
TCP with sender-based delay control

H.T. Kunga, Koan-Sin Tanb,*, Pai-Hsiang Hsiaoa

aDivision of Engineering and Applied Sciences, Harvard University, Cambridge, MA 01238, USA
bInstitute of Information Management, National Chiao-Tung University, 1001 Ta Hsueh Road, Hsinchu 30050, Taiwan, ROC

Received 2 May 2002; revised 12 December 2002; accepted 20 January 2003

Abstract

This paper describes a congestion control method for TCP that adjusts the transmission rate of a TCP connection by changing not only the

congestion window size as in normal TCP, but also by delaying the transmission of packets at the sender. We refer to this method as TCP with

sender-based delay control, or simply SDC. SDC can keep the window size of a TCP connection above a certain threshold even when its fair

share of bandwidth is arbitrarily small. Since TCP fast retransmit and recovery is likely to work when the window size of the connection is

sufficiently large, the new method can result in reduced frequency of TCP timeouts for the connection. In particular, SDC allows many TCP

flows to share a link without experiencing many timeouts. In addition, SDC can reduce a well-known TCP bias against connections with large

RTTs. This paper presents the principle behind SDC, and simulation results demonstrating its properties and advantages.

q 2003 Elsevier Science B.V. All rights reserved.

Keywords: TCP; Congestion control; Retransmission timeout; Explicit congestion notification

1. Introduction

TCP is a widely used protocol in Internet applications.

There has been a great deal of research on TCP in the

literature. However, a problem related to the many-flow

case [1] remains. That is, when the number of TCP

connections sharing the link is sufficiently large, some of

these connections will become ‘fragile’ in the sense that

they will be subject to frequent TCP timeouts [2]. For

applications which require long-lived TCP connections,

delay introduced by these timeouts may significantly

degrade the network performance as perceived by end

users. These include audio streaming applications, such as

RealAudio and Shoutcast, and interactive applications that

use single persistent TCP connections to transfer many files,

such as certain on-line games [3].

We elaborate on the objective and challenge of devising

solutions for this many-flow TCP problem. When n TCP

flows compete on the same bottleneck link, we want each of

them to get 1=n of the link bandwidth over small averaging

intervals such as a few seconds. The small averaging

intervals are important because interactive and real-time

applications typically demand low-latency performance of

the network. This means that these TCP flows should not

experience TCP timeouts, as timeouts typically last seconds

or longer [4]. Ideally, after having passed the TCP slow start

phase, these flows must be kept in the TCP congestion

avoidance phase, without experiencing timed out, until the

end of the connection.

We note that, during the congestion avoidance phase, the

rate of a TCP flow is determined by W=RTT; where W is

the congestion window size and RTT is the round-trip time.

Thus, when the number n of competing TCP flows

increases, each flow must either decrease its W or increase

its RTT.

Recall, however, that W cannot be smaller than one

packet. In fact, to avoid TCP timeouts, W needs to be larger

than four or five packets to allow TCP fast retransmit and

fast recovery to work [4]. To be resilient to TCP timeouts, W

actually needs to be at least a few packets larger than four

packets [5,6].

Since it is undesirable to reduce W below a certain limit

as stated above, increasing RTT becomes necessary when

the number n of competing flows is sufficiently large.

Usually, when n increases, so does buffer occupancy in

routers due to congestion. This means increased buffer size

Computer Communications 26 (2003) 1614–1621

www.elsevier.com/locate/comcom

0140-3664/03/$ - see front matter q 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0140-3664(03)00110-5

* Corresponding author.

E-mail addresses: freedom@acm.org (K.-S. Tan), kung@harvard.edu

(H.T. Kung), shawn@eecs.harvard.edu (P.-H. Hsiao).

http://www.elsevier.com/locate/comcom


to accommodate increased queueing delay and thus

increased RTT. However, introducing any significant

queueing delay in a network is generally regarded as

undesirable, because such delay would slow down every

flow sharing the network. It is therefore a common practice

to keep the buffer occupancy low [7]. Furthermore, this

approach is not scalable because the size of the buffer needs

to be proportional to the number of flows traveling through

the router, which can be very large.

In this paper we describe a congestion control method,

called sender-based delay control (SDC), that can increase

RTT by delaying packet transmission at the sender. By

delaying packets and thus extending the RTT, this method

can keep the window size of a TCP connection above a

certain threshold even when its fair share of bandwidth is

arbitrarily small. Since TCP fast retransmit and recovery

is likely to work when the window size of the connection is

sufficiently large, our method can reduce the frequency of

TCP timeouts for the connection.

We demonstrate by simulations that SDC allows many

TCP flows to share a link without experiencing many

timeouts (see e.g. Figs. 4 and 12). In addition, SDC reduces

a well-known TCP bias against connections with relatively

large RTTs (see e.g. Figs. 9 and 10.)

It is natural to compare SDC with a version of TCP that is

extended with explicit congestion notification (ECN) [8].

Under both ECN and SDC, the TCP sender uses the same

congestion notification messages, that is, ACKs with the

Congestion Experienced (CE) bits on or off. Because ECN

and SDC assume the same network infrastructure, namely

ECN-capable routers that can set the CE bits for packets,

and because ECN is generally believed to perform better

over other versions of TCP, we compare the performance of

SDC with that of ECN in this paper. When we refer to

traditional TCP in performance comparison, we mean TCP

with ECN.

The rest of the paper has the following organization. We

present the SDC mechanism in Section 2. In Section 3, we

evaluate the performance of SDC with simulation. Related

work is reviewed in Section 4. Finally, we conclude in

Section 5.

2. Sender-based delay control

The objective of SDC is to keep the window size of a

TCP connection above a certain threshold even when the

bandwidth fair share of the connection is very small. To

achieve this, we extend the RTT by delaying the

transmission of packets when necessary.

Under traditional TCP, when network congestion is

detected the sender of a connection slows down its

transmission rate by reducing its window size so that

Wreduced=RTT is sufficiently small. In contrast, under SDC

the sender of a connection may slow down its transmission

rate by adding delay to packets, thereby extending RTT to

RTTincreased, and thus achieving sufficiently small W=

RTTincreased: If W=RTTincreased is equal to Wreduced=RTT;

then SDC can slow down a connection to the same

transmission rate as that of traditional TCP, without having

to reduce W : Therefore, by adding delay to packets when

necessary, SDC can slow down a TCP connection while

keeping its W above a threshold, say eight packets, so that

fast retransmit and recovery can work.

SDC retains the same additive-increase and multi-

plicative-decrease (AIMD) [9,10] behavior of traditional

TCP. The AIMD behavior is important as it assures that

TCP connections can reach equilibrium when they are in the

congestion avoidance phase [9,11]. Under SDC, AIMD is

achieved by making sure that appropriate amounts of delays

are added to packets. Consider first the additive-increase

case, where traditional TCP increases its window size W by

one packet per RTT. That is, when a new ACK is received,

the new transmission rate is increased to ðW þ 1=WÞ=RTT

from W=RTT: SDC approximates this behavior by properly

decreasing the delay. Specifically, RTT is reduced to RTT0

so that

W=RTT0 ¼ W þ
1

W

� �
=RTT

or RTT0 ¼ W2
=ðW2 þ 1Þ £ RTT

ð1Þ

Eq. (1) above is used by equation in the SDC algorithm

described below in Fig. 2.

On the other hand, for multiplicative-decrease case the

delay is doubled to reduce the transmission rate of the TCP

connection by half.

2.1. Two-phase control for SDC

SDC uses a two-phase control on the delay of packet

transmission at the TCP sender. TCP connection may be in

one of the two phases depending on whether or not its

window size has reached a predetermined threshold. In this

paper, we set the threshold to be eight packets. This

particular threshold value reflects the fact that TCP

connections with window size greater than eight packets

are resilient to timeouts [5]. Specifically, these two phases

are as follows.

Small window phase. A TCP connection is in this phase

when its window has not reached the window-size threshold

of eight packets. Upon receiving the congestion notification,

i.e. an ACK with the CE bit on, the sender increases the

current delay to be added to packets, rather than decreasing

the window size. Upon receiving an ACK with the CE bit

off, the sender increases the window size as in traditional

TCP. Thus during this small window phase, the window size

never decreases, unless there is a timeout. The algorithm

enters the large window phase when the window size

reaches the threshold of eight packets.

Large window phase. A TCP connection is in this phase

when its window size has reached the window-size

H.T. Kung et al. / Computer Communications 26 (2003) 1614–1621 1615



threshold of eight packets. Suppose that at the time when

the window reaches eight or more packets, the delay to be

added to RTT is positive. Then the sender will grow the

delay when receiving an ACK with the CE bit on, and

shrink the delay when receiving an ACK with the CE bit

off, until the delay becomes zero. When growing the delay,

the objective is to double the smoothed RTT, i.e. SRTT,

and thus reduce the transmission rate by half. When

shrinking the delay, the objective is to reduce the delay so

that the transmission rate will increase from W=RTT to

ðW þ 1=WÞ=RTT: When the delay to be added to RTT

reaches zero, the sender will grow and shrink the window

size as in traditional TCP, without adding any delay to

packets, until the connection terminates or the window size

falls below eight packets. In the later case, the algorithm

enters the small window phase.

Fig. 1 shows the two-phase control of SDC. The small

window phase consists of two time intervals (a; f ) and (i;

l). The window size grows during sub-intervals (a; b), (c;

d), (e; f ), (i; j) and (k; l). During these sub-intervals, delay

added to packet is either zero or decreasing. On the other

hand, the delay added to packets increases during sub-

intervals (b; c), (d; e) and (j; k) when the window size is

kept constant. The large window phase consists of two

intervals (f ; i) and (l; 1). During these intervals, the

window grows or shrinks according to the congestion

control algorithms of traditional TCP.

2.2. SDC algorithm

Fig. 2 presents the detailed SDC algorithm that governs

the sender behavior after receiving an ACK.

3. Simulation results

In this section, we compare the performance of SDC

to TCP with ECN [8,12] using simulations. We compare

SDC to ECN for three reasons. First, both SDC and ECN

make use of the CE bit in the packet. Second, they

require the same support from routers that can set the CE

bit of packets to signal congestion. Third, ECN is

generally regarded to have superior performance over

other versions of traditional TCP [13]. In particular,

under ECN, the TCP sender will reduce its window size

upon receiving an ACK packet with the CE bit on. This

means that ECN can adapt to congestion quickly before

any packet loss. For the rest of this paper, by traditional

TCP we mean TCP with ECN, and in all diagrams TCP

means TCP with ECN.

We use simulations in ns-2 [14] to conduct the

performance comparison. We use three metrics: the

number of timeouts, the number of packet drops and

packet delivery latency. These metrics are important for

several reasons. First, when there are retransmission

timeouts, the instantaneous transmission rate of a

connection can drop a lot. Reducing the number of

timeouts helps the connection to sustain a stable

throughput. Second, the throughput of a TCP connection

in the congestion avoidance phase is dominated by the

packet loss rate. The fewer packets lost the higher

throughput the connection can achieve. Finally, packetFig. 1. Two-phase control for TCP with SDC.

Fig. 2. The SDC algorithm.

H.T. Kung et al. / Computer Communications 26 (2003) 1614–16211616



delivery latency is related to delay and delay jitter for

the particular connection, and is especially important for

interactive and real-time applications.

The simulation topology is depicted in Fig. 3, with

various parameters related to the simulation summarized in

Table 1.

The simulations conducted here intend to study the

performance of both methods under the situation where

the network on average can only hold a few packets for

each flow. Note that in this configuration, the round-trip

time of a flow can be as large as 50 ms

((2.5 þ 20 þ 2.5) £ 2). The network path in this case

can hold about 108 packets

((10 £ 106) £ (50 £ 1023)/(576 £ 8)), excluding the buffer

at the bottleneck router. Thus the maximum number of

packets that the network can hold, including the 100

packets at the router, is about 208 packets. In addition,

the senders and routers are configured as follows:

† The senders run TCP NewReno [15] to avoid multiple

fast retransmits during a single window of data.

† The senders enable ECN and Limited Transmit [16].

† Routers enable ECN and use RED [17] in ECN

marking. Later we present further performance

improvement of SDC by using other Active Queue

Management schemes (AQM) [7].

3.1. Number of timeouts

Under ECN, timeouts occur under the following two

scenarios:

† Received an ACK with the CE bit on when the sender’s

window size equals one packet.

† In the event of a packet loss, there are not enough

unacknowledged packets for the sender to receive three

duplicate ACKs.

We note that TCP flows with small windows are more

likely to encounter these two scenarios.

As depicted in Fig. 4, when the number of flows

increases, the average number of timeouts for a connection

can be kept small under SDC. This is because under SDC

the window size can be kept above the eight-packet

threshold. In the figure, when there are less than 100

flows, one measurement is plotted for each increment of 10

flows; otherwise, one measurement is plotted for each

increment of 100 flows. (The same holds for Figs. 6, 9, 10

and 12..)

In contrast, under ECN the average number of timeouts

increases rapidly when the number of flows is larger than 30.

Note that in these cases, the window size for each

connection can hardly exceed four packets and as a result

fast retransmit and recovery cannot work. This results in

frequent timeouts. To make the situation worse, due to its

exponential ramp-up of transmission rate, the slow start

phase following each timeout often causes additional

timeouts. Moreover, as the number of connections increases

beyond a certain value (around 100 in this case), more and

more connections enter the exponential backoff phase due to

packet loss and timeout. This explains why timeouts are

Fig. 4. Average number of timeouts as a function of number of flows.

Table 1

Simulation parameters

Parameter Value

Packet size (bytes) 576

Bandwidth of bottleneck link L (Mbps) 10

Propagation delay between n0 and n1 (ms) 20

Bandwidth of link Li (Mbps) 10 £ ð10=nÞ

Propagation delay from Si to n0 Random value from 1 to

2.5 ms

Propagation delay from n1 to Rn Random value from 1 to

2.5 ms

Router buffer 100 packets

RED thresh Five packets

RED maxthresh 50 packets

RED wq 0.002

RED maxp 0.1

RED gentle_ True

Simulated length (s) 100

Fig. 3. Simulation configuration. There are n flows, each being a flow from

source Si to destination Ri over link Li; node n0; link L; node n1; and link Ki;

for some i in {1; 2;…n}: The link L is the bottleneck link. Depending on

experiments, these n flows can be all SDC flows, all traditional TCP flows,

or a mixture of the two types of flows.

H.T. Kung et al. / Computer Communications 26 (2003) 1614–1621 1617



reduced when the number of connections is larger than 200

in Fig. 4. In this case, a connection spends a large amount of

time in the backoff state and not sending any packet, thus the

total number of timeouts decreases. Fig. 5 shows the

average time a TCP sender remains in the backoff phase

increases as the number of flows increases.

3.2. Number of packet drops

The average number of packet drops for TCP and SDC is

presented in Fig. 6. SDC has significantly fewer packet

losses than traditional TCP. There are two reasons. First

when connections experience fewer timeouts, there are also

fewer slow-start bursts, which are major sources of packet

drops. Second, by adding delay to packets, SDC allows

flows to slow down gracefully to avoid packet losses.

3.3. Packet delivery latency

SDC helps reduce packet delivery latency and its

variation. Packet delivery latency is the time between

when a packet is first sent and when the packet arrives at the

receiver, regardless of how many times the packet is

retransmitted. We record all the delivery latencies of a

single flow, and report the cumulative probability of packet

delivered within the budget. Figs. 7 and 8 report the

cumulative probability distribution for 100 and 500 flows,

respectively. These figures demonstrate that SDC outper-

forms TCP in the worst-case and average packet delivery

latency. This is mainly due to reduced timeouts in SDC.

As shown in both figures, for SDC flows the cumulative

probability of packet delivered within a latency budget

increases rapidly to one as the latency budget increases,

while that for TCP flows exhibits slower increase and wider

variations. The average latencies for SDC and TCP are 0.03

and 0.10 s for the 100 flows simulation; and 0.09 and 0.30 s

for the 500 flows simulation.

3.4. Reducing bias against long RTT

SDC reduce a well-known bias of TCP against connec-

tions with long RTTs [18,19]. This is because SDC can

Fig. 5. Average length of timeouts as a function of number of flows for

traditional TCP.

Fig. 6. Average number of packet drops as a function of number of flows.

Fig. 7. Cumulative probability distribution of packet delivery within

various latency budgets (100 competing flows).

Fig. 8. Cumulative probability distribution of packet delivery within

various latency budgets (500 competing flows).

H.T. Kung et al. / Computer Communications 26 (2003) 1614–16211618



extend RTTs, and thereby reduce the relative differences

among their original RTTs.

To demonstrate this, we modify the configuration of

Fig. 3 with modified parameters summarized in Table 2. The

competing flows belong to two groups: group 1 with

propagation delay equal to 1 ms, and group 2 with

propagation delay equal to ð3 £ x 2 2Þ ms, for x larger

than one. That is, RTT1 for group 1 is 6 ms

((1 þ 1 þ 1) £ 2), and RTT2 for group 2 is 6x ms ðð1 þ

ð3 £ x 2 2Þ þ 1Þ £ 2Þ: Thus, RTT2=RTT1 ¼ x:

We consider two scenarios: (1) there are a total of 10

flows with five in each group; and (2) there are a total of 100

flows with 50 in each group. For the 10-flow configuration

the buffer at the router is 10 packets, with RED’s minimum

and maximum thresholds set to 2 and 5 packets, respect-

ively. For the 100-flow configuration, the buffer size is 100

packets, with RED’s minimum and maximum thresholds set

to 5 and 50 packets, respectively.

Figs. 9 and 10 show the ratio of total bandwidth achieved

by group 1 to group 2, for the 10- and 100-flow

configurations, as a function of the ratio x: We notice that

for both configurations, the performance disparity is much

smaller when SDC is used.

3.5. Bandwidth competition with traditional TCP

Suppose both SDC and TCP connections compete in the

same network. SDC connections in general are less

aggressive in bandwidth usage than TCP connections,

since the former will add delay to RTT and this causes a

slower ramp-up speed. Thus, SDC connections can be

considered to be ‘TCP friendly’ [20] by design.

SDC can be made more aggressive by tuning how fast the

TCP sender reduces the delay D to be added to RTT when

receiving an ACK with the CE bit off. Consider the case

when 50 SDC flows compete with 50 TCP flows on the

configuration of Fig. 3. Fig. 11 shows that if D is reduced to

0:9 £ D then SDC connections get about 30% of the

bandwidth of ECN connections. On the other hand, if D is

reduced to 0:1 £ D; then SDC connections get about 90% of

the bandwidth of ECN connections.

When there is no congestion or no bandwidth compe-

tition, SDC achieves the same bandwidth throughput as

traditional TCP.

3.6. Enhancement via the use of AVQ

We can further improve the performance of SDC in

reducing timeouts by using adaptive AQM schemes, such as

Table 2

Configuration for RTT bias simulations

Parameters Value

Prop. delay between n0 and n1 (ms) 1

Prop. delay between Si; n0 for group 1 (ms) 1

Prop. delay between Si; n0 for group 2 (3 £ x 2 2) ms, with x

from 1 to 100

Prop. delay between n1; Ri (ms) 1

Fig. 9. Ratio of achieved bandwidths as a function RTT ratio (a total of 10

flows with five in each group).

Fig. 10. Ratio of achieved bandwidths as a function RTT ratio (a total of

100 flows with 50 in each group).

Fig. 11. When competing with TCP connections, SDC connections can be

made increasingly competitive by reducing more aggressively the delay to

be added to RTT when an ACK with the CE bit off is received.

H.T. Kung et al. / Computer Communications 26 (2003) 1614–1621 1619



REM [21], adaptive RED [22,23], adaptive virtual queue

(AVQ) [24], FRED [2], and SRED [25]. For illustration, we

consider AVQ. AVQ limits the arrival rate to a fraction, e.g.

98%, of the output link capacity C: It uses virtual capacity ~C

to decide whether a packet should be marked with the CE

bit. The virtual capacity is updated using

d

dt
~C ¼ aðgC 2 lÞ

where l is the arrival rate, g is the desired utilization at the

link and a is a damping factor used to control the adaptive

rate of AVQ. In this simulation, a and g are set to be 0.12

and 0.98, respectively, as suggested in Ref. [24].

Fig. 12 shows the average number of timeouts as a

function of number of flows under AVQ. We see the number

of timeouts under SDC is further reduced, compared to the

result of Fig. 4. The improvement is attributed to AVQ’s

ability in capturing TCP’s congestion avoidance behavior.

4. Related work

Two methods were suggested in Ref. [1] to cure the

timeout problem in the many-flow situation. The first

method proposes that the size of the buffer deployed at the

router should be proportional to the total number of active

flows, instead of one round-trip time as suggested in

Ref. [26]. Both FRED [2] and FPQ [6] take this approach.

The second method makes TCP less aggressive and more

adaptive when its congestion window is small. SUBTCP

[22] is one such method. However, SUBTCP uses a

multiplicative increase/multiplicative decrease algorithm

and consequently will not converge to a fair point [9].

Additional simulation study of TCP with many flows can be

found in Ref. [27].

There are extensive literature on enhancing TCP’s loss

recovery capability. Examples are TCP SACK [28] and TCP

NewReno [15]. These methods can improve the loss

recovery capability of TCP when the window size is

sufficiently large. However, they are unable to offer much

help when the window size is small. Some researchers have

recognized this problem and proposed solutions [5,16,29].

For example, with Limited Transmit [16] the TCP sender

can transmit a new segment after receiving two, instead of

three, duplicate ACKs. This modification makes TCP less

tolerant to packet reordering in network due to reasons such

as the use of multiple links.

While we do not propose any new buffer management

method in this paper, as shown in Section 3.6, SDC can

take advantage of advanced AQM [7] methods to avoid

global synchronization and to allow early congestion

notification.

Recently, there has been work on TCP-friendly equation-

based congestion control, such as TFRC [30]. We did some

preliminary tests using TFRC. It seems that TFRC

connections with the delay-bandwidth product smaller

than two packets per connection cannot survive well when

competing with other TCP connections. The equation [31]

used by TFRC is perhaps too ‘friendly’ when the average

bandwidth per connection is small.

SDC described in this paper can be viewed as a method

of implementing Active Delay Control [32], an extension to

TCP where TCP endpoints impose delays on the trans-

mission of packets in order to improve performance. Basic

concepts and motivations behind Active Delay Control and

some of our previous results can be found in Refs. [32,33].

5. Conclusion

We have shown in this paper the feasibility of performing

TCP congestion control by adjusting not only the congestion

window size, but also the delay of packet sending. Using

this additional delay-based control, SDC can keep the

window size of a TCP connection above a certain threshold

while decreasing its transmission rate. This reduces the

frequency of TCP timeouts for the connection as well as the

fluctuation in its bandwidth usage. For these reasons, SDC

allows many TCP flows to share a link without excessive

timeouts. In addition, because of the added delay, SDC

reduces a well-known TCP bias against connections with

relatively large RTTs.

Acknowledgements

This research was supported in part by NSF grant ANI-

9710567, Air Force Office of Scientific Research

Multidisciplinary University Research Initiative Grant

F49620-97-1-0382, and grants from Microsoft Research,

Nortel Networks, and Sun Microsystems.

Fig. 12. Average number of timeouts as a function of number of flows under

AVQ. This result represents an improvement over that of Fig. 4.

H.T. Kung et al. / Computer Communications 26 (2003) 1614–16211620



References

[1] R.T. Morris, TCP behavior with many flows, IEEE International

Conference on Network Protocols, Atlanta, Georgia (1997).

[2] D. Lin, R. Morris, Dynamics of random early detection, SIG-

COMM’97, Cannes, France (1997) 127–137.

[3] S. McCreay, kc claffy, Trends in wide area IP traffic patterns, May

2000, http://www.caida.org/outreach/papers/2000/AIX0005/

[4] W.R. Stevens, TCP/IP Illustrated, The Protocols, vol. 1, Addison-

Wesley, Reading, MA, 1993.

[5] D. Lin, H.T. Kung, TCP fast recovery strategies: analysis and

improvements, Proceedings of the Conference on Computer Com-

munications (IEEE Infocom), San Francisco, California (1998) http://

www.ieee-infocom.org/1998/papers/02d_4.pdf.

[6] R.T. Morris, Scalable TCP congestion control, PhD thesis, Harvard

University, 1999

[7] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin,

S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson,

K. Ramakrishnan, S. Shenker, J. Wroclawski, L. Zhang, Rec-

ommendations on queue management and congestion avoidance in

the Internet, RFC 2309 April (1998) ftp://ftp.isi.edu/in-notes/

rfc2309.txt.

[8] K. Ramakrishnan, S. Floyd, A proposal to add explicit congestion

notification (ECN) to IP, RFC 2481 January (1998) ftp://ftp.isi.edu/

in-notes/rfc2481.txt.

[9] D.-M. Chiu, R. Jain, Analysis of the increase and decrease algorithms

for congestion avoidance in computer networks, Computer Networks

and ISDN Systems 17 (1989) 14.

[10] V. Jacobson, Congestion avoidance and control, ACM Computer

Communication Review, Proceedings of the SIGCOMM’88 Sym-

posium in Stanford, CA 18 (4) (1988) 314–329. ftp://ftp.ee.lbl.gov/

papers/congavoid.ps.Z.

[11] F.P. Kelly, Stochastic modes of computer communication systems,

Journal of the Royal Statistical Society Series B 47 (3) (1985)

379–395.

[12] S. Floyd, TCP and explicit congestion notification, ACM Computer

Communication Review 24 (5) (1994) 10–23.

[13] Y. Zhang, L. Qiu, Understanding the end-to-end performance impact

of RED in a heterogeneous environment, Technical Report 2000-

1802, Cornell, CS, July 2000

[14] UCB/LBNL/VINT, Vint network simulator—ns, 1997

[15] S. Floyd, T. Henderson, The NewReno modification to TCP’s fast

recovery algorithm, RFC 2582 April (1999) ftp://ftp.isi.edu/in-notes/

rfc2582.txt.

[16] M. Allman, H. Balakrishnan, S. Floyd, Enhancing TCP’s loss

recovery using limited transmit, RFC 3042 January (2001) ftp://ftp.

isi.edu/in-notes/rfc3042.txt.

[17] S. Floyd, V. Jacobson, Random early detection gateways for

congestion avoidance, IEEE ACM Transactions on Networking 1

(4) (1993) 397–413.

[18] S. Floyd, Connections with multiple congested gateways in packet-

switched networks part1: one-way traffic, ACM Computer Com-

munication Review 21 (5) (1991) 30–47.

[19] S. Floyd, V. Jacobson, Traffic phase effects in packet-switched

gateways, Internetworking: Practice and Experience 3 (3) (1992)

115–156.

[20] S. Floyd, K.R. Fall, Promoting the use of end-to-end congestion

control in the internet, IEEE/ACM Transactions on Networking 7 (4)

(1999) 458–472.

[21] S. Athuraliya, V.H. Li, S.H. Low, Q. Yin, REM: active queue

management, IEEE Network 15 (3) (2001) 48–53.

[22] W. Feng, D.D. Kandlur, D. Saha, K.S. Shin, Techniques for

eliminating packet loss in congested TCP/IP networks, Technical

Report CSE-TR-349-97, U. Michigan, 4, 1997

[23] W. Feng, D.D. Kandlur, D. Saha, K.G. Shin, A self-configuring RED

gateway, Proceedings of INFOCOM 99 3 (1999) 1320–1328.

[24] S. Kunniyur, R. Srikant, Analysis and design of an adaptive virtual

queue (AVQ) algorithm for active queue management, Proceedings of

SIGCOMM 2001, San Diego, California, USA (2001).

[25] T.J. Ott, T.V. Lakshman, L.H. Wong, SRED: stabilized RED,

Proceedings of INFOCOM 3 (1999) 1346–1355.

[26] C. Villamizar, C. Song, High performance TCP in ansnet, ACM

Computer Communication Review 24 (5) (1994) 45–60.

[27] L. Qiu, Y. Zhang, S. Keshav, On individual and aggregate TCP

performance, Proceedings of ICNP (1999).

[28] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP selective

acknowledgment options, RFC 2018 October (1996) ftp://ftp.isi.edu/

in-notes/rfc2018.txt.

[29] H. Balakrishnan, V.N. Padmanabhan, S. Seshan, M. Stemm,

R.H. Katz, TCP behavior of a busy internet server: analysis and

improvements, Proceedings of the Conference on Computer Com-

munications (IEEE Infocom) 1 (1998) 252–262.

[30] S. Floyd, M. Handley, J. Padhye, J. Widmer, Equation-based

congestion control for unicast applications, Proceedings of SIG-

COMM 2000, Stockholm, Sweden (2000) 43–56.

[31] J. Padhye, V. Firoiu, D. Towsley, J. Kurose, Modeling TCP

throughput: a simple model and its empirical validation, ACM

Computer Communication Review 28 (4) (1998) 303–314.

[32] P.-H. Hsiao, H.T. Kung, K.-S. Tan, Active delay control for TCP,

Proceedings of the IEEE Conference on Global Communications

(GLOBECOM), San Antonio, TX (2001).

[33] P.-H. Hsiao, H.T. Kung, K.-S. Tan, Video over tcp with explicit delay

notification, Proceedings of NOSSDAV 2001, Port Jefferson, New

York, USA (2001).

H.T. Kung et al. / Computer Communications 26 (2003) 1614–1621 1621

http://www.caida.org/outreach/papers/2000/AIX0005/
http://www.ieee-infocom.org/1998/papers/02d_4.pdf
http://www.ieee-infocom.org/1998/papers/02d_4.pdf
ftp://ftp.isi.edu/in-notes/rfc2309.txt
ftp://ftp.isi.edu/in-notes/rfc2309.txt
ftp://ftp.isi.edu/in-notes/rfc2481.txt
ftp://ftp.isi.edu/in-notes/rfc2481.txt
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z
ftp://ftp.isi.edu/in-notes/rfc2582.txt
ftp://ftp.isi.edu/in-notes/rfc2582.txt
ftp://ftp.isi.edu/in-notes/rfc3042.txt
ftp://ftp.isi.edu/in-notes/rfc3042.txt
ftp://ftp.isi.edu/in-notes/rfc2018.txt
ftp://ftp.isi.edu/in-notes/rfc2018.txt

	TCP with sender-based delay control
	Introduction
	Sender-based delay control
	Two-phase control for SDC
	SDC algorithm

	Simulation results
	Number of timeouts
	Number of packet drops
	Packet delivery latency
	Reducing bias against long RTT
	Bandwidth competition with traditional TCP
	Enhancement via the use of AVQ

	Related work
	Conclusion
	Acknowledgements
	References


