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Abstract

Conducting workflow management allows virtual enterprises to collaboratively manage business processes. Given the

diverse requirements of the participants involved in a business process, providing various participants with adequate

process information is critical to effective workflow management. This work describes a novel process-view, i.e., an

abstracted process which is derived from a base process to provide process abstraction, for modeling a virtual workflow

process. The proposed process-view model enhances the conventional activity-based process models by providing

different participants with various views of a process. Moreover, this work presents a novel order-preserving approach

to derive a process-view from a base process. The approach proposed herein can preserve the original ordering of

activities in the base process. Additionally, a formal model is presented to define an order-preserving process-view.

Finally, an algorithm is proposed for automatically generating an order-preserving process-view. The proposed

approach increases the flexibility and functionality of workflow management systems.

r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Workflow management via workflow manage-
ment systems (WfMSs) not only facilitates electro-
nic commerce, but also allows virtual enterprises
to collaboratively manage business processes. As
an effective process management tool, WfMSs
allow businesses to analyze, simulate, design,
enact, control and monitor their overall business
processes [1,2]. The support of a WfMS allows

various participants to collaborate in effectively
managing a workflow-controlled business pro-
cesses. The participants represent particular posi-
tions in a company or particular companies in a
supply chain. In practice, these participants
possess different needs and levels of authority
when obtaining information on business processes.
To facilitate effective workflow management, a
WfMS should provide various participants with
adequate process information.

For example, a high-level manager may require
aggregated information on a process, while a
marketing manager may not have the authority
or need to know each specific step of the
production flow. These requirements create the
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need for a flexible process model capable of
providing appropriate processes abstraction for
various roles within an enterprise. Furthermore,
interorganizational coordination via WfMSs has
become a critical success factor for businesses in
rapidly fluctuating and complex business environ-
ments. Besides the interoperability issues of
heterogeneous WfMSs, in a WfMS-supported
supply chain (or called multi-enterprise process
[3]), each participatory organization wants to
conceal its own processes from other organiza-
tions, and different organizations require different
supply chain information. In sum, providing
aggregated information or encapsulating sensitive
data requires the development of a workflow
model capable of offering adequate abstracted

processes for different levels, units, and organiza-
tions.

Despite notational differences, activity-based
methodologies are extensively used process mod-
eling techniques, and have been extensively
adopted for commercial products, research pro-
jects, and standards, e.g., MQSeries Workflow [4],
Ultimus [5], METEOR [6], and workflow manage-
ment coalition (WfMC) process definition meta-
model [7]. A typical activity-based approach
designs a workflow though a top-down decom-
position procedure. This stepwise refinement
allows a modeler to define a process more easily
and completely than do one-step approaches.

However, resultant layered process definitions
do not always fit into an organizational hierarchy,
despite providing several different levels of hier-
archical abstraction. Therefore, hierarchically de-
composing a process may not provide each
organizational level with an appropriate view of
that process. Despite forcing a process modeler to
follow an organizational hierarchy while decom-
posing a process, different organizational units
(divisions/companies) may have difficulties in
obtaining adequate abstractions of the process/
supply chain they participate in. The activity-
based approach cannot adequately provide differ-
ent participants with varied abstracted processes.

The activity-based approach should be en-
hanced to provide different process abstractions.
Several formal process modeling techniques, in-
cluding process algebras and Petri Nets [8–11], can

provide process abstractions by renaming activities
to silent activities that are not observable. Such
abstraction is considered as partial abstraction

since it provides partial observability of a process.
Although useful in satisfying some of the needs of
process abstractions, partial abstraction may be
unable to adequately address the needs of man-
agers or collaborative parties who require aggre-
gated information on a process.

Based on the notion of views in database
management systems (DBMSs), this work pro-
poses a novel virtual workflow process, i.e., a
process-view, in a WfMS. A process-view, i.e., an
abstracted process derived from an implemented
base process, is employed to provide aggregate

abstraction of a process. During workflow build
time, a process modeler does not need to be
concerned with process abstraction, and can focus
solely on process design, using a top-down
decomposition procedure to define the process in
detail. The modeler can then use a process-view
definition tool to define multiple abstracted
processes, i.e., process-views. During run time,
creating a process instance initiates its corre-
sponding process-view instances. Each participant
can retrieve and monitor appropriate process
information via the related process-view instance.
Therefore, coordination within an organiza-
tion or across multiple organizations can be
improved.

Although process design is a specialized and
top-down procedure, process-view design is a
generalized and bottom-up procedure. Process-
views allow a WfMS to provide various aggregated
views of a process for different levels or depart-
ments in an organization or for different organiza-
tions in a supply chain. Several approaches can be
adopted to construct a process-view. This work
describes a novel order-preserving approach in
which the constructed process-view can preserve
the original ordering of activities in the base
process. A formal model is also presented to define
an order-preserving process-view. Theoretical ana-
lysis is performed herein, indicating that the
defined process-view satisfies the order-preserving
property. Moreover, an algorithm is proposed to
automatically generate an order-preserving pro-
cess-view.
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The remainder of this paper is organized as
follows. Section 2 formally defines business pro-
cesses. Section 3 then describes and defines a
process-view. Next, Section 4 presents the pro-
posed order-preserving approach to construct a
process-view. Section 5 then discusses and com-
pares related work on workflow modeling. Con-
clusions and future work are finally made in
Section 6. Appendix A provides proofs of all
lemmas.

2. Workflow model: a base process

A process that may have multiple process-views
is termed a base process herein. Activity-based
workflow models generally use activities and
dependencies to describe a process. Dependencies
prescribe the ordering relationships between activ-
ities within a process. According to WfMC [7], the
following six ordering structures may appear in
business processes. Sequence: An activity has a
single subsequent activity. AND-SPLIT: An activ-
ity splits into multiple parallel activities that are all
executed. XOR-SPLIT: An activity splits into
multiple mutually exclusive alternative activities,
only one of which is followed. AND-JOIN:
Multiple parallel executing activities join into a
single activity. XOR-JOIN: Multiple mutually
exclusive alternative activities join into a single
activity. Loop: One or more activities are repeat-
edly executed until the exit condition is satisfied.

The above ordering constructs are not arbitra-
rily combined. For example, AND-SPLIT must
pair with AND-JOIN, and XOR-SPLIT must pair
with XOR-JOIN. Wrong combinations of order-
ing structures may cause structural conflicts such
as deadlock and non-reachability. Verification
issues are beyond the scope of this work. Please
refer to Woflan [12] and FlowMake [13] to verify
the correctness of process definitions. This work
assumes that the given process definitions are
structurally correct.

Moreover, a well-structured loop in a process
definition should have a single entry and a single
exit, as the iteration statements in programming
languages. Allowing multiple entries/exits makes
the complex control flow hard to understand, and

induces ambiguities in the evaluation of exit
conditions. Leymann et al. [14] also claim that
race conditions may occur in arbitrary loops.
Thus, this work prescribes that a loop must be
single-entry and single-exit.

A graphical representation of a process resem-
bles a directed graph [15] in which each node is an
activity and each directed edge is a dependency.
This work uses a rectangle to denote an activity
and a solid arrow to represent a dependency in a
process graph. Moreover, a blank arrow indicates
a loop dependency used to construct a loop
structure. Fig. 1 depicts a sample process. A loop
dependency from a4 to a2 indicates that activities
a2; a3 , and a4 form a loop in which a2 is the entry
point and a4 is the exit point. The single-entry loop
is converted into a multi-entry loop, for example,
by adding a dependency from a1 to a3:

2.1. Formal model

To elucidate the derivation of process-views
from base processes, a formal model is introduced
first for describing base processes. The model is
revised from the standard WfMC process defini-
tion language [7] and focuses only on activities and
dependencies to simplify the discussion.

Definition 1 (Process and sub-process). A process
P is a 2-tuple /A;DS; where A is a set of activities
and D is a set of dependencies and loop
dependencies. A process P0 ¼ /A0;D0S is a sub-

process of P if A0DA and D0DD:

Definition 2 (Dependency). A dependency is a 4-
tuple /activity x; activity y; type R; condition CS,
denoted by depðx; y;R;CÞ; where x; yAA: Condi-
tion C represents the constraints that determine
whether routing can proceed from x to y: The
dependency depðx; y;R;CÞ is an outgoing depen-
dency of x and an incoming dependency of y:
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: activity : dependency : loop dependency

a
4

Fig. 1. Sample process.
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Activity x is called the preceding activity and y is
called the succeeding activity in depðx; y;R;CÞ:
Type R indicates that depðx; y;R;CÞ is not a loop
dependency.

Definition 3 (Loop dependency and loop). A loop
dependency is a 4-tuple /activity ex; activity
ei; type L; loop condition LCS, denoted by
depðex; ei;L;LCÞ; where ex; eiAA: Type L

refers to a loop dependency. Additionally,
depðex; ei;L;LCÞ implies that there exists a loop,
denoted by lpðei; exÞ ¼ /Alpðei;exÞ;Dlpðei;exÞS; where
Alpðei;exÞ¼fei; ex; and all activities between ei and exg;
and Dlpðei;exÞ¼fdepðx; y;R;CxyÞ or depðx; y;L;LCxyÞ
jx; yAAlpðei;exÞg; ei is the entry point and ex is the
exit point. Notably, a loop is here restricted to
having one entry and one exit point. All activities
of Alpðei;exÞ are repeatedly executed until LC is
evaluated as false.

Definition 4 (Activity). An activity ba is a 3-tuple
/SPLIT flag; JOIN flag;SCS; where

1. SPLIT flag may be ‘‘NULL’’, ‘‘AND’’, or
‘‘XOR’’. ‘‘NULL’’ means that ba has a single
outgoing dependency (Sequence). ‘‘AND’’
means that ba has multiple outgoing dependen-
cies labeled with identical conditions (AND-
SPLIT). ‘‘XOR’’ means that ba has multiple
outgoing dependencies associated with mu-
tually exclusive conditions (XOR-SPLIT).

2. JOIN flag may be ‘‘NULL’’, ‘‘AND’’, or
‘‘XOR’’, and is used to derive SC: ‘‘NULL’’
indicates that this activity has a single incoming
dependency (Sequence). Given multiple incom-
ing dependencies, ‘‘AND’’ indicates that ba can
be started if the conditions of all incoming
dependencies are satisfied (AND-JOIN), while
‘‘XOR’’ indicates that ba can be started if one
of its incoming dependencies has satisfied
conditions and the others are associated with
unsatisfied conditions (XOR-JOIN).

3. SC is the starting condition of ba: SC explicitly
expresses the condition whether ba can be
started, and is derived from the JOIN flag and
the condition fields of incoming dependencies.
First, if JOIN flag is NULL, SC equals the
condition (C) of the incoming dependency.

Secondly, if JOIN flag is XOR, SC equals the
Boolean XOR combination of the conditions of
all incoming dependencies. Finally, if JOIN

flag is AND, SC equals the Boolean AND
combination of the conditions of all incoming
dependencies.

Enacting a process. During run-time, an execu-
tion of a process is called a process instance. For
depðx; y;R;CÞ; C is not evaluated until x is
completed. The evaluation of C is either true or
false. The fact that x is completed and C is
evaluated as true is one precondition that deter-
mines whether y can be started. For convenience,
‘‘a dependency is evaluated as true/false’’ states
that the dependency’s condition field is evaluated
as true/false.

The SC field of an activity ba is evaluated when
all incoming dependencies of ba have been
evaluated. ba can be started when SC is evaluated
as true. Note that SC is derived from the JOIN

flag and the condition fields of ba’s incoming
dependencies. If ba is started, then its outgoing
dependencies are evaluated after the completion of
ba: If SC is evaluated as false, then ba is not
executed in the process instance, and the outgoing
dependencies of ba are evaluated as false.

An activity is called a fired activity in a process
instance if its SC is evaluated as true and it is
executed in the process instance. Moreover, an
activity is called a non-fired activity in a process
instance if its SC is evaluated as false and it is not
executed in the process instance. Notably, an
activity that is non-fired in a process instance
may be fired in other process instances. For
convenience, ‘‘an activity is evaluated as fired/
non-fired’’ states that the activity’s SC is evaluated
as true/false.

For depðex; ei;L;LCÞ; after ex is completed, LC

is (re)evaluated to decide whether the loop
lpðei; exÞ is repeated. If LC is evaluated as true,
then lpðei; exÞ is repeated. Notably, each execution
of lpðei; exÞ starts a new iteration and initiates a
new execution context of lpðei; exÞ: The activities
and (loop) dependencies of lpðei; exÞ are reset for
re-execution and re-evaluation when a new itera-
tion of lpðei; exÞ is started. Thus, the activities and
(loop) dependencies within a new iteration are
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initially non-evaluated. The activities of lpðei; exÞ
are re-evaluated as fired/non-fired in an iteration
of lpðei; exÞ: Additionally, the completion of an
activity that belongs to lpðei; exÞ means that the
activity is completed in an iteration of lpðei; exÞ:
The activity may be started/completed again in the
follow-on iterations of lpðei; exÞ: Besides, the
completion of lpðei; exÞ means that the entire loop
stops; that is, LC is evaluated as false and lpðei; exÞ
is not repeated. The starting of lpðei; exÞ means the
starting of ei in the first iteration of lpðei; exÞ:
Notably, where lpðei; exÞ is a nested loop if it
belongs to another loop which is called the outer

loop. For the two levels of nesting, the above is
also applied to each iteration of the outer loop.
Furthermore, the above can be recursively applied
to the case of more than two levels of nesting.

If a process contains loops, then two revisions
are needed for the entry and exit points of those
loops. (1) For depðx; y;R;CÞ; if x is the exit point
of a loop (i.e., x is also associated with a loop
dependency), then C is evaluated when x is
completed and the loop condition is evaluated as
false (i.e., the loop stops). Moreover, if x is
evaluated as non-fired, then C and the loop
condition are evaluated as false. (2) For an activity
ba; if ba is the entry point of a loop, then whether
ba can be started depends on both SC and the loop
condition. In the first iteration of the loop, ba is
started/fired if SC is evaluated as true. In the
follow-on iteration(s), ba is started/fired if the loop
condition is evaluated as true (i.e., the loop is
repeated).

For convenience, in the rest of this work,
depðx; y; ; Þ indicates a situation in which type
and condition field are free.

Definition 5 (Adjacent). Two distinct activities x

and y are adjacent if depðx; y; ; Þ exists.

Definition 6 (Path). A path of length k from an
activity x to an activity y in a process P ¼ /A;DS
is a sequence of activities a0; a1;y; ak such that
x ¼ a0; y ¼ ak , and depðai�1; ai; ; ÞAD for i ¼
1; 2;y; k: The length of the path is the number of
(loop) dependencies on the path. The path con-
tains the activities a0; a1;y; ak and the (loop)
dependencies depðai�1; ai; ; Þ for i ¼ 1; 2;y; k:

Definition 7 (Loop-derived sub-process). Given a
process P ¼ /A;DS; if depðex; ei;L;LCÞ exists in
P; then a loop lpðei; exÞ exists in P: A sub-process
can be derived by excluding depðex; ei;L;LCÞ
from lpðei; exÞ: That is, for lpðei; exÞ in P; a sub-
process LPðei; exÞ¼/ALPðei;exÞ;DLPðei;exÞS where
ALPðei;exÞ¼fxjx belongs to lpðei; exÞg; and DLPðei;exÞ¼
fdepðx; y; ; Þjx; yAALPðei;exÞg�fdepðex; ei;L;LCÞg:
lpðei; exÞ can be viewed as a repeatedly executed
LPðei; exÞ: LPðei; exÞ is called a loop-derived sub-
process that is derived from lpðei; exÞ:

To clarify the target for discussion, lp and LP

are used in parts of this work to denote a loop and
a loop-derived sub-process, respectively.

Definition 8 (Ordering relation). Given a process
P ¼ /A;DS and a sub-process P 0 ¼ /A0;D0S of
P; the ordering relation between an activity x and
an activity y in P0 is defined as follows:

1. If there exists a path from x to y in P 0; then the
ordering of x is higher than y; i.e., x precedes y:
Their ordering relation is denoted by x > y or
yox which means x > y (or yox) holds in P 0:

2. If no path exists from x to y or from y to x in
P 0; then x and y are ordering independent, i.e.,
x and y proceed independently. Their ordering
relation is denoted by xNy which means xNy

holds in P 0:

Definition 8.1 implies that if another activity
zAA 0 exists, such that x > y and y > z hold in P0;
then x > z holds in P 0: Notably, the ordering
relations may hold in P but do not hold in the sub-
processes. For example, in Fig. 1, the ordering
relations among a2; a3; and a4 in P are a2 > a3;
a2oa3; a2 > a4; a2oa4; a3 > a4; and a3oa4 because
the ordering relations can be derived from the
paths that include depða4; a2;L;LC42Þ: However,
only the ordering relations a2 > a3; a2 > a4; and
a3 > a4 hold in LPða2; a4Þ; derived from lpða2; a4Þ;
because the ordering relations are derived from the
paths that exclude depða4; a2;L;LC42Þ: The seman-
tics of ‘‘a2oa3 holds in P’’ can be elucidated as a3

is executed in the iteration of lpða2; a4Þ before a2 is
executed in the follow-on iteration of lpða2; a4Þ in
an instance of P: The semantics of ‘‘a2 > a3 holds
in LPða2; a4Þ’’ is elucidated as a2 is executed before
a3 in each iteration of lpða2; a4Þ:
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3. Virtual process: a process-view

Views in DBMSs are virtual tables generated
from either physical tables or previously defined
views. Similarly, process-views are generated from
either physical processes (base processes) or other
process-views, and are considered virtual processes.
During design time, a process modeler defines
various process-views based on the roles of
participants. During run time, a WfMS initiates
all process-view instances if their base process is
initiated. Process-views allow a process modeler to
flexibly provide different roles (i.e., different levels
or departments within an organization or different
organizations in a supply chain) with appropriate
views of an implemented process. This ability
implies that a modeler can provide only the
information that participants need to know, while
filtering and concealing information as desired.
Fig. 2 illustrates this concept.

Assume that the base process in Fig. 2 is a
manufacturing process. Marketers do not need to
know every step in the process, although they must
know the progress of order fulfillment to serve
their customers. A process modeler can design an
appropriate process-view for the marketing de-
partment as follows: a1; a2; and a3 are mapped into
va1; a4 and a5 are mapped into va2; a6 and a7 are
mapped into va3: When a customer places a new
order, the WfMS initiates a new manufacturing
process instance and corresponding process-view
instances. Marketers can use the information from
the process-view instance to serve customers. A
case study in Section 4.4 demonstrates more
applications of process-views.

Like process design, the design of a process-view
must first identify any activities within it and then
arrange them based on dependencies and ordering
structures. However, an ‘‘activity’’ in a process-
view is not performed, but rather is used to express
the progress information of a set of activities.
Hence, to differentiate the terminology used in
base process and process-view, this work uses the
terms virtual activity and virtual (loop) dependency

for the process-view, and the terms base activity

and base (loop) dependency for the base process.
While a virtual activity is derived from a bottom-
up aggregation of a set of activities within a
process, a base activity is generated from a top-
down decomposition of a business process. A
process modeler develops a process definition and
then defines process-views.

3.1. Formal model

Definition 9. (Process-view). A process-view VP

is a 2-tuple /VA;VDS; where VA is a set of
virtual activities and VD is a set of virtual
dependencies and virtual loop dependencies. Dur-
ing run-time, an execution of a process-view is
called a process-view instance.

A process-view has a corresponding base process
from which it is derived. A virtual activity is an
abstraction of a set of base activities and
correlative base (loop) dependencies. A virtual
dependency connects two virtual activities in a
process-view, and a virtual loop dependency
constructs a loop structure in a process-view.

base process a1

process-views
various views on
the same base
process

a2 a3

a4

a5

a6 a7

accounting dep.

$

partner 1managerial level partner 2

va1*

va2*

va3*

va4* va1 va2 va3 va1. va2. va1+ va2+va1' va2'

marketing dep.

Fig. 2. Illustrative examples of process-views.
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According to the different properties of a base
process, various approaches can be developed to
derive VA and VD: Section 4 presents an approach
that preserves the original execution order of a
base process.

Regardless of how VA and VD are derived, the
definitions of path, loop (denoted by vlpð ; Þ), loop-

derived sub-process-view (denoted by VLPð ; Þ)
and ordering relations for a process-view are
similar to Definitions 3, 6, 7 and 8. For example,
the definition of ‘‘path’’ for a process-view can be
obtained by replacing ‘‘activity/(loop) depen-
dency/process’’ in Definition 6 with ‘‘virtual
activity/virtual (loop) dependency/process-view’’.
Therefore, those definitions are omitted herein for
brevity.

Fig. 3 illustrates the relationship between the
components of the novel model. Base process

relevant data defines the data created and used
within each process instance during workflow
enactment [7]. Similarly, the produced and con-
sumed data of a process-view is termed process-

view relevant data. Since a virtual activity is an
abstraction of a set of base activities, the
produced/consumed data of a virtual activity is
the set of data that is produced/consumed by the
base activities belonging to the virtual activity.

4. Order-preserving approach

Execution order is an important property of
business processes, particularly continuous manu-

facturing processes such as chemical materials,
integrated circuit (IC), and steel. This section first
introduces three rules that a process-view must
follow to preserve the ordering property. Then
virtual activities and (loop) dependencies in an
order-preserving process-view are formally defined
based on these rules. Essential activities, i.e.,
activities that a modeler wants to conceal or
aggregate in a virtual activity, are proposed to
simplify the procedure of defining a virtual
activity. Next, a liquid crystal display (LCD)
production flow is used to illustrate the application
of process-views. Finally, novel algorithms that
automatically generate legal virtual activities and
virtual (loop) dependencies are also proposed
herein.

4.1. Basic rules

The following introduces three rules for defining
virtual activities.

4.1.1. Rule 1 membership

A virtual activity can be viewed as a set of
activities of a base process. Restated, a virtual
activity comprises base activities. For further
abstraction, a virtual activity may comprise other
previously defined virtual activities. As illustrated
in Fig. 4, member activities of a virtual activity
may include base activities, virtual activities, or
both. The membership among base activities and
virtual activities is defined transitively. That is, if a
base activity ba is a member of a virtual activity

Base Process
Relevant Data

Process-view
Relevant Data

Base Process Process-view

Base
Activity

Virtual
Activity

Base (loop)
Dependency

Virtual (loop)
Dependencycontains

abstracts from

consists of

contains

consists of

to
is produced by

is consumed by
from

is consumed by
from

to
is produced by

refers to

Fig. 3. Process-view model.
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va1; and va1 is a member of another virtual activity
va2; then ba is also a member of va2:

4.1.2. Rule 2 atomicity

A virtual activity is an atomic unit of processing.
The following first considers the case of base
processes that do not contain loops to explain
clearly the atomicity rule. Notably, a virtual
activity may contain other virtual activities ac-
cording to the membership rule. The behavior of a
virtual activity is determined by its member base
activities since base activities are the actual
execution units. For example, if va1 contains va2

and ba1; and va2 contains ba2 and ba3; then
member base activities of va1 are ba1; ba2; and ba3:

In a base process, each base activity is executed
atomically; that is, the starting of a base activity
implies all its preceding base activities have been
evaluated and the fired ones are completed in the
base process instance. Thus, the claim that ‘‘each
virtual activity proceeds atomically in a process-
view’’ rests on three requirements.

1. A virtual activity is started if one member base
activity is started, and is completed if all
member base activities have been evaluated
and each fired member base activity is com-
pleted.

2. In a process-view instance, a virtual activity is
evaluated as fired if one member base activity is
evaluated as fired, and is evaluated as non-fired
if all member base activities are evaluated as
non-fired.

3. The starting of a virtual activity implies that all
its preceding virtual activities have been eval-
uated and each preceding fired virtual activity is
completed in the process-view instance.

Requirements 1 and 2 describe how to decide
the behavior of a virtual activity, and requirement
3 specifies the behavior of a process-view. Each
virtual activity is an indivisible unit in a process-
view, and, thus, can be decided as started if one
member base activity is started. As stated in
Section 2.1 (enacting a process), whether a base
activity is either fired or non-fired in a base process
instance is unknown until the SC of the base
activity has been evaluated. Consequently, a
virtual activity can be decided as completed when
the starting condition of each member base
activity has been evaluated and each fired member
base activity is completed. Moreover, the starting
of a virtual activity occurs after the completion of
its preceding fired virtual activities in a process-
view instance.

Consider three process-views VPa; VPb; and
VPc as shown in Fig. 5 where each virtual activity
follows requirements 1 and 2. When a3 is started,
a1 and a2 should be completed in the base process.
Under such conditions, three process-views behave
differently from each other. In VPa; va2 is started
(because a3 is started) and va1 has been completed.
This behavior follows atomicity property. Contra-
rily, in VPb; va1 is not completed since whether a4

is fired is currently unknown, i.e., the starting
condition of a4 is not yet evaluated. Meanwhile,
va2 is completed and va3 is started. Restated, the
current status is that va1 is started, va2 is
completed, and va3 is started. This behavior is
incompatible with the ordering relations of VPb:
Therefore, VPb violates the atomicity property
since it does not satisfy requirement 3. The
behavior of VPc is similar to that of VPb:
However, va1 of VPb cannot be decided as
completed until the end of the base process
instance, while va1 of VPc can be decided as
completed when a3 is completed. Notably, the
virtual activities defined in VPd are identical to
those defined in VPc. However, these activities
have different ordering relations. VPd also violates

Activity Activity

Activity

Activity Activity

Virtual

Activity

Virtual

Activity

Fig. 4. Illustrative examples of virtual activities’ members.
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the atomicity property because va1 is not com-
pleted when va2 is started.

As another example, in Fig. 6, the starting of
virtual activity va3 implies that va2 is completed
since va2 > va3: If the SPLIT flag of a1 is AND
and the JOIN flag of a4 is AND, then a4 cannot
be started until a2 and a3 are completed. The
completion of va2 implies that a2 and a3 are
completed. However, if the SPLIT flag of a1 is
XOR and the JOIN flag of a4 is XOR, then a4

cannot be started until a2 or a3 are completed. The
completion of va2 implies that either a2 or a3 is
completed, while the other is non-fired in the base
process instance.

Base processes that contain loops. The repeatable
property distinguishes the base activities that
belong to a loop from the other ones. The
operational semantics of a virtual activity should
not infer a new repeatable behavior that does not

occur in the base process since a virtual activity is
only an abstraction of a set of base activities.
Restated, although capable of concealing and
revealing original behavior, an abstraction should
not imply new behavior. Hence, four cases are
possible to define a virtual activity with respect to
a loop lp of a base process. First, the virtual
activity does not contain base activities that belong to
lp: Second, the virtual activity contains the entire lp:
Third, the virtual activity only contains partial base
activities of lp: Fourth, the virtual activity contains
not only partial (not all) base activities of lp; but also
some base activities that do not belong to lp:

The second definition, although concealing the
repeatable behavior, does not infer new one, even
if it contains the entire lp and some base activities
that do not belong to lp: Regarding the fourth
definition, the repeatable behavior of the virtual
activity corresponds to the repeated execution of
lp: Such repeatable behavior implies that the base
activities that do not belong to lp are also involved
in the repeatable semantics of lp since a virtual
activity is an atomic unit. Hence, the fourth
definition imposes repeatable semantics on the
base activities that do not belong to lp; and is not a
reasonable abstraction.

The above atomicity requirements are extended
to tackle the base process that contains loops, and
are summarized below. For clarity, the following

Fig. 5. Illustrative examples of the atomicity property.

Fig. 6. Illustrative example of atomicity in the split structure.

D.-R. Liu, M. Shen / Information Systems 28 (2003) 505–532 513



describes the case of base processes that do not
have nested loops. However, this rule can be
recursively applied to handle nested loops.

Summary of atomicity rule. Four cases are
possible to define a virtual activity va with respect
to a loop lp in the base process.

Case 1: va does not contain base activities that
belong to lp:

Case 2: va contains the whole lp: The whole lp is
viewed as a member base activity; it is started
when lp starts and is completed when lp stops; it is
evaluated as fired/non-fired if the SC of the entry
point of lp is evaluated as true/false.

1. va is started if one member base activity is
started, and is completed if all member base
activities have been evaluated and each fired
member base activity is completed.

2. In a process-view instance, va is evaluated as
fired if one member base activity is evaluated as
fired, and is evaluated as non-fired if all member
base activities are evaluated as non-fired.

3. The starting of va implies that all its preceding
virtual activities have been evaluated and each
preceding fired virtual activity is completed in
the process-view instance.

Case 3: va only contains partial base activities of
lp in the base process; accordingly, va belongs to a
loop vlp in the process-view. A correspondence
exists between vlp and lp; just as a process-view has
a corresponding base process. The completion of
va that belongs to vlp means that va is completed in
an iteration of vlp in the process-view instance; va

may be started/completed again in the follow-on
iterations of vlp in the process-view instance.
Similarly, the completion of member base activ-
ities means that these base activities are completed
in an iteration of lp in the base process instance.
Member base activities may be started/completed
again in the follow-on iterations of lp in the base
process instance.

1. Starting and completion of va:
* Starting: va is started in an iteration of vlp

in the process-view instance if one member
base activity is started in an iteration of lp

in the base process instance.

* Completion: va is completed in an iteration
of vlp in the process-view instance if all
member base activities have been evaluated
and each fired member base activity is
completed in an iteration of lp in the base
process instance.

2. In an iteration of vlp in the process-view
instance, va is evaluated as fired if one member
base activity is evaluated as fired in an iteration
of lp in the base process instance, and is
evaluated as non-fired if all member base
activities are evaluated as non-fired in an
iteration of lp in the base process instance.

3. In an iteration of vlp in the process-view instance,
the starting of va implies that all its preceding
virtual activities have been evaluated and each
preceding fired virtual activity is completed.

Case 4: va cannot be defined as the case that
contains not only partial (not all) base activities of
lp; but also some base activities that do not belong
to lp:

Discussion. In case 2, a virtual activity encapsu-
lates a whole loop, thus it is reasonable to view the
loop as a member activity. That is, the behavior of
repeated execution of the loop is hidden by the
virtual activity. Therefore, the completion of the
member activity refers to the completion of the
whole loop; that is, the end of the cyclic execution
of the loop. However, a virtual activity in case 3
does not hide a whole loop. Hence, the virtual
activity must reveal that its member activities are
repeatedly executed. That is, repeatable behavior
should be preserved. Accordingly, in case 3, the
process-view must contain a loop that corresponds
to the loop of the base process. That is, member
base activities of the virtual activities that belong
to vlp; must belong to lp: On the other hand, if a
loop exists in the process-view, then a correspond-
ing loop can be found in the base process.

Consider the two process-views VPa and VPb as
shown in Fig. 7. Case 1 determines the behavior of
va1 and va3 in VPa: Similarly, case 1 determines the
behavior of va1 and va4 in VPb: However, the
behavior of va2 in VPa is determined by case 2
since va2 contains a whole loop lpða2; a4Þ: In VPa;
va2 is started if a2 is started, and it is completed
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when lpða2; a4Þ stops and a5 is completed. As to
VPb; case 3 determines the behavior of va2 and va3:
Completion of va2 in an iteration of the loop
vlpðva2; va3Þ in VPb means a2 and a3 are completed
in one iteration of the loop lpða2; a4Þ in the base
process instance. In the follow-on iteration(s), va2 is
started/completed again. Notably, vlpðva2; va3Þ of
VPb corresponds to lpða2; a4Þ of the base process.

4.1.3. Rule 3 order preservation

Briefly, this rule states that a process-view must
preserve the original ordering relations of a base
process. Order preservation provides a syntactical
constraint that ensures that a process-view
follows the atomicity property. The following first
explains order preservation and then summarizes
this rule.

A situation in which the ordering relation
between two virtual activities is ‘‘>’’ in a
process-view infers that the implied ordering
relation between the respective members of these
virtual activities is ‘‘>’’ due to the atomicity
property of virtual activity. Corresponding infer-
ences also hold for the ordering relations ‘‘o’’ and
‘‘N‘‘, respectively. For example, the process-view
in Fig. 6 shows that the ordering relation between
va1 and va2 is va1 > va2: ‘‘va1 > va2’’ infers that
‘‘>’’ is the implied ordering relation between any
member of va1 and any member of va2 because a
virtual activity is an atomic unit; that is, va1 > va2

implies a1 > a2 and a1 > a3: Notably, the implied
ordering relations may not conform to the order-
ing relations of the base process; that is, the
implied ordering relations may not hold in the
base process.

Consider the base process depicted in Fig. 8(a),
which seeks to define a virtual activity that must
contain activities a11 and a22: Figs. 8(b) and (c)

provide two possible definitions. In the base
process, three branches proceed independently
and autonomously, while the ordering relation
between a13 and a22 is a13Na22: However, if a
virtual activity is defined as in Fig. 8(b), then a11;
a12; a21; and a22 are viewed as an atomic unit since
they are members of the same virtual activity. The
ordering relation virtual activity>a13 infers an
implied ordering relation a22 > a13: This implied
ordering relation does not hold in the base process.
Hence, the virtual activity must contain all
activities in branches 1 and 2, as shown in Fig. 8(c),
to preserve the original ordering relations.

The implied ordering relation a22 > a13 means
that a13 must wait for the completion of a22 before
it can start. Perhaps a13 is started after a11; a12; a21;
and a22 are completed in the base process instance.
In this situation, the virtual activity defined in
Fig. 8(b) satisfies the atomicity property. However,
such a definition cannot assure the atomicity
property; that is, the property may not hold for
the other base process instances. If implied ordering
relations conform to the original ordering relations,
then the progress expressed in virtual activities
necessarily satisfies the atomicity property.

The definition of a virtual activity must main-
tain repetitive execution order of a loop structure.
In Fig. 9, for example, each numbered dotted
rectangle is a possible virtual activity definition.
While alternatives 1 and 2 are valid, alternatives 3
and 4 alter the original ordering relations. Alter-
native 3 creates an implied ordering relation a3 >
a1; that is, a1; a2; and a3 may be executed
repetitively (a1 and a2 are viewed as an atomic
unit). Likewise, alternative 4 creates an implied
ordering relation a4 > a2; that is, a4 may be
executed before the condition that a2 and a3 be
repetitively executed, is satisfied.

Fig. 7. Illustrative examples of atomicity in the loop structure.
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Fig. 10 seems to show a valid process-view
definition because implied ordering relations de-
rived from VP can be found in BP: However, the
loop-derived sub-process-view VLPðva2; va3Þ does
not preserve the ordering relations of the loop-
derived sub-process LPða2; a5Þ: When a2 is com-
pleted and a3 is started in the iteration of lpða2; a5Þ;
va2 is not completed (because whether a4 is fired is
currently unknown) and va3 is started in the
iteration of vlpðva2; va3Þ: Atomicity is violated in
this situation. The process-view must contain a
loop structure that corresponds to the loop of the
base process when a virtual activity of a process-
view does not hide an entire loop of a base process,
as stated in the atomicity rule. In such situations,
to keep the atomicity property, the loop-derived
sub-process-view must preserve the ordering rela-
tions of the corresponding loop-derived sub-
process.

In Fig. 10, a2 > a3; a3 > a4 and a4 > a5 hold in
LPða2; a5Þ: However, ‘‘va2 > va3 holds in
VLPðva2; va3Þ’’ implies that a2 > a3; a4 > a3; a2 >

a5; and a4 > a5: The implied ordering relation
‘‘a4 > a3’’ does not hold in LPða2; a5Þ: Therefore,
VLPðva2; va3Þ does not preserve the ordering
relations of LPða2; a5Þ:

Summary of order preservation rule. If the
ordering relation between two virtual activities is
‘‘>’’ in a process-view/loop-derived sub-process-
view, then the implied ordering relation between
the respective members of these virtual activities is
also ‘‘>’’. Corresponding inferences also hold for
the ordering relations ‘‘o’’ and ‘‘N’’, respectively.
The implied ordering relations between the respec-
tive members of two virtual activities must hold in
the corresponding base process/loop-derived sub-
process.

Restated, (1) Given a process-view VP; derived
from a base process BP; for any two virtual
activities vai and vaj in VP: ‘‘vai > vaj holds in
VP’’ implies that ‘‘ax > ay’’ for all ax contained by
vai and all ay contained by vaj ; moreover,
‘‘ax > ay’’ must hold in BP for all ax contained
by vai and all ay contained by vaj : (2) Given a loop-
derived sub-process-view VLP; derived from the
corresponding loop-derived sub-process LP; for
any two virtual activities vai and vaj in VLP:
‘‘vai > vaj holds in VLP’’ implies that ‘‘ax > ay’’ for
all ax contained by vai and all ay contained by vaj;
moreover, ‘‘ax > ay’’ must hold in LP for all ax

contained by vai and all ay contained by vaj : (3)

Fig. 8. Illustrative examples of order preservation in the split structure.

Fig. 9. Illustrative examples of order preservation in the loop

structure.
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Statements (1) and (2) also hold for the ordering
relations ‘‘o’’ and ‘‘N’’, respectively.

Discussion. The atomicity rule describes the
operational semantic property of a process-view.
The order preservation rule provides a syntactical
constraint that ensures a process-view follows the
atomicity property. This approach is called order-

preserving because implied ordering relations,
derived from a process-view/loop-derived sub-
process-view, conform to the ordering relations
of the base process/loop-derived sub-process. A
legal virtual activity in an order-preserving pro-
cess-view must follow above three rules. Therefore,
the behavior of a process-view whose virtual
activities are legal can be determined by the
behavior of its base process.

Consider a situation in which a member activity
ba of a virtual activity va is started. Therefore, va is
started. The following elucidates that the preced-
ing fired virtual activities of va are completed in a
process-view of which each virtual activity follows
the above three rules. Consider any fired virtual
activity va0 with a higher order than va in the
process-view. According to the order preservation
rule, all member base activities of va0 must have a
higher order than ba since va0 > va: In the base
process, all base activities that precede ba have been
evaluated and the fired ones are completed before ba

is started since base activities are executed atom-
ically. Thus, in the process-view, any virtual activity
with a higher order than va can be determined as
completed before ba is started because all of its fired
member activities have been completed.

Contrarily, the starting of a member activity of
an arbitrarily defined virtual activity that violates
order preservation, cannot ensure that preceding

virtual activities have been completed. Consider
the same situation in which a member activity ba

of a virtual activity va is started. The preceding
virtual activities that violate order preservation
contain some member base activities that do not
have a higher order than ba: In the base process,
all base activities with a higher order than ba are
completed. However, base activities without a
higher order than ba may be neither completed
nor evaluated. Consequently, in the process-view,
the virtual activities with higher order than va

cannot be decided as completed because some of
their member activities may not be completed
before the starting of ba: Several virtual activities
that are not ordering independent may be executed
concurrently. The operational semantics of such a
process-view violates the atomicity rule.

4.2. Formal model

The rules that a process-view should comply
with have been introduced above. In the following,
virtual activities and virtual (loop) dependencies in
an order-preserving process-view are formally
defined.

Definition 10 (Virtual activity). Given a base
process BP ¼ /BA;BDS; a virtual activity va is
a 5-tuple /A;D;SPLIT flag; JOIN flag;SCS;
where

1. A is a non-empty set, and its members follow
three rules:

(a) Members of A are base activities that are
members of BA or other previously defined
virtual activities that are derived from BP:

Fig. 10. Illustrative example of order preservation in the loop structure.
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(b) The starting and completion of va are
determined by the starting and completion
of members of A; according to the atom-
icity rule.

(c) Let BP0 ¼ /BA0;BD0S be BP or any loop-
derived sub-process LPðei; exÞ where ei;
exABA: For any xABA0 and xeA: if there
exists a yAA and yABA0 such that x > y

holds in BP0; then x > z holds in BP0 for all
zAA and zABA0; if there exists a yAA and
yABA0 such that xoy holds in BP0; then
xoz holds in BP0 for all zAA and zABA0; if
there exists a yAA and yABA0 such that
xNy holds in BP0; then xNz holds in BP0

for all zAA and zABA0. That means the
ordering relations between x and all mem-
bers (base activities) of A that belong to BP0

are identical.

2. D ¼ fdepðx; y; ; Þjx; yAA and depðx; y; ; ÞA
BDg:

3. SPLIT flag may be ‘‘NULL’’ or ‘‘MIX’’.
NULL suggests that va has a single outgoing
virtual dependency while MIX indicates that va

has multiple outgoing virtual dependencies.
4. JOIN flag may be ‘‘NULL’’ or ‘‘MIX’’. NULL

suggests that va has a single incoming virtual
dependency while MIX indicates that va has
multiple incoming virtual dependencies.

5. SC is the starting condition of va:

The SPLIT flag and JOIN flag cannot simply
be described as AND or XOR since va is an
abstraction of a set of base activities that may be
associated with different ordering structures.
Therefore, MIX is used to abstract the compli-
cated ordering structures. A WfMS evaluates SC

to determine whether va can be started. Section 4.5
further discusses JOIN flag, SPLIT flag, and the
derivation of SC: Members of A are called va’s
member activities, and members of D are called
va’s member dependencies. To save space, the
abbreviated notation va ¼ /A;DS is employed
below to represent a virtual activity.

Definition 11 (Virtual dependency). Let vai ¼
/Ai;DiS and vaj ¼ /Aj ;DjS be two distinct
virtual activities that are derived from a base

process BP ¼ /BA;BDS: A virtual dependency
from vai to vaj is vdepðvai; vaj ;R;VCijÞ ¼
fdepðax; ay;R;CxyÞjaxAAi; ayAAj ; and depðax; ay;
R;CxyÞABDg; where the virtual condition VCij is
a Boolean combination of Cxy:

Definition 12 (Virtual loop dependency). Let
vai ¼ /Ai;DiS and vaj ¼ /Aj ;DjS be two distinct
virtual activities that are derived from a
base process BP ¼ /BA;BDS: A virtual loop
dependency from vai to vaj is vdepðvai; vaj ;
L;VLCijÞ ¼ fdepðax; ay;L;LCxyÞjaxAAi; ayAAj ; and
depðax; ay;L;LCxyÞABDg; where the virtual loop
condition VLCij equals the loop condition LCxy:

Notably, a loop (and a loop-derived sub-
process-view) in the process-view has a corre-
sponding loop (and a loop-derived sub-process) in
the base process, as a process-view has a corre-
sponding base process (see the atomicity rule).
Therefore, a virtual loop dependency of the
process-view only contains one loop dependency
of the base process. Section 4.5 further discusses
the relationship between VCðVLCÞ and CðLCÞ
with respect to virtual (loop) dependency. In the
following, Theorem 1 proves that the process-
view, defined according to Definitions 10–12,
preserves original ordering relations. The follow-
ing lemmas support the proof of Theorem 1. These
lemmas are proved in Appendix A.

Lemma 1. Consider a process-view VP ¼
/VA;VDS; where members of VA follow Defini-

tion 10 and members of VD follow Definitions 11
and 12, derived from a base process BP ¼
/BA;BDS: For any two distinct virtual activities

vai and vaj in VP; vai ¼ /Ai;DiS and

vaj ¼ /Aj ;DjS: if there exist a base activity

aiAAi and a base activity ajAAj such that ai > aj

holds in BP; then vai > vaj holds in VP:

Lemma 2. Consider a process-view VP ¼
/VA;VDS; where members of VA follow Defini-

tion 10 and members of VD follow Definitions 11
and 12, derived from a base process BP ¼
/BA;BDS: Let LP be a loop-derived sub-process

of BP; let VLP be a loop-derived sub-process-view

of VP; VLP corresponds to LP: For any two distinct
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virtual activities vai and vaj in VLP; vai ¼ /Ai;DiS
and vaj ¼ /Aj ;DjS: if there exist a base activity

aiAAi and a base activity ajAAj such that ai > aj

holds in LP; then vai > vaj holds in VLP:

Lemma 3. Consider a process-view VP ¼
/VA;VDS; where members of VA follow Defini-

tion 10 and members of VD follow Definitions 11
and 12, derived from a base process

BP ¼ /BA;BDS. For any two distinct virtual

activities vai and vaj in VP; vai ¼ /Ai;DiS and

vaj ¼ /Aj ;DjS: if vai > vaj holds in VP; then there

exist a base activity aiAAi and a base activity ajAAj

such that ai > aj holds in BP:

Lemma 4. Consider a process-view VP ¼
/VA;VDS; where members of VA follow Defini-

tion 10 and members of VD follow Definitions 11
and 12, derived from a base process BP ¼
/BA;BDS: Let LP be a loop-derived sub-process

of BP; let VLP be a loop-derived sub-process-view

of VP; VLP corresponds to LP: For any two distinct

virtual activities vai and vaj in VLP; vai ¼ /Ai;DiS
and vaj ¼ /Aj ;DjS: if vai > vaj holds in VLP; then

there exist a base activity aiAAi and a base activity

ajAAj such that ai > aj holds in LP:

Theorem 1. Given a process-view VP ¼
/VA;VDS; as derived from a base process BP ¼
/BA;BDS; if members of VA follow Definition 10
and members of VD follow Definitions 11 and 12,
then VP preserves the ordering relations of BP; and

any loop-derived sub-process-view VLP preserves

the ordering relations of its corresponding loop-

derived sub-process LP:

Proof. Let vai and vaj be two different virtual
activities in VP; vai ¼ /Ai;DiS and vaj ¼
/Aj ;DjS: The following proves that VP preserves
the ordering relations of BP; that is, the implied
ordering relations between the respective members
of vai and vaj conform to the ordering relations of
the base process BP.

Case 1: vai > vaj holds in VP: The proof needs to
show that ax > ay holds in BP (according to
atomicity rule) for all axAAi and all ayAAj : Given
that vai > vaj holds in VP, by Lemma 3, let ai be

the member base activity of vai and aj be the
member base activity of vaj (i.e., aiAAi and
ajAAj), and ai > aj holds in BP: Since ai > aj ;
aieAj and ajAAj ; by Definition 10(1c), ai > ay for
all ayAAj : Furthermore, for any ayAAj: since ai >
ay; aiAAi and ayeAi; thus ax > ay for all axAAi (by
Definition 10(1c)). Therefore, ax > ay holds in BP

for all axAAi and all ayAAj :
Case 2: vaiovaj holds in VP: The proof is similar

to Case 1 and is omitted.
Case 3: vaiNvaj holds in VP: The proof needs to

show that axNay holds in BP for all axAAi and all
ayAAj : Assume that the proposition is false; that
is, axNay does not hold in BP for some axAAi and
some ayAAj : Let ai be a member base activity of
vai and aj be a member base activity of vaj (i.e.,
aiAAi and ajAAj), such that ai > aj (or aioaj)
holds in BP: By Lemma 1, if ai > aj holds in BP;
then vai > vaj holds in VP; which contradicts with
vaiNvaj : Similarly, if aioaj holds in BP; then
vaiovaj holds in VP; which also contradicts with
vaiNvaj : Therefore, axNay holds in BP for all
axAAi and all ayAAj :

Lemmas 2 and 4 are used to prove that any
loop-derived sub-process-view of VP preserves the
ordering relations of its corresponding loop-
derived sub-process of BP: The proof of this claim
is similar to the above proof and is thus
omitted. &

4.3. Essential activity

Previous sections have introduced three rules
that allow a virtual process to preserve the
ordering relations of a base process. However, a
process modeler merely wishes to conceal sensitive
activities or aggregate detailed activities. In addi-
tion to these activities, what activities must be
included in order to form a legal virtual activity is
not a primary concern, and should be supported
by a process-view definition tool. These sensitive
or detailed activities are called essential activities.

Definition 13 (Essential activity). Before defining
a virtual activity, a modeler must select some
activities that are essential to that virtual activity.
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The chosen activities are called essential activities,
and form an essential activity set EAS:

Many virtual activities contain the same essen-
tial activities and conform to Definition 10. These
virtual activities have a ‘‘cover’’ relation with each
other, and can be found to share a ‘‘minimal
virtual activity’’.

Definition 14 (Cover). Let EAS be an essential
activity set. A virtual activity vai ¼ /Ai;DiS is
said to cover a virtual activity vaj ¼ /Aj ;DjS if
and only if Aj+EAS; Ai+Aj and Di+Dj :

Definition 15 (Minimal virtual activity). For an
essential activity set EAS; a virtual activity
/A;DS is called a minimal virtual activity, denoted
by min vaðEASÞ; if it does not cover other virtual
activities and A+EAS.

Given an EAS; a modeler must identify
min vaðEASÞ: Besides essential activities, A only
contains those activities needed to preserve the
original ordering relations of the base process, i.e.,
the min vaðEASÞ only contains essential and
adequate information to abstract EAS: Adding
more activities, which are neither modeler selected
nor order preservation needed, into A merely adds
unnecessary information into min vaðEASÞ:

The procedure of defining an order-preserving
process-view is summarized as follows: A process
modeler must initially select essential activities.
The process-view definition tool then automati-
cally generates a legal minimal virtual activity that
encapsulates these essential activities. The above
two steps are repeated until the modeler deter-
mines all required virtual activities. The definition
tool then generates all virtual (loop) dependencies
between these virtual activities as well as the
ordering fields (JOIN/SPLIT flag) and SC of each
virtual activity. The process-view definition tool
can be implemented using the algorithm proposed
in Section 4.5.

4.4. Illustrative examples

This section uses a manufacturing process as
shown in Fig. 11 of a thin film transistor-liquid

crystal display (TFT-LCD) company, named
HiTEC, to demonstrate the applications of pro-
cess-view.

The manufacturing process can be divided into
three parts: Array, Cell, and Module. Initially,
each cassette contains a load of glass substrates.
The Array part, activities (1)–(14) in Fig. 11,
produces TFT panels after repeated sputtering,
stepping, developing, and etching on glass sub-
strates. Next, TFT panels move to the Cell part.
The Cell part, activities (16)–(40), attaches color
filters to TFT panels, breaks them into pieces, and
injects liquid crystal to produce LC cells. The
Module part, activities (42)–(63), assembles LC
cells, flexible printed circuits, chips, and casing to
produce LCD modules. Finally, these LCD
modules are delivered to downstream customers
such as notebook computer and monitor manu-
facturers. Delivery activities, (41) and (64), are
outsourced to a transport company.

HiTEC has three fabrication factories: FAB I,
II, and III. FAB I and II produce Array and Cell
Parts, while FAB III handles Module parts.
According to the demands of different roles, a
process modeler can design an appropriate view
for a role without being restricted by the original
process definitions. The following discussion pro-
vides two examples of the roles: a factory director
and a marketer.

First, the application of the proposed metho-
dology to defining a process-view is demonstrated.
The factory director of FAB II must know the
aggregated information and more about the Array

and Cell processes. A process modeler can easily
use the order-preserving approach to define a
process-view for the director. For example, when
the modeler wants to use a virtual activity to
abstract activities (16), (19), (20), (22), and (25),
the process-view definition can automatically
derive a legal virtual activity. Fig. 12 displays the
prototype system when generating a min vaðEASÞ;
where EAS ¼ f16; 19; 20; 22; 25g: The tool auto-
matically generates a min vaðEASÞ based on the
chosen EAS: Following the determination of all
virtual activities, i.e., each base activity is con-
tained by a virtual activity, the tool automatically
generates a process-view, as shown in Fig. 13
where each virtual activity is annotated with its
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member activity(s) in the braces. The process-view
ensures the preservation of the original ordering
relations.

Marketers must monitor the progress of the
manufacturing process to improve their provision
of customer service. The process-view shown in
Fig. 14 informs marketers of the status of order
fulfillment in the manufacturing department, for
example, the Cell activity represents the progress
of activities (16)–(40) in Fig. 11. Another scenario
is HiTEC authorizing its customers to access
process-views. Customers can actively monitor

the progress of order processing through their
process-views. A process modeler can use diverse
customer requirements as a basis for designing
various customized process-views to provide per-
sonalized service.

4.5. Algorithm

This section introduces algorithms to derive an
order-preserving process-view. The algorithm first
derives the member activities and dependencies of
a minimal virtual activity based on the essential
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Fig. 11. The manufacturing process of a TFT-LCD factory.
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activities specified by a modeler. Subsequently,
how to derive virtual dependencies and the JOIN

flag, SPLIT flag, and SC field of each virtual
activity in the process-view is discussed.

4.5.1. Minimal virtual activity generator

For a given essential activity set EAS; Fig. 15
shows the algorithm capable of obtaining an
min vaðEASÞ ¼ /A;DS: Because D can be derived

from A and EAS is known, the members of A must
be identified. Let BP0 be the base process BP or
any loop-derived sub-process of BP: According to
the definition of a virtual activity (Definition
10(1c)), a legal virtual activity A must satisfy the
order-preserving condition: the ordering relations
between x and all members of A that belong to BP0

are identical for any base activity xABA0 and xeA:
As mentioned in Section 4.3, an activity x;

xeEAS; is included in A for order preservation.
EAS is obviously a starting point for identifying x:
The algorithm begins from EAS; by initializing an
activity set TAS that equals EAS; to check whether
TAS is a legal (i.e., order-preserving) virtual

Fig. 12. Generating a min vaðEASÞ using the process-view definition tool.
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Fig. 14. A process-view for marketers.

Cassette
{1, 2}

Photo
{4-7}

Etching
{8, 9}

Stripping
{10, 11}

Sputtering
{3}

Alignment
{27-29}

Breaking
{30-32}

LC
Injection
{33-35}

Isotropic
{36-40}

Array
Testing
{12-15}

PI
Rubbing
{16-26}

Delivery
{41}

Module
{42-63}

Delivery
{64}

Fig. 13. A process-view for the factory director of FAB II.

D.-R. Liu, M. Shen / Information Systems 28 (2003) 505–532522



activity. If TAS is not legal, TAS is updated by
including activities that violate the order-preserving
condition. To determine which of the activities
should be added into TAS to form a legal and
minimal virtual activity, the algorithm considers the
activities that are adjacent to members of TAS: The
algorithm determines whether adjacent activities of
TAS satisfy the order-preserving condition (line
11). TAS is updated during the while loop (lines 8–
15), by adding adjacent activities that violate the
order-preserving condition. If TAS is updated, the
repeat-until loop is repeated to check the order-
preserving condition. The repeat-until loop (lines 4–
16) continues to repeat until no more adjacent
activity is added into TAS (line 16,
TAS ¼¼ TAS1), i.e., all adjacent activities of
TAS satisfy the order-preserving condition. Finally,
TAS is a legal virtual activity and A is set to equal
TAS:

Following the determination of A; the members
of D are those dependencies whose succeeding and
preceding activity are both members of A (Defini-
tion 10(2)). The minimal virtual activity of EAS;
min vaðEASÞ; equals /A;DS:

Since this virtual activity conforms to Definition
10, it is a legal virtual activity. Moreover, the
algorithm checks the ordering relations from
adjacent activities, creating a minimal virtual
activity. The proof is shown in Theorem 2.

Theorem 2. Given a base process BP and an

essential activity set EAS; the virtual activity va;
as generated by the algorithm VAGenerator, is a

legal (order-preserving) virtual activity, and also a

minimal virtual activity of EAS:

Proof. The procedure determines whether adja-
cent activities of TAS satisfy the order-preserving
condition. TAS is updated during the while loop
(lines 8–15), by adding adjacent activities that
violate the order-preserving condition. TAS is
repeatedly updated until no more adjacent activity
is added to TAS (line 16, TAS ¼¼ TAS1); that is,
all adjacent activities of A (i.e., AAS) satisfy the
order-preserving condition. The following proves
that all activities, other than adjacent activities of
A; also satisfy the order-preserving condition.
Assume that an activity x exists, where xeA and

Fig. 15. The algorithm of a minimal virtual activity generator.
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x is not adjacent to any members of A; such that x

violates the order-preserving condition. Let y1 and
y2 be the member activities of A that cause the
violation of the condition.

Case 1: x > y1 holds in BP; but x > y2 does not

hold in BP: Given that x > y1 and x is not adjacent
to any activity in A; there must exist a path from x

to z and a path from z to y1; where z is an adjacent
activity of A: Thus, x > z and z > y1 hold in BP:
z > y1 implies that z > y2 also holds in BP since z

satisfies the order-preserving condition. It further
implies that x > y1 and x > y2 hold in BP; which
contradicts the assumption that x > y1 holds but
x > y2 does not hold in BP:

Case 2: xoy1 holds in BP; but xoy2 does not

hold in BP: The proof is similar to Case 1 and is
omitted.

Case 3: xNy1 holds in BP; but xNy2 does not

hold in BP: Given that xNy2 does not hold in BP;
assume that x > y2 holds in BP: There exist a path
from x to z and a path from z to y2; where z is an
adjacent activity of A; since x > y2 and x is not
adjacent to any activity in A: Thus, x > z and z >
y2 hold in BP: z > y2 implies that z > y1 also
holds in BP; since z satisfies the order-preserving
condition. It further implies that x > y1

and x > y2 hold in BP; which contradicts the
assumption.

The proof of the preservation of the
ordering relations held in the loop-derived sub-
processes of BP is similar to the above proof and is
omitted.

Thus, the generated virtual activity va ¼
/A;DS conforms to Definition 10.

Next, the following proves that va is a minimal
virtual activity of EAS: Assume that va is not
minimal, then a legal and minimal virtual activity
mva ¼ /Am;DmS exists such that A*Am: The

procedure begins from EAS; by initializing TAS to
be EAS; to check the ordering relations of the
adjacent activities. TAS is updated during the
while loop (lines 8–15), by adding adjacent
activities that violate the order-preserving condi-
tion. Assume that a TAS is formed during the
while loop of the procedure, where TASCAm.
Additionally, an adjacent activity x of TAS;
xeAm; can be found such that x violates the
order-preserving condition. Notably, an adjacent
activity is added into TAS according to the if-

condition (line 11). If the adjacent activity belongs
to Am; then the process proceeds until an adjacent
activity that does not belong to Am can be found;
otherwise, the procedure generates Am: Since the
ordering relations between x and the members of
TAS violate the order-preserving condition, there
exist two activities y1 and y2 in TAS; such that the
ordering relation between x and y1 differs from the
ordering relation between x and y2 (the ordering
relation means the ordering relation held in BP or
a loop-derived sub-process of BP). Moreover, y1

and y2 belong to Am since TASCAm: Thus, the
ordering relations between x and members of Am

also violate the order-preserving condition. Con-
sequently, mva is not a legal virtual activity, which
contradicts the assumption. Therefore, va is a
minimal virtual activity. &

Example 1. This example illustrates the steps
required to generate min vaðEASÞ; where EAS ¼
fa16; a19; a20; a22; a25g and the base process BP is
the LCD manufacturing process described in
Section 4.4. Part of the LCD process shown in
Fig. 11 is redrawn in Fig. 16(a). The algorithm
creates a copy of EAS; i.e., TAS; as an initial set
(see line 3 in Fig. 15). The repeat-until loop uses
TAS as a seed to identify the member activities of
min vaðEASÞ (see lines 4–16).

Fig. 16. Two process examples.
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Initially, AAS ¼ fa15; a17; a18; a21; a23; a24; a26g
(see line 6). This example only need to consider
the ordering relations of BP since it does not
contain loops (see line 7). The subsequent while

loop verifies whether the adjacent activities satisfy
the order-preserving condition (see lines 8–15).
For example, activity a23 is added into TAS since
a23oa22 but a23Na25: However, activity a15 is not
added into TAS since the ordering relations
between a15 and all members of TAS are ‘‘>’’.
After checking all members of AAS;
activities a17; a18; a21; a24; a23; and a26 are added
into TAS:

Since TAS is updated (TASaTAS1), i.e., TAS

does not follow the definition of virtual activity,
the repeat-until loop repeats using the revised TAS;
fa16; a17; a18; a19; a20; a21; a22; a23; a24; a25; a26g (see
line 16). During the next iteration, AAS ¼
fa15; a27g: TAS remains unchanged during the
while loop since the members of AAS satisfy the
order-preserving condition. Under the circum-
stances, the ordering relations between x and all
members of TAS are identical in BP for any xABA

and xeTAS; i.e., TAS follows the definition
of a virtual activity, and the repeat-until loop
stops.

For the min vaðEASÞ ¼ /A;DS; A equals
TAS and the dependency set D contains the
following dependencies: depða16; a17;R; Þ;
depða17; a18;R; Þ; depða18; a19;R; Þ; depða19; a20;
R; Þ; depða20; a21;R; Þ; depða20; a24;R; Þ; depða21;
a22;R; Þ; depða22; a23;R; Þ; depða24; a25;R; Þ; and
depða25; a26;R; Þ (see lines 18–19).

Example 2. This example illustrates how to derive
the min vaðEASÞ for the base process BP as shown
in Fig. 16(b) and EAS ¼ fa5; a7g: Initially, AAS ¼
fa4; a6; a8g; TAS ¼ fa5; a7g; and PS ¼
fBP;LPða3; a6Þg: a6 is added into TAS because
a5 > a6 holds in BP but a7 > a6 does not hold in
BP: a8 is not added to TAS because a7 > a8 and
a6 > a8 hold in BP: Notably, a4 is added into TAS

because a4oa5 (derived from the path a5; a6; a3; a4)
holds in BP but a4oa7 does not hold in BP:
Therefore, TAS changes to fa4; a5; a6; a7g and
repeat-until loop repeats. During the second
iteration, AAS ¼ fa3; a8g: a8 is not added into
TAS because a4 > a8; a5 > a8; a6 > a8; and a7 > a8

hold in BP: However, a3 is added into TAS

because a3oa6 (derived from the path a6; a3) holds
in BP but a3oa7 does not hold in BP: Therefore,
TAS is updated to fa3; a4; a5; a6; a7g and the
repeat-until loop repeats again. During the third
iteration, AAS ¼ fa1; a2; a8g: TAS remains un-
changed during the while loop since the ordering
relations between each adjacent activity and the
members of TAS are identical in BP and
LPða3; a6Þ: Consequently, the repeat-until loop
stops and A ¼ fa3; a4; a5; a6; a7g; D ¼ fdepða3; a4;
R; Þ; depða4; a5;R; Þ; depða5; a6;R; Þ; depða6; a7;
R; Þ; depða6; a3;L; Þg:

Example 3. Given a base process BP as shown in
Fig. 16(b) and EAS ¼ fa4; a6g; the generation of
the min vaðEASÞ is explained below. Initially,
AAS ¼ fa3; a5; a7g; TAS ¼ fa4; a6g; and PS ¼
fBP;LPða3; a6Þg: According to the ordering rela-
tions of BP; TAS is unchanged (for a3: a3 > a4;
a3 > a6; a3oa4; a3oa6; for a5: a5 > a4; a5 > a6;
a5oa4; a5oa6; for a7: a7oa4; a7oa6). However,
according to the ordering relations of LPða3; a6Þ;
a5 is added into TAS (for a3: a3 > a4; a3 > a6; for
a5: a5oa4; a5 > a6). Therefore, TAS is updated to
{a4; a5; a6} and the repeat-until loop repeats.
During the second iteration, AAS ¼ fa3; a7g:
TAS remains unchanged during the while loop
since the ordering relations of BP and LPða3; a6Þ
are preserved. Hence, for the min vaðEASÞ; A ¼
fa4; a5; a6g and D ¼ fdepða4; a5;R; Þ; depða5; a6;
R; Þg:

4.5.2. Virtual dependency and virtual loop

dependency

Following the generation of all virtual activities,
the process-view definition tool derives virtual
dependencies by Definition 11. First, the members
of a virtual dependency must be determined, after
which the VC field of each virtual dependency
must be derived.

Given the virtual activity set VA of a process-
view VP derived from a base process BP; whether
or not a virtual dependency is associated with two
virtual activities can be determined. For any two
distinct virtual activities vai ¼ /Ai;DiS and
vaj ¼ /Aj ;DjS: if ( axAAi and ( ayAAj such
that depðax; ay;R;CxyÞ exists in BP; then vdepðvai;
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vaj ;R;VCijÞ exists in VP and depðax; ay;R;CxyÞ is a
member of vdepðvai; vaj ;R;VCijÞ: After checking
each base dependency, all virtual dependencies and
their members can be derived.

The following illustrates the derivation of VC

field of a virtual dependency. The JOIN flag of a
base activity determines how the conditions of
incoming dependencies are combined to derive
starting condition of the base activity. Therefore,
for the members of a virtual dependency, the
conditions of base dependencies that share the
same succeeding base activity are combined using
the JOIN flag of that succeeding base activity.
According to the atomicity rule, a virtual activity
is started if one member activity is started.
Therefore, the conditions derived from different
succeeding base activities are then combined using
Boolean OR. Restated, given two virtual activities
vai ¼ /Ai;DiS and vaj ¼ /Aj ;DjS; where Aj ¼
fay1; ay2;y; ayng; for each ayk; k ¼ 1; 2;y; n: Let
(1) Cm;yk represent the condition of a dependency
from a member of Ai to ayk; for m ¼ 1; 2;y; lk; (2)
fk be the JOIN flag of ayk; (3) Cyk represent the
joined condition of all dependencies from mem-
bers of Ai to ayk; i.e., Cyk ¼ ðC1;yk fkC2;ykyfk

Clk ;ykÞ: For the virtual dependency vdepðvai;
vaj ;R;VCijÞ; VCij ¼ ðCy1 OR Cy2yOR CynÞ:

In Fig. 17(a), for example, VC12 ¼ ðC1 OR C2Þ;
i.e., if C1 or C2 is true, then VC12 is true. However,
in Fig. 17(b), C1 and C2 are combined using the
JOIN flag of a2; i.e., VC12 ¼ ðC1 AND=XOR C2Þ:
For the complex combination shown in Fig. 17(c),

VC12 ¼ ððC1 AND=XOR C3Þ OR ðC2 AND=
XOR C4Þ). In Fig. 17(d), VC1 ¼ ðC1 AND=XOR
C3Þ; VC2 ¼ ðC2 AND=XOR C4Þ; VC3 ¼ C5:

Deriving virtual loop dependencies is similar to
the derivation of virtual dependency. Given the
virtual activity set VA of a process-view VP

derived from BP; for any two distinct virtual
activities vai ¼ /Ai;DiS and vaj ¼ /Aj ;DjS: if (
axAAi and ( ayAAj such that depðax; ay;L;LCxyÞ
exists in BP; then vdepðvai; vaj ;L;VLCijÞ exists in
VP: According to Definition 12, VLCij ¼ LCxy:

4.5.3. Ordering structure and starting condition

Following the generation of all virtual depen-
dencies, the ordering fields (JOIN/SPLIT flag) and
starting conditions of each virtual activity can be
derived. If a virtual activity has a single outgoing
virtual dependency, its SPLIT flag is NULL.
Otherwise, when multiple outgoing virtual depen-
dencies exist, the SPLIT flag of the virtual activity
is MIX. The SPLIT flag of the virtual activity
cannot simply be AND or XOR, since a virtual
activity abstracts a set of base activities that may
be concurrently associated with AND-SPLIT and
XOR-SPLIT.

Similarly, if a virtual activity has a single
incoming virtual dependency, its JOIN flag is
NULL, while if it has multiple incoming virtual
dependencies, its JOIN flag is MIX. For a base
activity, the JOIN flag determines the relationship
between its starting condition (SC) and the
conditions (C) of its incoming base dependencies.

Fig. 17. Four examples of virtual dependencies.
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Nevertheless, for a virtual activity, MIX-JOIN
abstracts the existence of different join structures
in its member base activities. Therefore, the
starting condition (SC) of a virtual activity cannot
simply use the JOIN flag to combine the condi-
tions (VC) of incoming virtual dependencies.
MIX-SPLIT/JOIN is used to represent multiple
path structures, and the starting of a virtual
activity depends on the SC field, which is derived
as follows.

A virtual activity va is started if one of its
member activities is started (atomicity rule).
Therefore, the starting condition of each member
activity of va must be determined, after which the
SC of va equals the Boolean OR combination of
the starting condition of each member activity. If
va ¼ /A;DS; A ¼ fa1; a2;y; ang; and the starting
condition of ai is SCðaiÞ for i ¼ 1yn; then the
starting condition of va is SCðvaÞ ¼
ðSCða1ÞOR SCða2ÞyOR SCðanÞÞ: Consequently,
SCðvaÞ is true if the starting condition of one
member activity is satisfied.

In Fig. 18(a), for example, VC1 ¼ C1 and
VC2 ¼ C2; SCða2Þ ¼ C1 and SCða3Þ ¼ C2;
SCðva2Þ ¼ SCða2Þ and SCðva3Þ ¼ SCða3Þ: More-
over, in Fig. 18(b), VC1 ¼ ðC1 AND=XOR C3Þ
and VC2 ¼ ðC2 AND=XOR C4Þ: Whether a2 can
be started depends on its JOIN flag (AND/XOR),
i.e., SCða2Þ ¼ ðC1 AND=XOR C3Þ: SCðva2Þ ¼
SCða2Þ: SCða3Þ ¼ ðC2 AND=XOR C4Þ: SCðva3Þ ¼
SCða3Þ: In Fig. 19, if the JOIN flag of a4 is AND
and the JOIN flag of a0

4 is XOR, then VC1 ¼
ðC1 OR C2Þ and VC2 ¼ ðC3 OR C4Þ: SCða4Þ ¼
ðC1 AND C3Þ and SCða0

4Þ ¼ ðC2 XOR C4Þ: SCðva4Þ
¼ ðSCða4Þ OR SCða0

4ÞÞ ¼ ððC1 AND C3Þ OR ðC2

XOR C4ÞÞ: Under such circumstances, the JOIN

flag of va4 cannot merely be AND or XOR. MIX
is used to abstract such combinations and a WfMS
evaluates SC to trigger va4:

4.5.4. Prototype system

A prototype system is currently being imple-
mented based on the above discussion. As
displayed in Fig. 12, the tool can automatically
generate a legal and minimal virtual activity based
on the essential activities chosen by a process
modeler. Once all base activities have been
contained by virtual activities, the tool automati-
cally generates an order-preserving process-view
based on the defined virtual activities. Currently, a
modeler must use the prototype system to define a
base process. In the future, the prototype will be
enhanced to interpret base processes that are
defined by using commercial products.

5. Related work

Workflow models, in which business processes
are formally described to generate process defini-
tions, are generally classified as communication-
based and activity-based [1]. The former attempts
to identify process objectives, while the latter
focuses on identifying process structures. A survey
[1] of commercial WfMSs revealed that most
supported workflow models are activity-based.

Fig. 18. Two examples of the split structure in a process-view.

Fig. 19. Example of the join structure in a process-view.
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The activity-based approach is easily understand-
able when modeling business tasks and their
ordering relations. Owing to the top-down decom-
position of a process, activity-based methods yield
different hierarchical abstractions. However, as
mentioned in Section 1, these hierarchical abstrac-
tions cannot provide each organizational level and
unit with an appropriate view of a process. This
work contributes to introducing the notion of view
into WfMSs, and proposing a systematic proce-
dure to derive adequate process abstractions from
a base process for different participants.

This work enhances the capability of process
abstraction in conventional activity-based process
models, while the enhancement of the activity-
based approach has also attracted considerable
interest. Since process modeling can be considered
from various aspects, such as functional and
information aspects [16,17], numerous investiga-
tions have enhanced the activity-based approach
by combining it with other aspects. These inves-
tigations have focused on specifying the interrela-
tionships among these aspects. For example,
Gruhn [18] proposed a model to integrate the
modeling of activity, data, and organization.
ARIS [19] describes business processes from the
aspects of function, organization, data, output,
and control. Moreover, some studies have
exploited object-oriented technology or Petri nets
to combine the modeling of control and data flow
[20–23]. Such enhancements concern the integra-
tion of multiple aspects in a workflow model.
However, this work focuses on deriving abstracted
processes for different organizational roles. Nota-
bly, the term ‘‘view’’ used in some of above works
represents an aspect of process modeling, while
herein it represents a process abstraction.

Several formal process modeling techniques
include the notion of process abstraction, such as
process algebras and Petri-Nets [8–11]. These
models can define some activities as silent activities
(also called t activities) that are not observable. By
renaming activities to silent activities, the desired
abstraction can be obtained. In contrast, process-
views are derived through the bottom-up aggrega-
tion of activities to provide various levels of
abstraction of a process. Conventional abstraction
may be considered as partial abstraction since it

provides partial observability of a process. Rela-
tive to partial abstraction, the proposed approach
is considered to be aggregate abstraction, since it
provides adaptable granularity of a process via
bottom-up aggregation, i.e., a virtual activity may
represent an aggregation of a set of base activities.

Partial abstraction does not reveal the progress
status of the silent activities of a base process. For
example, if a view ‘‘a1-a3-a5-a8’’ is partially
abstracted from the process shown in Fig. 16(b),
then the view does not expose the progress of silent
activities (i.e., a2; a4; a6; and a7). However, if the
proposed approach defines a process-view as
‘‘fa1; a2g-fa3g-fa4; a5; a6g-fa7; a8g’’, the pro-
gress of the virtual activity which contains a1 and
a2 expresses the aggregated progress of these two
base activities. In addition to concealing sensitive
details that partial abstraction can provide,
process-views also provide high-level managers
with aggregated information on a desired process.
Furthermore, a process-view can be systematically
derived from a base process. Nevertheless, partial
abstraction may assist a process modeler in
identifying essential activities needed to define a
process-view.

Aggregate abstraction generally includes partial
abstraction. For example, given a virtual activity
va1 which is an aggregation of base activities a1; a2;
and a3; if the weight of a1 and a3 are zero and the
weight of a2 is one, then va1 can be viewed as a
partial abstraction of a1; a2; and a3: The binary
weight implies the notion of visible/invisible or
important/unimportant that is the core of partial
abstraction. Thus, partial abstraction can be
derived from aggregate abstraction by using the
concept of weight.

Various activity-based process models have
been suggested for workflow management, such
as the WfMC process model [7] and the Petri-Net
variants [24,25]. Although not formally specifying
the operational semantics of process definitions as
Petri-Net-based workflow models [25], the WfMC
process model has been extensively used to design
and implement WfMSs. Besides, much workflow-
related research is based on the WfMC process
model. Accordingly, this work revises the WfMC
process model to design the process-view model.
Consequently, the process-view model can be
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further extended to be incorporated into commer-
cial products, since WfMC standards are accepted
by major workflow vendors. This work focuses on
enhancing the WfMC process model to derive
process-views, i.e., aggregate process abstractions.
Deriving the aggregate process abstractions for
other activity-based models such as the Petri-Net
variants is worth exploring. However, such a study
is beyond the scope of this work and is proposed
as a topic of future work.

Van der Aalst [26] proposed a novel generic
workflow model to provide a manager with an
aggregated view of variants for the same work-
flow process. Dynamic change has created multiple
variants of the same process. A representative
process, in which each activity represents the
aggregation of all identical activities of these
process variants, is used as the aggregated
view. The generic process model focuses on
providing aggregated information of dynamically
changing process variants, while the process-view
proposed herein aggregates different activities
within a process to create various abstracted
views.

Effective management of collaborative processes
in virtual enterprises is important [27,28]. Related
interorganizational workflow models, e.g., [29,30],
achieved information concealment (autonomy) but
were unable to monitor the progress of other
cooperating organizations. Georgakopoulos et al.
[3] used a service activity to abstract an entire
process of a service provider. A service activity
implements a service interface that defines several
application-specific states and operations. Appli-
cation-specific activity states extend the generic
activity states defined by WfMC [31] to express
possible process states. A service consumer is only
aware of the state transition diagram of a service
activity (information concealment), and can use
the operations and states defined by the service
interface to monitor the progress of a service
provider’s process (progress monitoring). In the
proposed approach, a modeler can define various
process-views to achieve different levels of infor-
mation concealment. Furthermore, the progress of
base processes can be monitored through virtual
activities and virtual processes. Notably, this work
focuses on illustrating the process-view model and

the novel approach to derive a process-view. This
work on process-view will be further extended in
the future to support information concealment
and progress monitoring of collaborative processes
in virtual enterprises.

6. Conclusion and future work

This work proposes a novel concept of process
abstraction: process-view. Process-view enhances
the conventional activity-based model to satisfy
the diverse needs for obtaining abstracted process
information. A process modeler can easily use a
process-view definition tool to provide numerous
views of a business process for different levels,
divisions, and enterprises. The process-view
achieves information abstraction and progress
monitoring. Each role can obtain adequate in-
formation on a business process by setting up a
role-related process-view, thereby facilitating hier-
archical coordination within an organizational
unit and horizontal coordination across multiple
organizations (internal or external). The proposed
approach increases the flexibility and functionality
of current WfMSs.

Moreover, given the importance of execution
order in business processes, this work also
proposes an order-preserving approach to con-
struct a process-view that preserves the original
execution order of its base process. The proposed
algorithm automatically derives minimal virtual
activities and related virtual dependencies to
generate an order-preserving process-view. The
algorithm assists vendors in implementing process-
view definition tools in their commercial systems.
A real world example is used to demonstrate the
feasibility of applying process-views.

According to the atomicity rule, the execution
state of a virtual activity is either started or
completed. However, a base activity may have
more semantic states such as suspended or aborted
(i.e., abnormal completion) state. Determining the
state of a virtual activity is difficult, for example, if
the current states of its three member activities are
suspended, started, and aborted. This problem
becomes more complicated when a process mode-
ler is allowed to define more application-specific
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activity states, such as CMI approach [3]. To
express the progress information of process-views
semantically, the issue of state abstraction requires
further investigations.

This work currently defines the produced/con-
sumed data of a virtual activity as a set of the
produced/consumed data of member activities.
However, according to the demands of different
roles, a process modeler may wish to define
process-view relevant data as an aggregation of
base process relevant data (e.g., summation or
average), or a selected portion of base process
relevant data. Furthermore, process relevant data
may have various semantic meanings and
definitions. For example, a sales order or an
insurance contract have various semantics in
different steps of their processing workflow.
Abstracting process relevant data from these
aspects is a difficult problem, and future enhance-
ment should provide more advanced abstraction
of process-view data.

Acknowledgements

This research was supported by the National
Science Council of the Republic of China under
contract No. NSC 88-2416-H-009-023-N9 and
NSC-89-2416-H-009-041. The authors would like
to thank Dr. Churn-Jung Liau (Institute of
Information Science, Academic Sinica, Taiwan)
for his valuable suggestions on the notations and
proofs of this paper. In addition, the authors
would like to thank the anonymous referees for
their valuable comments.

Appendix A. Proof of lemma

Lemma 1. Consider a process-view VP ¼
/VA;VDS; where members of VA follow Defini-

tion 10 and members of VD follow Definitions 11
and 12, derived from a base process BP ¼
/BA;BDS: For any two distinct virtual activities

vai and vaj in VP; vai ¼ /Ai;DiS and

vaj ¼ /Aj ;DjS: if there exist a base activity

aiAAi and a base activity ajAAj such that ai > aj

holds in BP; then vai > vaj holds in VP:

Proof. Let vai and vaj be two distinct virtual
activities in VP; vai ¼ /Ai;DiS and vaj ¼
/Aj ;DjS; where vai contains a base activity ai

and vaj contains a base activity aj (i.e., aiAAi;
ajAAj), and ai > aj holds in BP. A path p from ai

to aj must exist, since ai > aj holds in BP: The
following proves this lemma by induction on the
length of path p from ai to aj :

When the length of the path p from ai to aj is
one, depðai; aj ; ; Þ exists in BP: According to
Definitions 11 and 12, vdepðvai; vaj ; ; Þ exists in
VP; and thus vai > vaj holds in VP:

The induction hypothesis assumes that for
any two distinct virtual activities var and vas in
VP; var ¼ /Ar;DrS and vas ¼ /As;DsS : var >
vas holds in VP if there exist a base activity
arAAr; a base activity asAAs , and a path from
ar to as with length pk such that ar > as holds
in BP:

The induction step must show that vai > vaj

holds in VP; when the length of the path p from ai

to ajpk þ 1: Let ah be a base activity on the path p

from ai to aj ; where ahaai and aj : The length of
the subpath of p from ai to ahpk since the length
of ppk þ 1: Besides, the length of the subpath of p

from ah to ajpk: Moreover, ai > ah holds in BP

and ah > aj holds in BP: If ahAAi or ahAAj ; then
vai > vaj holds in VP: On the other hand, if ah is a
member of vah; where vahAVA; vahavai and vaj ;
then vai > vah holds in VP according to the
induction hypothesis, since ai > ah holds in BP

and the length of the path from ai to ahpk:
Similarly, vah > vaj holds in VP: Consequently,
vai > vaj holds in VP; since both vai > vah and
vah > vaj hold in VP: &

Lemma 2. Consider a process-view VP ¼
/VA;VDS; where members of VA follow Defini-

tion 10 and members of VD follow Definitions 11
and 12, derived from a base process BP ¼
/BA;BDS: Let LP be a loop-derived sub-process

of BP; let VLP be a loop-derived sub-process-view

of VP; VLP corresponds to LP: For any two distinct

virtual activities vai and vaj in VLP; vai ¼ /Ai;DiS
and vaj ¼ /Aj ;DjS: if there exist a base

activity aiAAi and a base activity ajAAj such

that ai > aj holds in LP; then vai > vaj holds in

VLP:
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Proof. The proof is similar to the proof of Lemma
1 and is omitted. &

Lemma 3. Consider a process-view VP ¼
/VA;VDS; where members of VA follow Defini-

tion 10 and members of VD follow Definitions 11
and 12, derived from a base process

BP ¼ /BA;BDS. For any two distinct virtual

activities vai and vaj in VP; vai ¼ /Ai;DiS and

vaj ¼ /Aj ;DjS: if vai > vaj holds in VP; then there

exist a base activity aiAAi and a base activity ajAAj

such that ai > aj holds in BP:

Proof. Let vai and vaj be two distinct virtual
activities in VP; vai ¼ /Ai;DiS and vaj ¼
/Aj ;DjS; where vai > vaj holds in VP. A path vp

from vai to vaj must exist, since vai > vaj holds in
VP: The following proves this lemma by induction
on the length of the path vp from vai to vaj .

When the length of the path vp is one,
vdepðvap; vaq; ; Þ exists in VP: By Definitions 11
and 12, depðai; aj ; ; Þ exists in BP; where base
activities ai and aj are members of vai and vaj ;
respectively, (i.e., aiAAi and ajAAj). Thus, ai > aj

holds in BP:
The induction hypothesis assumes that for any

two distinct virtual activities var and vas in VP;
var ¼ /Ar;DrS and vas ¼ /As;DsS: if var > vas

holds in VP and there is a path from var to vas with
length pk; then there exist a base activity arAAr

and a base activity asAAs such that ar > as holds in
BP:

The induction step must show that there exist a
base activity aiAAi and a base activity ajAAj such
that ai > aj holds in VP; when the length of the
path vp from vai to vajpk þ 1: Let vah be a virtual
activity on the path vp from vai to vaj ; where vah ¼
/Ah;DhS; vahavai and vaj : The length of the
subpath of vp from vai to vahpk; since the length
of vppk þ 1: Besides, the length of the subpath of
vp from vah to vajpk: Moreover, vai > vah holds in
VP and vah > vaj holds in VP: Now, there exist a
base activity aiAAi and a base activity ahAAh such
that ai > ah holds in BP; according to the induction
hypothesis, since vai > vah holds in VP and there is
a path from vai to vah with length pk: Similarly,
there exist a base activity ahAAh and a base
activity ajAAj such that ah0 > aj holds in BP: If

ah ¼ ah0 ; then ai > aj holds in BP since both ai > ah

and ah0 > aj hold in BP. On the other hand, if
ahaah0 ; then ai > ah0 holds in BP; since ah and ah0

are members of vah; ai is not a member of vah; and
the ordering relations between ai and all members
of vah are identical in BP; according to Definition
10(1c). Consequently, ai > aj holds in BP since
both ai > ah0 and ah0 > aj hold in BP. &

Lemma 4. Consider a process-view VP ¼
/VA;VDS; where members of VA follow Defini-

tion 10 and members of VD follow Definitions 11
and 12, derived from a base process BP ¼
/BA;BDS: Let LP be a loop-derived sub-process

of BP; let VLP be a loop-derived sub-process-view

of VP; VLP corresponds to LP: For any two distinct

virtual activities vai and vaj in VLP; vai ¼ /Ai;DiS
and vaj ¼ /Aj ;DjS: if vai > vaj holds in VLP; then

there exist a base activity aiAAi and a base activity

ajAAj such that ai > aj holds in LP:

Proof. The proof is similar to the proof of Lemma
3 and is omitted. &
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