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ON MODELLING DATA FROM DEGRADATION SAMPLE PATHS OVER TIME

Tsung I. Lin1∗ and Jack C. Lee2

National Chiao Tung University

Summary

This paper is mainly concerned with modelling data from degradation sample paths over
time. It uses a general growth curve model with Box–Cox transformation, random effects
and ARMA(p, q) dependence to analyse a set of such data. A maximum likelihood esti-
mation procedure for the proposed model is derived and future values are predicted, based
on the best linear unbiased prediction. The paper compares the proposed model with a
nonlinear degradation model from a prediction point of view. Forecasts of failure times
with various data lengths in the sample are also compared.

Key words: ARMA(p, q) dependence; Box–Cox transformation; ECME; maximum likelihood es-
timation; semi-variogram.

1. Introduction

In this paper, we are concerned with modelling degradation data such as measurements of
the growth of fatigue cracks. In general, engineers need to produce units of material with ac-
ceptable reliability and at an acceptable life-cycle cost. Most material accumulates irreversible
damage during its life, which leads to failure. The cumulative damage reduces the reliability
of the material as time increases. To maintain an acceptable reliability in the unit, inspections
and repairs must be made, which increase life-cycle costs. Thus, cumulative damage plays a
very important role in the design of the unit.

An example of cumulative damage is the fatigue crack growth data of Bogdanoff & Kozin
(1985 p .242) as plotted in Figure 1(a). The crack lengths represent the growth of cracks in
metal for 21 notched test units under several constant load amplitude duty cycles. The crack
lengths of each unit were recorded at every 0.01 million cycles over a period of 0.12 million
cycles. Initial crack length was 0.9 inches. Testing was stopped if the crack length exceeded
1.60 inches, defined as a ‘failure’, or at 0.12 million cycles. The failure times for the 21 test
units are given by Lu & Meeker (1993 Table 2).

For degradation data such as the fatigue crack growth data described above, it is very
important to develop a model capable of predicting the fatigue crack growth and, most im-
portant of all, predicting the time to failure. Then engineers can order repair or replacement
before the failure actually occurs. Once the unit or material has failed, it is too late to repair,
and failure could cause heavy physical and/or economic losses.
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This type of data is quite typical in studies such as accelerated life testing, because the
product usually takes a long time to wear out. One important characteristic of the observations
obtained in degradation studies is that they are measurements of several units, and each unit
is measured over time. The measurements on a single unit are not independent because they
are time-series in nature. If there are only a few measurements on the unit, say fewer than
20, then the dependence may be too hard to estimate. Fortunately, such data are usually
obtained for several similar and independent units. Also, the linearity of growth function
can be enhanced by the well known Box–Cox transformation (Box & Cox, 1964), as seen in
Figure 1(b). These phenomena occur in many studies including technology substitutions as
reported by Keramidas & Lee (1990). This paper predicts that a general growth curve model
having ARMA(p, q) dependence coupled with the Box–Cox transformation can be applied to
degradation data. A model is proposed and compared, in terms of its prediction accuracy and
failure time prediction, with the degradation model of Lu & Meeker (1993) using the fatigue
crack data of Bogdanoff & Kozin (1985). The failure time is the time to grow a crack from
0.90 inches to the critical crack length of 1.60 inches. A credible prediction of failure time is
important, particularly to engineers.

Applying the Paris–Erdogan law (Paris & Erdogan, 1963), the degradation model for
failure time proposed by Lu & Meeker (1993) is

Yij = η(tij ; bi ) + εij , (1)

where tij = j×104 cycles and η(tij ; bi ) = −1/bi2 log(1 − 0.90bi1bi1bi2tij ) (i = 1, . . . , N,

j = 1, . . . , Ni), in which bi = (bi1, bi2) denotes a vector of the i th unit random-effects pa-
rameters, representing individual unit characteristics. We also have ai(tij ) = 0.90 exp(Yij ),
where ai(tij ) denotes the crack length of the i th unit at time tij . The εij and the bi are all

independent with εij
d= N(0, σ 2

ε ) and bi
d= N(τ ,�b). The model specified by (1) is called

the Lu and Meeker model (LMM) throughout the paper.
The LMM is essentially a nonlinear growth curve model with random coefficients. Lu

& Meeker (1993) provide a two-stage method for estimating the random-effect parameters
assuming no autocorrelation since each unit is relatively short in length. To use this estimating
procedure in practical situations, the number of measurement times for each test unit, Ni ,
should be sufficiently large.

In Section 2, we present the proposed model. Section 3 is devoted to the prediction
of future values. Section 4 illustrates the application of the model to the fatigue crack data.
Section 5 gives some concluding remarks. The Appendix gives the derivation of a Hessian
matrix for the asymptotic standard errors of maximum likelihood estimates (MLEs).

2. General growth curve model

2.1. Model specification

The growth curve model (GCM) has been considered by many authors since Potthoff &
Roy (1964). Laird &Ware (1982) considered the random effects model with white noise errors.
Jennrich & Schluchter (1986) discussed various types of patterned covariance structures,
including random effects models and the AR(1) model. Chi & Reinsel (1989) considered the
MLEs for the model with both random effects and AR(1) errors by the score method. Rochon
(1992) presented a fixed-effects model for analysing repeated measures experiments having
ARMA(p, q) covariance structures with time heteroscedasticity.
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Some transformations on the observations could enhance the justification of assumptions
such as normality of the distribution or linearity of the growth curve function. Keramidas
& Lee (1990) showed tremendous improvement in predictive accuracy using the Box–Cox
transformation models for technology substitutions. This is primarily because the linearity
assumption for the growth function can be enhanced significantly with the Box–Cox trans-
formation, and the observations can be given a proper dependence structure. Assumptions of
normality and constancy of variance are of relatively minor importance in improving predic-
tive accuracy. In this article, we extend the growth curve model to incorporate the Box–Cox
transformation, random effects and ARMA(p, q) errors dependence.

The model considered here is

Y
(λ)
i = Xiβ + Zibi + εi (i = 1, 2, . . . , N) ,

where Yi denotes an Ni×1 vector of measurements, β denotes an unknown m1×1 vector
of fixed effects regression coefficients, Xi and Zi denote known design matrices, bi denotes
an m2×1 vector of random effects distributed as N(0, σ 2	) and εi denotes an indepen-
dent Ni×1 vector of within-individual errors whose components are assumed to follow the
ARMA(p, q) model. That is,

εit =
p∑

j=1

φjεi,t−j −
q∑

j=1

θj ai,t−j + ait ,

where εi = (εi1, . . . , εiNi
) and {ait } denotes a series of shocks or white noise, which are

identically and independently distributed as N(0, σ 2
a ). In our study, we assume the observa-

tions for each unit are made at equally spaced intervals in time. Following Box, Jenkins &
Reinsel (1994 p .53), we write φ(B)εit = θ(B)ait , where B is the backshift operator such
that Bkεit = εi,t−k , φ(B) = 1 − φ1B − · · · − φpB

p and θ(B) = 1 − θ1B − · · · − θqB
q

are polynomials of B of degrees p and q, respectively. For the process to be stationary
and invertible so that there will be a unique model corresponding to the likelihood function,
the roots of φ(B) and θ(B) must lie outside the unit circle, which constrains the parameter
vectors φ = (φ1, . . . , φp) and θ = (θ1, . . . , θq) to lie in regions Cp and Cq , respectively.

Let σ 2Ci denote the covariance matrix of εi , where Ci = [ρ|g−h|], where g, h =
1, . . . , Ni , and σ 2 = (1 + θ2

1 + · · · + θ2
q )σ

2
a /(1 − φ1ρ1 − · · · − φpρp). The ρj are implicit

functions of φ and θ .

The Box–Cox transformation is defined as:

Y
(λ)
ij =



(Yij + ν)λ − 1

λ
if λ �= 0 ,

log(Yij + ν) if λ = 0 ,

where Yij is the j th component of Yi , ν is a known constant such that Yij + ν > 0 for all

i, j, and λ is an unknown parameter. Thus the covariance matrix of Y (λ)
i can be written as

�i = σ 2(Zi	Z
T
i + Ci ) = σ 2i (	,φ, θ) .
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2.2. Reparameterization

To facilitate the estimating procedure and ensure admissibility of (φ, θ), we need to
reparameterize the model. Barndorff-Nielsen & Schou (1973) proposed the following one-to-
one and onto transformation which reparameterizes φ = (φ1, . . . , φp) in terms of the partial
autocorrelations γφ = (γφ1

, . . . , γφp ) for the AR(p) process:

φ
(k)
k = γφk , φ

(k)
i = φ

(k−1)
i − γφkφ

(k−1)
k−i (i = 1, 2, . . . , k − 1) , (2)

and the condition that φ ∈ Cp becomes |γφk | ≤ 1, k = 1, . . . , p.

For the MA(q) process, the reparameterization scheme is identical to the AR(p) process,
with φk in (2) replaced by θk , as noted by Monahan (1984). Thus, we let γθ = (γθ1

, . . . , γθq )

and the condition that θ ∈ Cq becomes |γθk | ≤ 1, k = 1, . . . , q. For the general ARMA(p, q)
process, a reparameterization of (φ, θ) in terms of (γφ, γθ ) can be obtained by applying (2)
on both φ and θ .

Because GCM contains the Box–Cox transformed parameter λ, the MLEs could be com-
puted by extending the Newton–Raphson method of Lindstrom & Bates (1988). We do not
provide those expressions here. The Newton–Raphson iterations are quite unstable when the
dimension of parameter space is high or initial values of parameters are far from optimum.
Instead, the ECME algorithm (Liu & Rubin, 1994), is computationally easier and more stable
than the Newton–Raphson method.

2.3. Using ECME algorithm for MLEs

The EM algorithm (Dempster, Laird & Rubin, 1977) is a popular iterative algorithm for
maximum likelihood estimation in models with incomplete data. The EM algorithm has the
advantage that each iteration is easy to compute and the initial iterations approach the optimum
quite quickly. Laird & Ware (1982) described the EM algorithm as a method of calculating
MLEs assuming D(εi ) = σ 2INi

. Jennrich & Schluchter (1986) used the hybrid EM scoring
algorithm in fitting arbitrary structural models for the within-subject covariance. For GCM,
the M-step in the EM is difficult to implement. Meng & Rubin (1993) suggested that it can
be replaced by a sequence of constrained maximization (CM) steps. This simple extension of
the EM algorithm is called the ECM algorithm. A further extension of EM algorithm is the
ECME algorithm (Liu & Rubin, 1994). This algorithm replaces each CM-step of ECM with
a CM-step that maximizes either the constrained Q function (CMQ-step) or the correspond-
ing constrained actual likelihood function (CML-step). Here the Q function is obtained as
the expectation of the complete-data log-likelihood function given the observed data and the
current estimates of the parameters.

The GCM can alternatively be written as:

[
Y
(λ)
i

bi

]
d= N

([
Xiβ

0

]
, σ 2

[
i Zi	

	ZT
i 	

])
(i = 1, . . . , N) .

Following Dempster et al. (1977), the random effects bi are treated as missing data. We have
the following ECME algorithm:
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E-step. Using the current estimate of α, calculate, for i = 1, . . . , N,

b̂i = E(bi | Y (λ)
i , α̂) = 	̂ZT

i ̂
−1
i (Y

(λ̂)
i −Xi β̂) ,

Ŝb = E

( N∑
i=1

bib
T
i

∣∣ Y (λ) , α̂

)
=

N∑
i=1

(
D(bi | Y (λ)

i , α̂) + b̂i b̂
T
i

)
,

Ŝe = E

( N∑
i=1

eT
i C

−1
i ei

∣∣ Y (λ) , α̂

)
=

N∑
i=1

êT
i Ĉ

−1
i êi + tr

( N∑
i=1

ZiD(bi | Y (λ)
i , α̂)ZT

i Ĉi

)
,

where ei = Y
(λ)
i − Xiβ − Zibi , êi = Y

(λ̂)
i − Xi β̂ − Zi b̂i and D(bi | Y (λ)

i , α̂) = σ̂ 2Gi ,

where Gi = (ZT
i Ĉ

−1
i Zi + 	̂−1)−1 .

CM-step 1. Update σ̂ 2 by maximizing the expected complete-data likelihood:

σ̂ 2 = 1

n + Nm2

(
Ŝe + tr(Ŝb	̂

−1)
)
, where n = ∑N

i=1Ni .

CM-step 2. Fix the updated σ 2 = σ̂ 2, and update 	̂ by maximizing the constrained expected
complete-data likelihood:

	̂ = 1

Nσ̂ 2 Ŝb .

CM-step 3. Update β̂ by maximizing the expected complete-data likelihood:

β̂ =
( N∑

i=1

XT
i Ĉi

−1
Xi

)−1 N∑
i=1

XT
i Ĉi

−1
(Y

(λ̂)
i − Zi b̂i ) .

CML-step 4. Update λ̂, γ̂φ and γ̂θ by maximizing the following constrained actual log-
likelihood:

−1
2

N∑
i=1

log |Zi	̂Z
T
i + Ci | + (λ − 1)

N∑
i=1

Ni∑
j=1

log |Yij + ν|

− 1

2σ̂ 2

N∑
i=1

(Y
(λ)
i −Xi β̂)

T(Zi	̂Z
T
i + Ci )

−1(Y
(λ)
i −Xi β̂) ,

where Ci is an implicit function of γφ and γθ . The CML step can be done by a straightforward
function-minimization algorithm such as S-PLUS (nlminb function) with bounded constraint
of (−1, 1) on the γφi and the γθi . Once the MLEs of γφ and γθ are obtained, we can obtain
the MLEs of φ and θ by (2).

The above ECME algorithm is easy to implement but might be slow to converge in some
situations. In the case that the convergence is too slow, one can first perform a moderate
number of iterations of ECME and then switch to Newton–Raphson iterations.

3. Prediction of future values

Consider the prediction of yj , a set of future k-dimensional measurements of Yj , given
the observed repeated measurements Y = (Y(j),Yj ); Y(j) = (Y1, . . . ,Yj−1,Yj+1, . . . ,YN).
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This is a time-series prediction that is of practical interest for many types of growth curve
data. Because the ARMA(p, q) dependence structure considered in this paper is covariance
stationary, the functional form of the dependence between y

(λ)
j and Y

(λ)
j is known.

Suppose that y(λ)j = xjβ + zjbi + ε∗
j satisfies the GCM assumptions, where xj and

zj denote the design matrices corresponding to y
(λ)
j ; xj is k×m1 and zj is k×m2 . Then

E((Y (λ)
j , y

(λ)
j )) = [Xj xj ]β and D((Y (λ)

j , y
(λ)
j )) =σ 2(Z∗

j 	Z
∗T
j +C∗

j ) = σ 2�, where Z∗
j =

[Zj zj ] and C∗
j = [ρ|g−h|] (g, h = 1, . . . , Nj + k) and � is correspondingly partitioned

as

� =
[
�11 �12
�21 �22

]
.

Furthermore, the autocorrelations ρj can be obtained by the following recursive relations

ρh =
{
φ1ρh−1 + · · · + φpρh−p − θ1ψh−1 − · · · − θqψh−q h = 1, . . . , q ,

φ1ρh−1 + · · · + φpρh−p h = q + 1, q + 2, . . . ,

where ψh = E(εt−hat )/ var(εt−h).

Conditional on the variance components in α and λ,

ỹ
(λ)
j = xj β̃ +�21�

−1
11 (Y

(λ)
j −Xj β̃) (3)

is the best linear unbiased predictor (BLUP) of y(λ)j , where

β̃ = β̃(	,φ, θ) =
( N∑

i=1

XT
i 

−1
i Xi

)−1 N∑
i=1

XT
i 

−1
i Y

(λ)
i .

After some algebraic manipulations, (3) can be rewritten as

ỹ
(λ)
j = xj β̃ + zj b̃j + Vj∗C

−1
j (Y

(λ)
j −Xj β̃ − Zj b̃j ) ,

where b̃i = 	−1ZT
i 

−1
i (Y

(λ)
i −Xi β̃) is the BLUP of bi and Vj∗ = D(εj , ε

∗
j ).

Based on the BLUP of y(λ)j with all the parameters replaced by their MLEs, we can predict
the k-dimensional future value of the j th measurement, yj , as follows:

ŷj =



(
1 + λ̂

(
xj β̂ + �̂21�̂

−1
11 (Y

(λ̂)
j −Xj β̂)

))1/λ̂ − ν1 where λ̂ �= 0 ,

exp
(
xj β̂ + �̂21�̂

−1
11 (Y

(λ̂)
j −Xj β̂)

) − ν1 where λ̂ = 0 ,
(4)

where 1 = (1, . . . , 1) is a k×1 vector and β̂ = β̃(	̂, φ̂, θ̂). This type of prediction has
been considered by Rao (1987) and Lee (1988), among others. In (4), we use the convention
that ba = (ba1 , . . . , b

a
k ) and exp(b) = (eb1 , . . . , ebk ). When k = 1, an approximate 1 − α

predictive interval for yj is given by ŷj ± ξασ̂yj , where ξα denotes the (1 − 1
2α)-quantile of

the standard normal distribution and σ 2
yj

= σ 2(h′(µ2·1))(�22·1 +HjW
−1H T

j ) is the variance

of the forecast error, where Hj = xj − �21�
−1
11 Xj , W = ∑N

i=1 X
T
i �

−1
11 Xi , µ2·1 = xj β̂ +

�21�
−1
11 (Yj −Xj β̂), h

′(u) = (1 + λu)(1−λ)/λ and �22·1 = �22 −�21�
−1
11 �12 .
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Figure 1. Fatigue crack growth data over 21 units: (a) original data;
(b) data after Box–Cox transformation with λ = −1.59

For the LMM, the prediction of a future value of any lead time will be similar, because the
measurements within a given unit are assumed independent. Here we consider the prediction
of yik , for i = 1, . . . , N, a future value corresponding to time tNi+k for the i th unit.

ŷ∗
ik = η(tNi+k; b̂i1, b̂i2) = − 1

b̂i1

log(1 − 0.90b̂i2 b̂i1 b̂i2 tNi+k) ,

where ŷ∗
ik = log(ŷik/0.90), so that the prediction of yik is given by

ŷik = 0.90eŷ
∗
ik . (5)

4. Application to fatigue crack growth data

In this section, we apply the results developed in Sections 2 and 3 to fatigue crack growth
data of Bogdanoff & Kozin (1985). The data are unbalanced because the numbers of obser-
vations for the 21 units are not all equal. After applying the suitable Box–Cox transformation
with λ = −1.59, which is the MLE, the transformed data are plotted in Figure 1(b). We
found the growth function for the mean response to be linear and that all observations could
be considered in the same group. The growth function also exhibits random effects on the
slope. Thus the design matrices are Xi = [1 ki] and Zi = ki , where ki = (1, 2, . . . , Ni),

for i = 1, 2, . . . , 21.
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Figure 2. Empirical semi-variogram of subject-specific residuals for the fatigue crack growth data.
The horizontal line is the estimated within errors variance (σ̂ 2).

Table 1

MLEs of selected ARMA models with the standard errors in parentheses
for the fatigue crack growth data from Bogdanoff & Kozin (1985)

Model '̂ φ̂1 φ̂2 φ̂3 θ̂1 θ̂2 θ̂3 λ̂

0.94 0.52 – – – – – −1.59
AR(1) (0.063) (0.044) (0.039)

0.88 0.48 0.13 – – – – −1.57
AR(2) (0.059) (0.055) (0.069) (0.059)

0.87 0.48 0.12 0.03 – – – −1.58
AR(3) (0.059) (0.056) (0.076) (0.074) (0.040)

1.09 – – – −0.39 – – −1.59
MA(1) (0.074) (0.057) (0.033)

1.04 – – – −0.43 −0.27 – −1.60
MA(2) (0.070) (0.056) (0.065) (0.033)

0.97 – – – −0.46 −0.29 −0.20 −1.59
MA(3) (0.066) (0.055) (0.065) (0.069) (0.039)

0.87 0.71 – – 0.22 – – −1.58
ARMA(1,1) (0.059) (0.083) (0.103) (0.040)

0.87 0.67 – – 0.19 −0.04 – −1.58
ARMA(1,2) (0.059) (0.137) (0.102) (0.110) (0.040)

To check for serial correlation, the empirical semi-variogram plot of the residuals is a very
useful graphical display for exploring the degree of association within units. The approach
was first discussed by Diggle (1988) and later extended by Verbeke, Lesaffre & Brant (1998).
We start by fitting the GCM with white noise errors,

Y
(λ)
i = Xiβ + Zibi + εi , bi

d= N(0, σ 2') , εi
d= N(0, σ 2I ) . (6)

Using the ECME algorithm to obtain the MLEs for the model (6), the fitted values are
β̂ = (−0.150, 0.033), σ̂ 2 = 3.31×10−5, '̂ = 1.112 and λ̂ = −1.583.

We follow Morrell et al. (1995) and examine the subject-specific residuals, that is

ri = Y
(λ̂)
i −Xi β̂−Zi b̂, in which b̂i = '̂ZT

i ̂
−1
i (Y

ˆ(λ)
i −Xi β̂) is the empirical Bayes estimate

for the random effects bi (Laird & Ware, 1982), and ri = (ri1, . . . , riNi
). We computed the

semi-variogram d2
ii,jk = 1

2 (rij − rik)
2 for all distinct pairs of observations within each unit.

Figure 2 is the plot of the empirical semi-variogram for the subject-specific residuals, using
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Table 2

Comparison of parameter estimates and forecast accuracy in terms of MARD(×10−2) for the GCM
with various ARMA(p, q) models and LMM, starting with a sample of size 5 for each unit

Step ahead Step ahead
T φ̂1 φ̂2 φ̂3 One Two φ̂1 θ̂1 θ̂2 One Two

AR(1) ARMA(1,1)
6 0.24 – – 0.635 – 0.52 0.24 – 0.542 –
7 0.32 – – 0.556 0.946 0.42 0.10 – 0.551 0.693
8 0.36 – – 0.681 0.829 0.69 0.32 – 0.627 0.799
9 0.40 – – 0.891 0.652 0.81 0.43 – 0.939 0.723

10 0.34 – – 0.559 1.485 0.62 0.28 – 0.584 1.538
11 0.39 – – 0.622 0.878 0.60 0.21 – 0.607 0.838
12 0.43 – – 1.123 1.232 0.73 0.32 – 1.085 1.196

Average 0.724 1.004 0.705 0.965

AR(2) ARMA(1,2)
6 0.26 0.12 – 0.628 – –0.01 –0.29 –0.26 0.622 –
7 0.32 0.06 – 0.548 0.820 –0.36 –0.69 –0.30 0.565 0.743
8 0.36 0.15 – 0.633 0.797 0.54 0.17 –0.08 0.636 0.845
9 0.39 0.17 – 0.915 0.736 0.82 0.44 0.01 0.940 0.728

10 0.33 0.11 – 0.558 1.531 0.01 0.33 0.20 0.558 1.569
11 0.38 0.10 – 0.608 0.846 0.13 –0.24 –0.20 0.628 0.881
12 0.41 0.15 – 1.084 1.188 0.75 0.33 0.01 1.088 1.166

Average 0.711 0.986 0.720 0.989

AR(3) LMM
6 0.23 0.10 –0.25 0.613 – – – – 0.870 –
7 0.27 0.02 –0.21 0.602 0.780 – – – 0.661 2.150
8 0.36 0.15 –0.03 0.645 0.928 – – – 0.704 1.341
9 0.39 0.16 0.07 0.937 0.719 – – – 1.035 1.465

10 0.33 0.11 –0.05 0.569 1.560 – – – 0.638 1.687
11 0.37 0.11 –0.06 0.617 0.858 – – – 0.833 1.234
12 0.41 0.14 0.02 1.081 1.165 – – – 1.127 1.804

Average 0.723 1.002 0.838 1.614

a mean for each time point. The plot shows that the mean of the semi-variogram exhibits an
increasing trend up to the estimated process variance (horizontal line) indicating some serial
correlations among the residuals. However, it decreases at higher lags because the estimates
are obtained by using progressively fewer observations. We therefore explore some possible
dependence of the data through the ARMA(p, q) models as it is a rich family for describing
dependence among observations.

Table 1 displays the MLEs of the variance components and λ with their asymptotic
standard errors for the selected ARMA(p, q) models when the entire dataset is used. The
ARMA(p, q) models are chosen with p + q ≤ 3 for parsimony. In the table, we see that the
parameters φ3 for AR(3) and θ2 for ARMA(1,2) cannot be distinguished from 0, suggesting
that the two models can be reduced to AR(2) and ARMA(1,1), respectively. The MLEs do not
converge for ARMA(2,1).

We now compare the prediction abilities of the ARMA models and LMM. We adopt the
predictive sample reuse, or leave-one-out, method as advocated by Geisser (1975). In the
empirical comparison of forecast accuracy among the various models, we start with the first
five measurements for each unit as the sample, so that we have stable parameter estimation,
especially for the LMM. We sequentially fit GCM with various ARMA(p, q) models and LMM,
then compute the forecasts (up to two-step-ahead) by applying the MLEs in (4) and (5). In
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Table 3

Forecast of failure time for the proposed GCM and LMM using the first six observations of
each unit as the sample. The tabulated numbers represented the deviation of the prediction

from the observed failure time.

Failure time Models
Path Million Order of AR(1) AR(2) AR(3) ARMA(1,1) ARMA(1,2) LMM

cycles observations

1 0.088 10 +1 +1 +1 +1 +1 +1
2 0.100 11 +1 +1 +1 +1 +1 +1
3 0.101 12 0 0 0 0 0 +1
4 0.103 12 0 0 0 0 0 +3
5 0.103 12 0 0 0 0 0 +3
6 0.106 12 +1 0 0 0 0 +3
7 0.106 12 +1 +1 +1 +1 +1 +4
8 0.109 12 +1 +1 +1 +1 +1 −1
9 0.113 13 +1 +1 +1 0 +1 +1

10 0.115 13 +1 +1 +1 +1 +1 −1
11 0.118 13 +1 +1 +1 +1 +1 +1
12 0.118 13 +1 +2 +1 +1 +1 +8
13 0.129 14 +1 +1 +1 +1 +1 +3
14 0.133 15 0 0 0 0 0 +1
15 0.138 15 0 0 0 0 0 0
16 0.144 16 +1 +1 +1 +1 +1 +1
17 0.146 16 0 0 0 0 0 −2
18 0.151 17 0 0 0 0 0 −6
19 0.160 17 +1 +1 +1 +1 +1 0
20 0.167 18 0 0 0 0 0 −1
21 0.170 18 0 0 0 0 0 −1

Sum of absolute deviations: 12 12 11 10 11 43

assessing the relative merits of the models considered in this paper, we compare the actual
observed values with the prediction of Yj,Nj+k for k = 1, 2, given the past observations. Let
T denote the time of the point being forecast. We compare the actual observed values with
one-step-ahead and two-step-ahead forecasts of crack length using the most recent T − 1 and
T − 2 observations for each time series. For comparing the forecast accuracy, we assess the
relative merits of the predictors from their mean absolute relative deviations (MARD). The
best model yields the smallest MARD. Let ŷj be the forecast for the measurement yj . This
discrepancy measurement is defined as

MARD = 1

N

N∑
j=1

|ŷj − yj |
yj

.

We fit the GCM with various ARMA(p, q) models and LMM and list the results of MARD
from T = 6 to 12 in Table 2. The data are incomplete when T > 10 and we omit the result for
T = 13 since over one-third of the units are missing at that time. Since MA models perform
worse than the AR and ARMA models, they are excluded from comparison. Table 2 shows
that the best model is ARMA(1,1), followed by AR(2), ARMA(1,2), AR(3), AR(1) and LMM, for
both the one-step-ahead and the two-step-ahead predictions. Thus, the selected ARMA(p, q)
models are superior to AR(1) and are much better than LMM. We conclude that ARMA(1,1)
and AR(2) are the two best models for this dataset.

In Table 3, we compare the prediction of failure times among the various models. The
second column in Table 3 gives the failure time in millions of cycles for each unit, and the

c© 2003 Australian Statistical Publishing Association Inc.



MODELLING DEGRADATION SAMPLE PATHS OVER TIME 267

1.
0

1.
2

1.
4

1.
6

1.
8 Path 1

1.
0

1.
2

1.
4

1.
6

1.
8 Path 2

1.
0

1.
2

1.
4

1.
6

1.
8 Path 3

1.
0

1.
2

1.
4

1.
6

1.
8 Path 4

1.
0

1.
2

1.
4

1.
6

1.
8 Path 5

1.
0

1.
2

1.
4

1.
6

1.
8 Path 6

1.
0

1.
2

1.
4

1.
6

1.
8 Path 7

1.
0

1.
2

1.
4

1.
6

1.
8 Path 8

1.
0

1.
2

1.
4

1.
6

1.
8 Path 9

1.
0

1.
2

1.
4

1.
6

1.
8 Path 10

1.
0

1.
2

1.
4

1.
6

1.
8 Path 11

1.
0

1.
2

1.
4

1.
6

1.
8 Path 12

1.
0

1.
2

1.
4

1.
6

1.
8 Path 13

1.
0

1.
2

1.
4

1.
6

1.
8 Path 14

1.
0

1.
2

1.
4

1.
6

1.
8 Path 15

1.
0

1.
2

1.
4

1.
6

1.
8 Path 16

1.
0

1.
2

1.
4

1.
6

1.
8 Path 17

1.
0

1.
4

1.
8

Path 18

1.
0

1.
2

1.
4

1.
6

1.
8 Path 20

1.
0

1.
2

1.
4

1.
6

1.
8 Path 20

2 4 6 8 10 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 14

2 4 6 8 10 12 14 2 4 6 8 10 12 14

2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14

2 4 6 8 10 12 14

2 4 6 8 10 125 10 15

5 10 15 20

5 10 15

5 10 15 5 10 15

5 10 15

5 10 15 5 10 15

5 10 15

Figure 3. Forecast of failure time against million cycles for the first twenty units: the original data
(•); the forecast values of GCM–ARMA(1,1) (solid line) and the forecast values of LMM (dotted line).

The failure crack length is 1.6 inches, indicated by the horizontal line.

corresponding order for the failure times is given in column 3. A better crack length prediction
model should provide more accurate predictions of failure times because there is a one-to-one
correspondence between the crack length and the failure time. In comparing the prediction
accuracy of failure times among the various models, we use the sum of absolute deviations
between the predictions and the actual measurements as the measure of precision, for the first
six observations of each unit (Table 3).

Figure 3 shows the crack growth length forecasts for GCM with ARMA(1,1) dependence
and LMM for the first six observations of each unit. The GCM performs much better than
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LMM for forecasting both the crack length and the failure time. The failure time prediction
results are similar using the first five or the first seven observations of each unit as the sample.

5. Concluding remarks

From the results presented in Section 4 we know that if there are only a few measurements
on each unit, it may be too hard to estimate the autocorrelation. Also, the data in each unit
are time-series in nature and hence are not independent. Therefore, we can use the general
growth curve model with ARMA(p, q) covariance structures to analyse this kind of data,
using measurements from similar units to get better prediction results. The advantage of our
modelling for this type of data is evident in the comparisons of forecast accuracy in future
values and in failure times.

As remarked in Rochon (1992), ARMA(p, q) covariance structures are worth consid-
ering and may have better performance than AR(1) dependence in many applications. For
the modelling of degradation data, with appropriate ARMA(p, q) covariance structure and
coupled with random effects and the Box–Cox transformation, our modelling approach makes
the prediction results quite appealing.

Appendix

In this appendix, we derive the information matrix which is useful for obtaining the
standard errors of the MLEs. Let ω = (η,φ, θ), η involve the distinct elements of 	. Then
the log-likelihood of α = (β, σ 2,ω, λ), omitting the constant term for the data Y , is:

+(α) = − 1
2n log(σ 2) − 1

2

N∑
i=1

log
∣∣i (	,φ, θ)

∣∣

− 1

2σ 2

N∑
i=1

tr
(
eie

T
i 

−1
i (	,φ, θ)

) + (λ − 1)
N∑
i=1

Ni∑
j=1

log |Yij + ν| ,

where ei = Y
(λ)
i −Xiβ and tr(A) denotes the trace of A.

The Hessian matrix, H(α) = −∂2+/∂ααT, has the following form:

H(α) =




Hβ Hβσ 2 Hβω Hβλ

Hσ 2β Hσ 2 Hσ 2ω Hσ 2λ

Hωβ Hωσ 2 Hω Hωλ

Hλβ Hλσ 2 Hλω Hλ


 =




∂2+

∂β∂βT

∂2+

∂β∂σ 2

∂2+

∂β∂ωT

∂2+

∂β∂λ

∂2+

∂σ 2∂βT

∂2+

∂(σ 2)2

∂2+

∂σ 2∂ωT

∂2+

∂σ 2∂λ

∂2+

∂ω∂βT

∂2+

∂ω∂σ 2

∂2+

∂ω∂ωT

∂2+

∂ω∂λ

∂2+

∂λ∂βT

∂2+

∂λ∂σ 2

∂2+

∂λ∂ωT

∂2+

∂λ2



.

Letting s = dim(η) + dim(φ) + dim(θ) = 1
2m2(m2 + 1) + p + q denote the dimension of

ω, the expressions for the elements of H(α) are:

Hβ = −1

σ 2

N∑
i=1

XT
i 

−1
i Xi ,
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Hβσ 2 = −1

σ 4

N∑
i=1

XT
i 

−1
i ei ,

[Hβω]jk = −1

σ 2

N∑
i=1

XT
ij

−1
i ̇ik

−1
i ei (j, k = 1, . . . , s) ,

Hβλ = 1

σ 2

N∑
i=1

XT
i 

−1
i g1i ,

Hσ 2 = n

2σ 4 − 1

σ 6

N∑
i=1

tr
(
eie

T
i 

−1
i

)
,

[Hσ 2ω]k = 1

2σ 4

N∑
i=1

tr
(
−1
i (eie

T
i −i )

−1
i ̇ik

)
(k = 1, . . . , s) ,

Hσ 2λ = 1

σ 4

N∑
i=1

tr(eig
T
1i

−1
i ) ,

[Hω]jk = 1

2σ 2

N∑
i=1

tr
(
−1
i ̇ij

−1
i (2eie

T
i −i )

−1
i ̇ik

)

− 1

2σ 2

N∑
i=1

tr
(
−1
i (eie

T
i −i )

−1
i ̈i,jk

)
(j, k = 1, . . . , s) ,

[Hωλ]k = −1

σ 2

N∑
i=1

tr(eig
T
i 

−1
i ̈ik

−1
i ) (k = 1, . . . , s) ,

Hλ = −1

σ 2

N∑
i=1

tr(eig
T
2i

−1
i + g1ig

T
1i

−1
i ) ,

where Xij is the j th column of Xi , g1i = ∂ei/∂λ, g2i = ∂2ei/∂λ
2, ̇ik = ∂i/∂ωik , and

̈i,jk = ∂2i/∂ωij ∂ωik .
It follows from classical likelihood theory that, when the assumed model is correct, the

MLE α̂ has an asymptotic multivariate normal distribution with mean vector α and covariance
matrix −H−1(α̂).
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