for analysis, in H(j$) = {07 otherwise. )
practice, the modulation of subcarriers is done in the discrete time.

Such a transmitter (see Fig. 2) consists of two parts [3]: a digital &he outputs of the two systems, respectively, andy(t), are not the
analog converter (DAC) and the part performing digital modulation glame for any choice of pulse shaping filtgr).

®)

subcarriers, which can be efficiently implemented using\&rby A/ Proof: Using (2) and the fact that[»] is as in (3), we arrive at
inverse discrete Fourier transform (IDFT) matrix. The sampling period M2 s

isT, = Tp/M, and the discrete sequeneg:] shown in Fig. 2 is typ- B N j(2r/M)kn ,

ically a rectangular window of length/ . yity= Y m )y e h(t — nT,).

Suppose the reconstruction filter of the DACi&), as indicated in k=—Mfz - n=0

Fig. 2. The output of the DAC with sampling peri@d is given by Comparing this expression with (1), we conclude tha) andy(t) are

o0 equal for an arbitrary sequeneg if and only if there existg(¢) such
y(t)= Y y[nlh(t —nT,) that
n——oo ]\471
M/2-1 . o - ’
wherey[n] = wln] Z o) /M @ g(t)eTH ot = Z TR T
n=0
k=—M/2

fork=-M/2, -M/24+1,..., M/2-1. (5)
As indicated in Fig. 2y[n] is the input of the DAC. The waveform of

y(t) resembles that of(t)—the output of the analog transmitter—es4n particular, the above equation is true for= 0 and% = 1. When
pecially for larged, [1]. In [3, Ch. 5], it is mentioned that when we &k = 0, we have

use the digital implementation with an ideal lowpass reconstruction

filter 2.(¢) in the DAC converter, the shaping filtg(t) is no longer the iy

rectangular pulse. A precise connection between the DFT-based trans- g(t) = ZO h(t = nT).
mitter and the analog representation has not been stated earlier in the "=
literature. Whenk = 1, we havey(t)e’*o! = S Mt ei2nm/Mp(t — nT,). Let

In this paper, we consider the conditions when the DFT-based tral 1) = o0ty (t). Using$2o = 27 /(MTS), we can rewrite the con-
mitter in Fig. 2 admits an analog representation in Fig. 1. For the ca§gon asg(t) = EMfl F(t—nT,). We cén verify thaEM’l h(t —
- n=0 J\" s/ g

of a DFT-based transmitter with a rectangular windeyw] and an nT,) # M1 ¥(+—nT,) and the solution of (#) obtainend:?oﬂf -1
ideal lowpasd:(¢), no analog representation exists. It is known that iéontradict:g?ﬁe. solution of(#) obtained for)e = 0. Therefore, (5)

we choose a rectangular windgi#) in the analog representation, the.snnot be satisfied for ani/ pUIget). AAA
output s close to that of the DFT-based transmitter in the time domain;; i known that the outputs of the analog and DFT-based transmit-
window, but the two transmitter outputs can have considerable diffgkis 4re close with proper choicesgitt), w[n] andh () [1], [3]. In

ence in spectral roll-offs. We will show that in fact, when the analoﬁarticular consider the case tht) is a rectangular pulse
transmitter has a rectangulg(t), a DFT-based implementation does

not exist, regardless of the choiceswfr] andi(t). Given an arbi- ) { 1, 0<t< Ty
g i —

. - . . . . = D
trary pulseg(#), an equivalent digital implementation does not exist in 0, otherwise whereTy = 27 /<. ®)
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Fig. 2. Commonly used digital implementation of the OFDM transmitter, whegre= 27 /M.

e Ji @, (—M/Z)ll
X _upwn] X s-un(n] DAC V- ()
o Jod-M2+ 1
s-mn+ [n] V_an+(?)
* - (n] X DAC

Y| gJoeM2-1)n Y
Xun-1 W[n) X Saa-i[7] DAC Var-1(f) )

Fig. 3. Equivalent block diagram of system in Fig. 2, where= 27 /M.

v

The discrete window[r] is also rectangular, as given in (3). Choosg@ulsey(t). Conversely, for a given pulsgt), a DFT-based implemen-
h(t) to be the ideal lowpass filter given in (4). Then, the samples ¢dtion does not exist in general. The equivalence of the two systems in

z(t) andy(t) are identical, i.e., Figs. 1 and 2 can be established in certain cases. For the convenience
‘ of derivation, we redraw the system in Fig. 2 as Fig. 3, in which the
x(nly) = y(nTs) =y[n],  forallr. (7)  DAC block is as in Fig. 2. The output due to thesubcarrier is given

by Vi(jQ) = Sk(e’"**)H(j$2), [9]. Notice thatS,(e’) is a fre-

The waveform ofy(¢) andx(t) are close for the intervad0, Ty ), but quency-shifted and scaled versionl&f(e’*), i.e.,

outside the intervak:(¢) comes abruptly to 0, whilg(¢) has a much
smoother transition. Although the energy outside the window is small Sk(cj“) =W (C.i(w—%k/M)) )
compared with that inside, this leads to considerably different behav-
iors betweenc(¢) andy(t) in out-of-band roll-off. We can easily see Therefore, we have
this by observing that the spectrumdf) is bandlimited, whereas the con — v (T —2mk/AD) .
spectrum ofz(#) has large sidelobes due to a rectangylay. As a Vi) =2 (6 ) H(i%)
result, the analysis of spectral roll-off based on the analog transmitter — W (6;75(971690)) H(jQ) 8)
outputz(t) may not be appropriate. To improve spectral sidelobes, de-
signingw[n] andh(t) directly is more meaningful than designing), where we have used the facts that = 27/7, andTy, = MT,. On
becausg(t) does not allow a DFT-based implementation in generalthe other hand, the output of the analog representation in Fig. 1 due to
Remarks: the kth subcarrier is given by
* Notice that the relation in (7) does not requirg) to be an ideal . .
lowpass filter. As long a&(t) satisfies the property(nT.) = Ur(§2) = 2 G (@ = ko).
6[n], (7) continues to hold. The equivalence of the two systems in Figs. 1 and 2 means that
* In a DFT-based implementation, typically, a cyclic prefix Oka(gz) = Ux(Q), and therefore
length, sayl, is added so that ISI can be canceled at the receiver.

To this end, we can modify(t) to be a rectangular window for w (e,ﬂ‘s(””““f’)) H(Q) = GG (Q— ko))
the intervall— LT, Ty). Then, we still have (7). , / o
« Inthe above derivations, we have used only one OFDM block. " # = —M/2, —M/2+ 1, ..., M/2 — 1. Summarizing, we have

the outputs of the two transmitters are not the same for one bloéR€ following theorem. I )
they will also be different when more blocks are considered. Theorem 1: The OFDM transmitter in Fig. 1 can be implemented as

in Fig. 2, namely, the two systems are equivalent, if and only if the pulse
shaping filterg(t), the digital windoww[n], and the reconstruction

[1l. CONDITIONS FOREQUIVALENCE OF ANALOG REPRESENTATION ;
filter h(t) satisfy

AND DIGITAL IMPLEMENTATION

ro G . .
We see in the previous section that given a windej] and a re- W(e ) H (j(2+ k)
construction filterh(¢), there may not exist a corresponding analog =G, fork=-M/2,-M/2+1,...,M/2-1. (9)
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Fig. 4. Example 1lllustration of W (e727s), H(jQ) andG(j Q). Frequency normalized by Q..
Fig. 5. Example 2.Power spectral densities of the outputs of the two

In other words, if we are to use a shaping filigt) that allows a digital transmitters in Fig. 1 and Fig. 2.
implementation as in Fig. 2, the pulgét) should be such that we can
find h(¢t) andw[r] that satisfy (9). Notice that we did not place any ] o ) )
constraint on the duration gft), 2(¢), andw|n] in the derivation; the IS NO practical realization for the functiong?), w[n], anda(t) in-
condition in (9) is valid for infinite pulses as well. this case, this example demonstrates that the analog representation and

Corollary 1: The analog OFDM transmitter with a rectangulaPF T-Pased implementation can be equivalent in some cases.
pulseg(#) in Fig. 1 does not admit the DFT-based implementation in Example 2: Consider the casé/ = G4. The pulse-shaping filter

Fig. 2, regardless of the choiceswofn] andh(t). g(t) for the analog representation in Fig. 1 is a rectangular window,
Proof: Suppose it admits a digital implementation witft) and &S given in (6). The WIndF)VAD[n] in t_he DFT-based implementation is
w[n]. Then, by Theorem 2, we have a discrete rectangular window as in (3). We choose the reconstruction
v filter h(t) to be a zero-order hold followed by a second-order elliptical
W (e’ ) H(j (2 + ko)) = G(j ) filter. The parameters of the second-order elliptical filter are as follows:
wherek = —-M /2, —M/2+1, ..., M/2 -1 Passband ripple size 1 dB, stopband attenuatien20 dB, and natural
and G(jQ) = o~ 9T09/2 sin(To$2/2) /0. frequency= 0.5(2,. Assume that the inputs, are uncorrelated mod-

ulation symbols with the same variance. The power spectral densities
Notice thatG(j$2) # 0 for —Qo < © < 0impliesW(e’?"=) # 0 for  (psd) of the outputs of the two transmitterg) andy(#) are as shown
—{ < £2 < 0. Inturn, this meandT (j€2) = H(j(2 — MQ0/2)), inFig. 5. The maximums have been normalized to one. Notice that for
for Q@ € (=%, 0). Similarly, the fact thatz(j2) # 0 for @ € the DFT-based transmitter, the spectrum of the ougptitdepends on
((=M/2—-1)Qo, —M/2%0) implies H (j$2) = H(j(2— M /2)) the window as well as the reconstruction filter. The spectrum(of
for{ € ((—=M/2-1)Q0, —M/2€2). Combining these two propertiesandy(¢) can be very different, even though rectangular windows are
of H(j2),we haveH (j2) = H(j(Q2 — MQy)), for—Qp < Q@ < 0. used in both cases.
Notice thati¥'(e’“7+) is periodic with periodd €2, and
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