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Abstract

In this work we briefly review the present day perspectives for exploiting conventional non-
magnetic semiconductor nano-technology to design high speed spin-filter devices. In recent
theoretical investigations a high spin polarization has been predicted for the ballistic tunneling current
in semiconductor single- and double-barrier asymmetric tunnel structures of III–V semiconductors
with strong Rashba spin–orbit coupling. We show in this paper that the polarization in the tunneling
can probabilitybe sufficiently increased for producing realistic single-barrier structuresby including
of the Dresselhaus term into consideration.
© 2004 Published by Elsevier Ltd
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Recently a new branch of electronics, so-called spintronics, became a focus of interest
(see for instance [1, 2]). For this reason the electronic spin polarization (filtering) in
solid-state systems has attracted considerable attention. Many possible structures were
investigated for achieving high level electronic spin filtering and injection. Most of them
consist of magnetic material elements (see [1–5] for references). But in principle one can
use the all-semiconductor approach utilizing multi-layered nano-systems to generate and
detect the electron spin polarization [6]. The semiconductor approach has the advantage
of being compatible with conventional semiconductor technology. From this point of
view the most important property of semiconductors to be utilized in all semiconductor
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spintronic nano-devices is the spin–orbit (SO) interaction [7–9]. The control of spin in
semiconductors together with modern semiconductor technology can guarantee the future
of the spintronics and result in valuable commercial interest.

The SO interaction comes from a relativistic correction to the electronic non-relativistic
Hamiltonian and manifests the lack of inversion symmetry in semiconductor compounds.
In the bulk of III–V and II–VI semiconductor materials the SO interaction lifts the
spin degeneracy of the conduction states in the center of the Brillouin zone [7]. This
part of the SO interaction is called of bulk inversion asymmetry (BIA) type and it is
represented by the effective Dresselhaus Hamiltonian. Macroscopic effective electric fields
in semiconductor nano-structures result in structural inversion asymmetry (SIA) and a
linear (in the electron wavevectork) term (orof Rashba type) of the SO interaction [8, 9].
Ample experimental evidence in recent years shows that the SO interaction becomes easy
to detect in semiconductor heterostructures by measurements of the Shubnikov–de Haas
oscillations [10], weak antilocalization [11], and electronic Raman scattering [12].

It has been found out recently that the Rashbaspin–orbit coupling in conventional
III–V semiconductor tunnel barrier structures can lead to the spin-dependent tunneling
phenomenon [13–15]. The spin-polarization ratio in tunneling structures is defined as

P(Ez, k) = T+(Ez, k) − T−(Ez, k)

T+(Ez, k) + T−(Ez, k)
, (1)

whereT±(Ez, k) is the spin-up (spin-down) tunneling probability andEz is the part of the
electronic energy which corresponds to the motion perpendicular to the barrier (z-axis),
and k = (kx , ky) is the component of the electronic wavevector parallel to the barrier.
In resonant tunnel heterostructures (due to the strict resonant tunnel conditions) the spin-
dependent asymmetry in the tunneling probability can gain a higher level. In symmetric
structures with the exceptional Rashba interaction included we need to apply an external
perpendicular electric fieldFz to generate asymmetry of the tunneling probability. At the
same time in asymmetric structures a difference betweenT+ and T− exists with zero
externalelectric field and it is possible to reversethe polarization by means of adjusting
the strength of the external electric fieldFz .

The calculation results show considerable influence of the SO interaction on the
tunneling transmission characteristics at zero external magnetic field and the dependence
can be controlled by an external electric field. In addition the SO interaction can provide
a big difference (a few orders of magnitude) between tunneling times of electrons of
different spin polarizations without additional magnetic fields [16]. The polarization of
the electronic current can gain about 40% for moderate electric fields.

The Dresselhaus coupling term can also lead to a dependence of the tunneling
probability on the spin orientation even for symmetrical barrier structures [17]. Results
from different authors suggest that the spin–orbit filtering for all-semiconductor tunnel
devices can reach almost 100% polarization for more sophisticated designs of the
devices [18, 19]. Recent investigations have shown that completely planar or linear designs
of the tunnel transistors can be achieved with present day technology [20]. Such a design
should have much better efficiency in spin filtering.

In this paper we further investigate thespin-dependent tunneling probability for
realistic symmetric tunneling structures, with consideration of both the Rashba and
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Dresselhaus couplings. Our calculation is performed for realistic semiconductor structures
on the basis of the effective electronic one-band Hamiltonian, energy- and position-
dependent electron effective mass approximation, and spin-dependent Ben Daniel–Duke
boundary conditions. We consider the spin-dependent Hamiltonianfor a single-barrier
structure, which can be written as follows [13, 17, 21, 22]:

Ĥ = Ĥ0 + ĤD + ĤR, (2)

where

Ĥ0 = −�
2

2

d

dz

1

m(E, z)

d

dz
+ �

2k2

2m(E, z)
+ Ec(z) + V (z),

and

1

m(E, z)
= 2P2

3�2

[
2

E − Ec(z) + Eg(z) + V (z)

+ 1

E − Ec(z) + Eg(z) + ∆(z) + V (z)

]
,

represents the energy- and position-dependent reciprocal effective mass.Ec(z), Eg(z),
and∆(z) stand for the position-dependent conduction-band edge, the band gap, and the
spin–orbit splitting in the valence band,V (z) = −eFzz is the potential energy due
to the external electric field in the barrier region (e is the electronic charge), and P
is the momentum matrix element. In Eq. (2) the Rashba and Dresselhaus terms (when
the kinetic energy of electrons is substantially smaller than the barrier heightV0) are
correspondingly [13, 17, 21]

ĤR = (σ̂xky − σ̂ykx) · dβ(E, z)

dz
,

and

ĤD = γ (σ̂x kx − σ̂yky)
d2

dz2 ,

whereσ̂ = {σ̂x , σ̂y, σ̂z} is the vector of the Pauli matrices,

β(E, z) = P2

3

[
1

E − Ec(z) + Eg(z) + V (z)

− 1

E − Ec(z) + Eg(z) + ∆(z) + V (z)

]

is the Rashba spin-coupling parameter, andγ is a material constant.
The wavefunction of the electron can be written in the form

Φ±(x, y, z) = χ±Ψ±(z) exp[i(kx x + ky y)]
whereχ± are spinors, which correspond to electron spin states of opposite spin directions,
and Ψ± satisfies the spin-dependent Ben Daniel–Duke boundary conditions in each
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Fig. 1. A sketch of a realistic In0.53Ga0.47As/In0.52Al0.48As/In0.53Ga0.47As symmetric single-barrier structure
of width 10 nm.

interface of the structure:{
Ψ±(z){[
�2

2m + γ (σ̂xkx − σ̂yky)
]

d
dz + β(σ̂xky − σ̂ykx)

}
Ψ±(z)

⇒ continuous at the boundary.

The standard solutions of the Schr¨odinger equation with the Hamiltonian (2) and
the spin-dependent boundary conditions above allow us to calculate the spin-dependent
tunneling probability andpolarization ratio (1) for symmetric single-barrier tunneling
structures [13, 23], as we demonstrate inFig. 1. In Fig. 2 we present results of our
calculation for a realistic In0.53Ga0.47As/In0.52Al0.48As/In0.53Ga0.47As symmetric single-
barrier structure of width 10 nm. The band structure parameters are chosen as follows: for
In0.53Ga0.47As Eg = 0.937 eV,∆ = 0.361 eV,m∗/m0 = 0.04368,γ = 76.89 eV A3;
for In0.52Al0.48As Eg = 1.289 eV,∆ = 0.332 eV,m∗/m0 = 0.0840,γ = 73.36 eV A3;
band offsetV0 = 0.278 eV [24, 25]. Parameters for compound materials are calculated
according to a linear interpolation formula. The polarization is quite significant even
without an electric field (symmetric structure, only the Dresselhaus coupling is included).
An additional possibility for manipulating the polarization ratio arises when an external
electric field is applied (the Rashba term included).Fig. 2(b) and (c) show how one can
manipulate with the polarization by means of the field.

To briefly conclude, in this paper we demonstrate that the transmission tunneling
probability for a realistic symmetric single-barrier structure can gain a well-recognizable
spin dependence for a not too large in-plane wavevector of the tunneling electrons.
In addition, one can control the magnitude of the polarization ratio by means of an
externalelectric field. The effect described can provide a basis for more advanced spin-
filtering techniques at zero magnetic field. Our calculation results show that the interplay
between the BIA and SIAinteractions makes the spin-filtering processes richer and more
controllable.
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Fig. 2. (a) The polarization ratio for a In0.53Ga0.47As/In0.52Al0.48As/In0.53Ga0.47As symmetric single-barrier
structure without an external electric field; (b) the polarization ratio for the same structure with the external
electric fieldFz = +5 × 104 V cm−1; (c) thepolarization ratio for the same structure with the external electric
field Fz = −5 × 104 V cm−1.
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