
This article was downloaded by: [National Chiao Tung University 國立交通大學]
On: 27 April 2014, At: 19:30
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of the Chinese Institute of Engineers
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tcie20

Numerical time domain BEM experiment for 2‐D
elastodynamics
Gin‐Show Liou a , Gin‐Zen Lai b & Chung‐Cheng Wang c

a Department of Civil Engineering , Chiao‐Tung University , Hsing‐Chu, Taiwan 300,
R.O.C. Phone: 886–3–5712121 ext. 54906 E-mail:
b Department of Civil Engineering , Chiao‐Tung University , Hsing‐Chu, Taiwan 300,
R.O.C.
c Chung Shan Institute of Science and Technology , Taoyuan, Taiwan 325, R.O.C.
Published online: 03 Mar 2011.

To cite this article: Gin‐Show Liou , Gin‐Zen Lai & Chung‐Cheng Wang (2003) Numerical time domain BEM experiment for
2‐D elastodynamics, Journal of the Chinese Institute of Engineers, 26:5, 597-605, DOI: 10.1080/02533839.2003.9670814

To link to this article:  http://dx.doi.org/10.1080/02533839.2003.9670814

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of
the Content. Any opinions and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied
upon and should be independently verified with primary sources of information. Taylor and Francis shall
not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other
liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or
arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://www.tandfonline.com/loi/tcie20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/02533839.2003.9670814
http://dx.doi.org/10.1080/02533839.2003.9670814
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Journal of the Chinese Institute of Engineers, Vol. 26, No. 5, pp. 597-605 (2003) 597

NUMERICAL TIME DOMAIN BEM EXPERIMENT FOR 2-D

ELASTODYNAMICS

Gin-Show Liou*, Gin-Zen Lai and Chung-Cheng Wang

ABSTRACT

This paper investigates some numerical aspects of solving 2-D time domain elasto-
dynamic problems by the Boundary Element Method.  In the investigation, quadratic
spatial elements on the boundaries of domains, and linear temporal variations for dis-
placement and constant temporal variation for traction in one time step are employed.
For calculating internal displacement and stress, the traction kernels and internal stress
kernels are derived by following the methodology developed by Israil and Banerjee.

Since the non-dimensional time step β=    c1∆t
 is a major parameter in judging the

accuracy and stability of time domain BEM, the effects of β value on numerical re-
sults are examined thoroughly in the investigation.  Also, how accurate the time do-
main BEM is for calculating internal stress and displacement is also investigated
comprehensively. Some conclusions are drawn from numerical experiments.

Key Words: time domain BEM, elastodynamics, internal stress, β-values, numerical
damping.
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I. INTRODUCTION

Although both the boundary element method and
the finite element method were proposed at almost
the same time, more than 40 years ago, the finite ele-
ment method has gotten more attention from the re-
searchers in the field of computational mechanics.
The reasons for this trend in the past 40 years are
that the finite element method, in general, is a physi-
cal approach with simple mathematical manipulation,
which is more favored by practicing engineers, and
the boundary element method has problems such as
numerical singularities, a complex integration
scheme, and an asymmetrically operating matrix.  If
one wants to obtain internal stress and displacement,
one has to solve the boundary values first.

However, after so many resources have been

poured into researches on the finite element method,
the method has become mature and the finite element
method also has some limitations.  For example: dif-
ficulties in dealing with an infinite domain, and nu-
merical precision problems in dealing with wave
propagation problems.  The boundary element method
has some advantages over the finite element method
such as better numerical precision with only bound-
ary meshing necessary, which greatly reduces the
number of system equations while solving engineer-
ing problems.  Therefore, in the past decade, the
boundary element method has attracted more and
more academic researchers to work on it, and has
gradually become the main stream of research in the
field of computational mechanics (Banerjee, 1994;
Kane, 1994).

Especially in solving elastodynamic problems,
the boundary element method has advantages over
finite element method, since artificial wave reflec-
tion may occur in the finite element method when the
element sizes change in the domain and the boundary
element method gives much better precision for wave
propagation problems.

To solve two-dimensional time-domain prob-
lems, Niwa et al. (1980) integrated three-dimensional
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transient kernels at each time step with respect to the
third spatial coordinate only in the range of wave
propagation distance.  Mansur (1983) was the first to
formulate a time-stepping algorithm directly using 2D
time-domain elasto-dynamic kernels.  However, the
accuracy of the formulation suffers as indicated by
Israil and Banerjee (1990) for the following reasons:
mathematical complexity resulting from the treatment
of Heaviside functions in the kernel functions, sim-
plified assumptions of constant variation of spatial
variables, modeling of boundary geometry by using
straight line segments, and inadequate treatment of
edges and corners, etc.  After these formulations, the
integral equation solutions of elasto-dynamic prob-
lems in the time domain have also been presented by
the weighted residual method and the reciprocity
method.  Spyrakos and Antes (1986) have found that
the reciprocity method takes considerably less calcu-
lation time than the weighted residual method for
elasto-dynamic transient problems with short
duration.  Israil and Banerjee (1990, 1991) have made
certain contributions to the numerical implementa-
tion of time-stepping techniques and also presented a
number of numerical solutions.  In their works, the
temporal convolution integrals are evaluated analyti-
cally and the spatial integrations are performed nu-
merically at each time step.  Wang and Takemiya
(1992) also analytically obtained both spatial and tem-
poral integration for scalar wave by the Cagninard-
de Hoop method.  However, in the aforementioned
methods, the temporal solution is assumed to be ei-
ther the zeroth or first order (i.e. constant or linear
variation) with one-time-step piecewise continuity.
Wang et al. (1996, 1997) followed the methodology
of Israil and Banerjee to develop the quadratic tem-
poral solution, QC or QL method, which is called the
second order method with two-time-step piecewise
continuity.  In the procedure, quadratic temporal
variation for displacement and constant or linear
variation for traction are adopted, and spatial field
variations are assumed to be quadratic.  Just like Israil
and Banerjee’s works, the temporal integrations can
be obtained analytically and the spatial integration is
obtained using the Gaussian quadrature method.  Also,
Chen and Hong (1990, 1993) have made some con-
tributions to the dual boundary element method which
can be employed to solve elastodynamic problems.

Since one disadvantage of the boundary element
method (BEM) is that BEM must obtain boundary
solutions first and then calculate internal stress and
displacement, this paper is devoted to investigating
some numerical schemes and precision of the bound-
ary element method when internal stress and displace-
ment are involved.  To calculate the internal stress,
Israil and Banerjee (1991) have proposed a pair of
first order temporal internal stress kernels, which will

be used in the following investigations.  In the
investigations, the parameter of non-dimensionalized

time step β=    c1∆t
, in which c1 is compressional wave

velocity, ∆t is time step interval and  is length of
quadratic element at boundary, will be examined in
great detail for solving elasto-dynamic internal dis-
placements and stresses, and evaluating the precision
for calculating internal displacement and stress while
using the boundary element method.  This precision
of internal displacement and stress will depend upon
locations where internal displacement and stress are
calculated.  Besides, the paper will compare the pre-
cision of BEM at boundary points with that at inter-
nal points, since which result is better is still argu-
able in the engineering community.  In these numeri-
cal experiments, the variations of displacement and
traction with respect to time will be linear and con-
stant respectively in one-time-step (the so-called LC
method) and the kernel integrations with respect to
time will be calculated analytically, and at boundary
the spatial field variation is assumed to be quadratic
and Gaussian quadrature is used to do the numerical
integrations.

II. OUTLINED FORMULATIONS OF BEM
EQUATIONS

To solve the internal stress and displacement in
a domain, the boundary values must be obtained first.
To obtain the boundary values, the quadratic element
for the spatial boundary is assumed, time discretiza-
tion is assumed to be uniform segments by equal time
step, and temporal variations are assumed to be lin-
ear for displacement and constant for tractions in one
step.  Therefore, following Israil and Banerjee’s
(1990, 1991) methodology, the boundary equations
for the Nth time step (i.e. time t=N∆t, ∆t is time step)
can be deduced to be

     ([GCFij
N – n + 1 + GCBij

N – n]{Tj
n}Σ

n = 1

N

   – [FLFij
N – n + 1 + FLBij

N – n]{U j
n}) = {0} (1)

In Eq. (1) kernel matrices [Gij] and [Fij] can be found
in the work of Wang et al. (1996, 1997) in which the
integration with respect to time is calculated analyti-
cally and the integration with respect to space is cal-
culated by Gaussian quradrature,   {T j

n} and   {U j
n} are

vectors of values at boundary nodes for tractions and
displacements respectively, N in superscripts repre-
sents the Nth time step of boundary solutions, CF and
CB in subscripts represent constant variations in one
time step for forward and backward temporal points
respectively, LF and LB in subscripts represent
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linear variation in one time step for forward and back-
ward temporal points respectively, and subscripts i
and j mean spatial dimensions and i, j=1 or 2 for two
dimensional problems.  In deriving Eq. (1), Wang et
al. (1996, 1997) have proved that rigid body motion
method to remove the singularity problem in the nu-
mer i ca l  s cheme  can  a l so  be  employed  fo r
elastodynamic problems.

To solve Eq. (1), half of the number of values
in traction vector   {T j

n} and displacement vector   {U j
n}

must be known due to boundary conditions.  Eq. (1)
can be rearranged as

[A]{XN}=[B]{YN}+{RN} (2)

in which {XN} and {YN} represent unknown bound-
ary quantities and known boundary quantities at time
step N respectively, matrices [A] and [B] are the re-
arranged kernel matrices [Gij] and [Fij] in Eq. (1), and
vector {RN} is the influence due to the dynamic ef-
fect from time step n=1, 2, ..., N−1.  Therefore,

    {RN} = – ([GCFij
N – n + 1 + GCBij

N – n]{T n}Σ
n = 1

N – 1

  – [FLFij
N – n + 1 + FLBij

N – n]{U n}) (3)

After solving Eq. (2) for all the boundary values,
one can proceed to obtain the displacement and stress
at a specified internal point in the domain.  Israil and
Banerjee (1991) proposed the internal stress kernels
for calculating the stress at internal points in a
domain. After some mathematical manipulations, the
displacement and stress at an internal point can be
obtained as follows:

   ui
N = ([GCFij

N – n + 1 + GCBij
N – n]{T j

n}Σ
n = 1

N

  – [FLFij
N – n + 1 + FLBij

N – n]{U j
n}) (4)

   σ ij
N = ({GCFijk

σ N – n + 1

+ GCBijk
σ N – n

}{Tk
n}Σ

n = 1

N

   – {FLFijk
σ N – n + 1

+ FLBijk
σ N – n

}{Uk
n}) (5)

In Eqs. (4) and (5), kernel matrices {   GCFij
N – n + 1+   GCBij

N – n}
and {   FLFij

N – n + 1+   FLBij
N – n} contain the elements after spa-

tial integrations of convoluted kernels with the source
at the specified internal point, kernel matrices
{    GCFijk

σ N – n + 1
+    GCBijk

σ N – n
} and {    FLFijk

σ N – n + 1
+    FLBijk

σ N – n
} contain the

elements after spatial integrations of internal convo-
luted stress kernels with the source at the specified
internal point.  These forms of integration can be
found in Israil and Banerjee’s work (1990, 1991), and
the vectors {  U j

n} and {  T j
n} are the known and solved

boundary values from Eq. (2).  To solve Eqs. (4) or
(5), one should note that  ui

N  and   σ ij
N  can be obtained

consecutively for all time steps simply by matrix dot
product operation.

After summarizing the solution process for
BEM, we are in the position to proceed to do the in-
vestigation of numerical prospects of the outlined
method.

III. NUMERICAL INVESTIGATION

To perform the numerical investigation, an L×L
square domain and an L×L/10 rectangular domain in
which L is the length of the domian as shown in Figs.
1 and 2 are selected with uniform ramp-step load, as
shown in Fig. 3 in which the rising time tR=0.8L/c1,
is applied at the right-hand side, and hinge and roller
supports are at the left-hand side as the figures show.
Poisson’s ratio (ν) is assumed to be zero.  In order to

Fig. 1 (a) L×L square domain with 20 elements; (b) L×L square
domain with 40 elements
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investigate the effect of the meshing scheme on the
accuracy of internal stresses and displacements, two
meshes for the boundary are employed.  One is 40
boundary nodes with 20 quadratic boundary elements
as shown in Fig. 1(a), and the other is 80 boundary
nodes with 40 quadratic boundary elements as shown
in Fig. 1(b).  Similar meshing schemes are used for
the rectangular domain as shown in Figs. 2(a) and
2(b).  In the calculations, the non-dimensionalized

time step β=    c1∆t
 is selected to be in the range of

0.05~1.00 in order to obtain the effect of β-value on
the accuracy of results of boundary values and inter-
nal values, since β is an important parameter for us-
ing BEM to solve time domain elasto-dynamic
problems.  In order to indicate the locations of inte-
rior points and boundary points, the dimensions of
the domains and the coordinate systems are shown in
Figs 1(a), 1(b), 2(a) and 2(b).  Therefore, in the fol-
lowing figures of the numerical results, the coordi-
nates of internal and boundary points will be indi-
cated for reference to the locations of these numeri-
cal results.

Figure 4 shows some numerical results for the
case of the L×L domain with 20 boundary elements,

β=0.05 and y=0.5L.  In the figure and the figures
thereafter, time step is nondimensionalized by com-
pressional wave velocity c1 and the length of domain
L.  From the figure, one can observe that the result
for x=0.95L, 0.97L, 0.98L and L (x=L means bound-
ary point) are excellent.  However, for x=0.99L the
result is not good. Also, from Fig.5, one can see that
the results for x=0.5L, 0.6L, 0.7L and 0.8L are very
good, but for x=0.85L and 0.9L, the precision of the
results is bad.  Therefore, a thorough numerical

Fig. 2 (a) L×L/10 rectangular domain with 22 elements; (b) L×L/
10 rectangular domain with 44 elements

Fig. 3  Ramp-step load (TR is the rising time)
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experiment investigating the numerical precision of
the results for internal points has been done by using
different β-values.  The results are summarized in
Table 1.  In the table, � means a good result which
almost matches the exact solution* and × means a bad
result which deviates from the exact solution like the
results for x=0.99L in Fig. 4 and x=0.85L and 0.9L in
Fig. 5.  All the results summarized in Table 1 are for
20 quadratic boundary elements and the same ramp-
step load.  However, the result for 40 elements as
shown in Fig. 1(b) and for the case of L×L/10 domain
as shown in Figs. 2(a) for 22 elements and 2(b) for
44 elements have similar patterns to that in Table 1.
From the table, one can easily observe the two phe-
nomena as follows: (1) If the internal point is closer
to the boundary, the accuracy of the result will be
getting worse; (2) If β is getting smaller, one can
obtain a good result for an internal point closer to the
boundary. Although the table shows the results by
changing x-coordinate, a similar pattern is obtained
by changing the y-coordinate.  Therefore, one can con-
clude that when the internal point of interest is closer
to the boundary, a good result may be difficult to
obtain.  Although one may use a smaller β, the prob-
lem of numerical stability of BEM may arise.  The
aspect of numerical instability due to small β will be

discussed later in the paper.  By generalizing all the
numerical results, one can also conclude as follows:
If the internal point is close to the boundary with a
distance less than    3

2
β  or 3

2
c1∆t, in which  is the

length of quadratic element at boundary, the preci-
sion of the numerical results for the internal point will
not be good.  Although the latter expression, 3

2
c1∆t,

seems to tell us that the numerical results of internal
stresses and displacements are not dependent upon
the element size , one should notice that the calcu-
lation of internal stresses or displacements is based
on the results at the boundary where precisions will
be affected by the element size .  Therefore, the cri-
terion    3

2
β  or 3

2
c1∆t is valid only under the condition

of accurate results at the boundary.  The conclusion
is sketched in Fig. 6.  If the internal point falls in the
shaded area of the domain shown in Fig. 6, it is very
difficult to obtain good numerical results for the point.
The explanation for this phenomenon may be as
follows: When the internal point is close to the
boundary, the singularity behavior of internal dis-
placement and stress kernels will make the numeri-
cal integrations of Gaussian quadrature break down.
So just increasing the number of subsegmentation and
integration points may not be enough.  A new nu-
merical integration scheme, like rigid body motion

Table 1 Summary of result precisions for different β-value and location (stress column value is traction
at x/L=1.0)

β β=0.05 β=0.1 β=0.2 β=0.5 β=0.8 β=1

x/L disp. stress disp. stress disp. stress disp. stress disp. stress disp. stress

0.5 � � � � � � � � � � � �

0.55 � � � � � � � � � � � �

0.6 � � � � � � � � � � � �

0.65 � � � � � � � � � � � �

0.7 � � � � � � � �

0.75 � � � � � � � �

0.8 � � � � � � � �

0.85 � � � � � � �

0.9 � � � � � � �

0.91 � � � � � � �

0.92 � � � � � � �

0.93 � � � � � � �

0.94 � � � � � � �

0.95 � � � � � � �

0.96 � � � � � � �

0.97 � � � � � � �

0.98 � � � � � � �

0.99 � � � � � � �

1.0(boundary) � � � � � � � � � � � �

*u=
   1

ρc1
p(s)ds

0

t – x
c1 , where ρ is mass density, c1 is compressional wave velocity and p(s) is applied traction.
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method for integration of kernel for boundary nodes,
must be developed to deal with the problem of the
strong singularity behavior.

Conventionally, the suggested non-dimensional
time step β should be between 0.25 and 0.75 for bet-
ter results of time domain BEM of first order.
However, in this investigation, the β value could be
as small as 0.05 for the case of an L×L domain as
shown in Figs. 1(a) and 1(b) without numerical
instability.  But for the case of an L×L/10 domain
shown in Figs. 2(a) and 2(b), small β value may cre-
ate numerical problem after some time steps. Fig. 7
shows the displacements at coordinates (x , y)=(0.5L,
0.05L) for the cases of 44 elements and 22 elements
with β=0.1.  From the figure, one can see that both
cases have good results at the beginning of the time
steps.  But, after some time steps, the results start to
diverge.  Also, one can observe that the result diverges
a little earlier for the case of 44 elements (finer mesh).
This is because one needs more time steps (twice as
many as in the 22 element case) to reach a certain
time point, and the accumulation of truncation error
in the calculation of each time step will make the
numerical divergence occur earlier.  Fig. 8 compares
the displacement results of β=0.1, 0.2 and 0.25.  From
the figure, one can conclude that a smaller β will make
numerical instability occur earlier.  One of the rea-
sons causing this instability could be the truncation
error propagation, since using smaller β means that
more calculation steps are needed in order to reach
the same time point.  However, this truncation error
propagation is not the only culprit to cause the
instability, since for the case of an L×L domain, the
instability never occurs even for β=0.05 in Fig. 4.
This may be because the number of time steps is not

large enough.  In this investigation, the time span for

calculation is only up to t=   16L
c1

 second.  Therefore,

one can easily say that β is not the only parameter to
control the numerical instability and precision.  There
must be some other factors that will influence the
numerical precision and stability of BEM while solv-
ing time domain elastodynamic problems.  Or, the nu-
merical integration scheme of uniform subsegmenta-
tion may not be good enough, and a better integra-
tion scheme is needed if one wants to calculate a re-
sult for a long time span.  Although Figs. 7 and 8
show the results for an internal point, the results for
a boundary point also have a similar divergent pattern.

In the engineering community, some still argue
that using BEM to calculate internal stresses and

Fig. 6  Shaded area with bad interior results
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displacements may or may not be as accurate as cal-
culating boundary tractions and displacements.
Therefore, some comparisons of the results have been
made in order to show some clues.  Fig. 9 compares
some results for the case of an L×L domain with β=
0.2.  In the figure, the error is defined by subtracting
the exact result from the numerical result and then
dividing by the exact result.  From the figure, one
can see that, in general, the result for a boundary point

is better than that for an interior point although all
the results are pretty good.  However, at certain time
steps, the result for an internal point may be better.
Therefore, it doesn’t matter which result is better,
since both results are good anyway.  Generally
speaking, that the result for boundary points is good
means that the results for internal points will be good
too, if the internal point doesn’t fall in the region de-
fined in Fig. 6.  Fig. 10 shows the comparison of re-
sults between two boundary meshing schemes. From
the figure, one can observe that finer boundary mesh
can give better precision of displacement result for
an internal point just like for a boundary point.  A
similar situation can be observed for the case of cal-
culating internal stress.  This is shown in Fig. 11.  By
comparing Fig. 11 to Fig. 10, one can also conclude
that using BEM to calculate internal stress and
displacement, one can obtain better precision for
displacement.  The reason for this phenomenon is that
the singularity order for the more complicated trac-
tion kernels is stronger than that for the displacement
kernels in the numerical investigation.

Also, for a larger β value, the accuracy of re-
sults may deteriorate, and numerical damping may
become a problem as time steps march on.  Fig. 12
shows this numerical damping phenomenon.  From
Fig. 12, one can see that as β becomes larger, the nu-
merical damping is getting stronger.  Therefore, if
one wants to use a large β in time domain BEM with
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a long time span in order to save computational cost,
one should be aware that numerical damping may
cause inaccuracy as time steps march.  If one wants
to improve the precision, higher order temporal varia-
tion for traction and displacement reported by Wang
et al. (1996, 1997) should be employed.

IV. CONCLUSIONS

After a thorough numerical experiment, some
conclusions can be outlined as follows:
1. T o  c a l c u l a t e  t h e  i n t e r n a l  s t r e s s e s  a n d

displacements, the locations of the internal points
should not fall in the shaded region defined in Fig.
6.  Otherwise, the precision of results will suffer
severely, if the traditional integration scheme of
uniform subsegmentation is employed.  Therefore
a more sophisticated integration method may need
to be developed.

2. Also, one should notice that finer mesh would make
the area of the shaded region, shown in Fig. 6,
smaller.

3. For cases of small β value, the instability of nu-
merical results will occur quite early in the time
step series.  And as β is getting smaller, the occur-
rence of divergence of numerical result comes ear-
lier in the time step series.  However, how early it
is will depend upon what kind of domain it is.
Therefore, there must be more than one parameter
of β to define the accuracy and stability of the nu-
merical results by time domain BEM.

4. For the cases with large β, the accuracy of the nu-
merical results will deteriorate and numerical

damping will greatly affect the numerical accuracy,
especially for a long time span solution. If one
wants to get better numerical results, one may use
higher order temporal variations for displacement
and traction as reported by Wang et al. (1996,
1997).

5. In general, the precision for calculating internal
displacement is better than that for calculating in-
ternal stress.  Although the accuracy of internal
stresses and displacements may not be as good as
that for boundary tractions and displacements in
time domain BEM, the difference between the two
accuracies is minor.

NOMENCLATURES

[A] rearranged kernel matrix of [Gij]
and [Fij]

[B] rearranged kernel matrix of [Gij]
and [Fij]

c1 compressional wave velocity
CF constant variation in one time step

for forward temporal point
CB constant variation in one time step

for backward temporal point
{   FLFij

N – n + 1+   FLBij
N – n} corresponding condensed linear

traction kernel matrix
{    FLFijk

σ N – n + 1
+    FLBijk

σ N – n
} corresponding condensed linear

traction kernel matrix related to
stress

{   GCFij
N – n + 1+   GCBij

N – n} corresponding condensed constant
displacement kernel matrix

{    GCFijk
σ N – n + 1

+    GCBijk
σ N – n

} corresponding condensed constant
displacement kernel matrix related
to stress
length of quadratic element

L length of square domain
LB linear variation in one time step for

backward temporal point
LF linear variation in one time step for

forward temporal point
N number of total time step
n nth time step
p(s) applied traction
{RN} vector due to influence of dynamic

effect from previous time step

  {T j
n} vector of tractions in jth direction

at nth time step
t time duration
tR rising time of ramp-step load

  {U j
N} vector of displacements in j th

direction at nth time step

 u j
N displacement in ith direction at Nth

time step
{XN} vector of unknown at Nth time step
{YN} vector of the known at Nth time step

Fig. 12  Numberical damping with larger β-value
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β non-dimensionalized time step
ν Poisson’s ratio
ρ mass density

  σ ij
N stress tensor at Nth time step

∆t time step interval
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