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COLOR IMAGE VEHICULAR DETECTION SYSTEMS WITH AND

WITHOUT FUZZY NEURAL NETWORK: A COMPARISON

Lawrence W. Lan*, April Y. Kuo, and Yeh-Chieh Huang

ABSTRACT

This paper develops a color image vehicular detection (CIVD) system in which
background differencing technique is employed to detect whether a vehicle passes
through the detecting points equally spaced out on a pseudo line detector.  Two meth-
ods (interval search and regression) are tried to determine the optimal crisp threshold
values to cope with various lighting conditions.  To compare the detection perfor-
mance with and without incorporating a fuzzy neural network (FNN), a three-layer
FNNCIVD system is further designed with trapezoidal membership function and net-
work parameters trained by back propagation algorithm.  Under different environ-
ments (freeway and urban street) with various lighting conditions (daytime and
nighttime), it is found that the detection success rates for interval-search CIVD and
regression CIVD are about the same.  However, both perform worse than the FNNCIVD
system in which about 90% success rates are reported with seven detection points.
Compared with the interval-search CIVD system, the FNNCIVD system can increase
the success rates at a range of 14% to 22% on the freeway mainline and 18% to 26%
on the urban street.  It is also found that daytime detection performance is slightly
better than nighttime detection.  Possible reasons for missed detection and false de-
tection are discussed.

Key Words: color image vehicular detection (CIVD), fuzzy neural network (FNN),
background differencing technique, back propagation algorithm.
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I. INTRODUCTION

Advanced traffic control and management relies
heavily on the collection of accurate traffic flow data.
In recent years, more and more traffic parameters have
been automatically collected by video image detec-
tors rather than by conventional techniques such as
loops and magnetic detectors.  The major shortcom-
ings for the conventional detectors may include their
limitations on the accurate assessment of traffic
parameters, small detection zones, and placements
w i t h o u t  f l e x i b i l i t y  ( M i c h a l o p u l o s ,  1 9 9 1 ) .
Additionally, data collected by such conventional
vehicular detectors cannot be applied to vehicle
tracking, incident detection (Washburn and Nihan,

1999), or vehicle movement monitoring within a junc-
tion (Fathy and Siyal, 1995).

Traffic detection with video image processing
may improve the shortcomings mentioned above.
Recently, extensive research and development efforts
have been devoted to image processing techniques
applied to traffic data collection and analysis.  More
appl icat ions  of  image process ing to  vehicle
classification, tracking and incident detection have
been reported (for instance, Hoose, 1992; Liao, 1993;
Coifman et al., 1998; Chang, 1999; Shu, 1999).

Methods of applying image processing to ve-
hicular detection, in general, include blob detection,
pattern recognition and background differencing (Li
et al., 2002; Alejandro et al., 2002).  Blob detection
does not perform well under poor weather conditions
because not all vehicles are brighter or darker than
the background road surface (Blosseville et al., 1989).
Neither does pattern recognition work properly when
vehicles in the detection zone do not fit well into the
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defined templates (Dickson and Wan, 1989).  Both
blob detection and pattern recognition methods need
more computation time than the most common and
simple approach used in traffic image detection -- the
background differencing technique (Fathy and Siyal,
1995).  Background differencing technique is based
on a pixel-by-pixel comparison between background
frames and instantaneous frames of traffic scenes
(Dickinson and Waterfall, 1984a, 1984b).  This tech-
nique tends to generate successful detection in the
daytime with fair weather or lighting conditions.
However, it can also lose detection accuracy near dusk
or dawn or in bad weather because of its sensitivity
to ambient lighting.

With learning ability and capabilities of deal-
ing with uncertainties (for instance, Bullock et
al., 1993; Buckley and Hayashi, 1994; Dougherty,
1995;  Mantr i  and Bullock,  1995;  Chiou and
Lan, 1997; Jouseau and Dorizzi, 1999), a fuzzy neu-
ral network (FNN) may cope with the variations of
ambient lighting.  A color-level image is composed
of red (R), green (G) and blue (B) pixels; thus it pro-
vides more information than a gray-level one
(Buluswar and Draper, 1998; Kumar et al., 2002).
Consequently, it is presumed that a color-based im-
age processing system incorporating FNN can accom-
modate more environmental changes than the same
system without FNN. The presumption motivates our
study.

In this study, a color image vehicular detection
(CIVD) system, which simply utilizes a pseudo line
detector and background differencing technique, is
designed.  After that, an FNN structure is further con-
structed and incorporated into this CIVD system.
Traffic scenes on a freeway mainline and an urban
street under different lighting conditions are collected
and tested by these two systems.  Detection “success”
rates of these two systems are compared and possible
reasons for “missing” and “false” detections are
addressed. This paper is organized as follows.  Sec-
tion II elaborates a CIVD system without FNN.  Sec-
tion III further discusses the incorporation of an FNN
into this CIVD system.  Section IV conducts and com-
pares field experiments on these two systems. Sec-
tion V summarizes the findings.

II. DESIGN OF THE CIVD SYSTEM

In this paper, the CIVD system mainly contains
three modules -- image digitalization, pseudo line de-
tectors allocation, and vehicle detection as depicted
in Fig. 1 (Lan and Kuo, 1999).  Analog traffic scenes
are taken by the video camera and digitized by the
image grabber.  A pseudo line detector composed of
several detection points is then placed across an ar-
bitrary traffic lane on the monitor.  The difference of
pixel values (R, G, B) at each detection point between
instantaneous traffic scenes and background images
is calculated in the vehicle detection module.  If the
differencing value is greater than a designated crisp
threshold value, it is identified as a vehicle passing
through the line detector.  The three modules of this
CIVD system are explained in-depth as follows:

1. Image Digitalization Module

This module is to convert analog images into
digital ones with an image grabber.  After digitaliza-
tion, video images can then be shown on the monitor
and processed by the computer.

2. Pseudo Line Detector Module

This module is to define two-end coordinates of
a pseudo line detector on the monitor.  When creat-
ing a pseudo line detector, the right- and left-end co-
ordinates are directly input on the screen in an inter-
active way.  A pseudo line is in effect composed of
several detection points, which actually act as the in-
strument for vehicular detection.  Each detection point
automatically reads R, G, B pixel values of the back-
ground image and then reads R, G, B pixel values of
the instantaneous traffic images at a fixed time
interval.  The difference of pixel values between back-
ground and traffic images is the input to the vehicle
detection module.

3. Vehicle Detection Module

This module is to determine whether there is a
vehicle passing through the pseudo line detector.  The

Fig. 1  Detection logic for a CIVD system
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difference of pixel values is calculated every one-
tenth second.  In this paper, different optimal crisp
threshold values corresponding to various lighting
conditions are determined either by an interval search
method or by a regression method, which are depicted
in Figs. 2(a) and 2(b).  Fig. 2(a) demonstrates the re-
lationship between differencing of pixel values and
vehicle passing status, in which X-axis represents
pixel values differencing and Y-axis is the status of
vehicle passing (“0” represents a status of no vehicle
passing; “1” indicates a status of vehicle passing).
In Fig. 2(a), those differences of pixel values greater
than the upper threshold (x1) are found to be vehicles
passing and those less than the lower threshold (x2)
are no vehicles passing.  In between these two
thresholds, there could be either a vehicle passing or
no vehicle passing.

The interval search method can be explained as
the following steps:
Step 1. Identify from the videotape the upper (x1)

and lower (x2) thresholds as indicated in Fig.
2(a).  If the difference between these two
thresholds is lower than 5 pixels, go to step
4.  Otherwise go to step 2.

Step 2. Find the middle value of these two thresholds,
x3=(x1+x2)/2.

Step 3. Apply x1, x2, x3 as the crisp thresholds to the
detection logic in Fig. 1 and compare their
detection results.  Choose any two thresholds
with higher detection success rates as the new
upper and lower thresholds.  Go to step 1.

Step 4. Out of the upper and lower thresholds, select
the one with higher success rate as the opti-
mal crisp threshold value (θ).  Stop.

The regression method can be formulated as follows:

yi=β0+β1xi+µi

where

  

yi =

1 if a vehicle is passing through
the detection point

0 if no vehicle is passing through
the detection point

xi= difference of pixel values (∆R or ∆G or ∆B)

µi= independently distributed random variable
with 0 mean

Since yi can take on only binary values, 1 and 0,
we can describe the probability distribution of yi by
letting Pi=Prob(yi=1) and 1−Pi=Prob(yi=0).  Then a
linear probability model can be expressed in the fol-
lowing form, which allows the dependent variable to
be interpreted as a probability.  The optimal crisp
threshold value (θ*) is determined by letting Pi=0.5
as shown in Fig. 2(b).

   
Pi =

1 when β 0 + β 1xi ≥ 1
β 0 + β 1xi when 0 < β 0 + β 1xi < 1
0 when β 0 + β 1xi ≤ 0

III. DESIGN OF THE FNNCIVD SYSTEM

In this paper, the FNNCIVD system is composed
of four modules -- image digitalization, pseudo line
detectors allocation, fuzzy neural network and vehicle
detection as depicted in Fig. 3.  The detection logic
of this FNNCIVD system is very similar to that of
the CIVD system except that the background
differencing technique is further incorporated with a
fuzzy neural network module in which the most ap-
propriate threshold values corresponding to various
lighting conditions are determined.  The difference
of pixel values at each detection point between in-
stantaneous traffic and background images is calcu-
lated in the vehicle detection module.  If the differ-
ence value is greater than a trained threshold value,
it will be identified as a vehicle passing.  Because
image digitalization and pseudo line detector mod-
ules for both CIVD and FNNCIVD systems are ex-
actly the same, only FNN module and vehicle detec-
tion module are narrated in detail as follows.

1. FNN Module

This module is to construct and train a fuzzy
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Fig. 2 Determination of optimal crisp threshold values for a CIVD
system
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neural network.  Appropriate network parameters can
be obtained with back propagation algorithm. Since
background pixel values may change over time un-
der different lighting conditions, each lighting con-
dition requires a specific training set.  Therefore, dif-
ferent fuzzy neural networks must be trained under
different lighting conditions (daytime, nighttime, etc).

In this paper, the training set, collected by the
pseudo line detector module, is composed of 1,000
to 1,800 training examples.  Each training example
contains an input vector (differences of pixel values)
and an output vector (binary values representing ve-
hicles passing or not).  Fig. 4 demonstrates the de-
signed training interface where one can input desired
network parameters.  To generate training examples,
we simply play the video and press the button “ve-
hicle passing?” at the moment when we see a vehicle-
front hitting the pseudo line detector, and press the
same button again as we see that vehicle-rear leaving
the detector.  Repeat such examination until a satis-
factory number of training examples are obtained.

A three-layer fuzzy neural network with q de-
tecting points is depicted in Fig. 5.  To explain the
layers’ operation, let the superscript of a notation rep-
resent the layer and the subscript indicate the node.
The first layer, membership layer, is expressed as:

   o j
1 = fj(u j

1) = µ j(x j
1)

   

=

0 for x j
1 ≤ a j

1

x j
1 – a j

1

b j
1 – a j

1
for a j

1 < x j
1 ≤ b j

1

1 for x j
1 > b j

1

  for j=1~J

where

 o j
1= the output value of jth node at layer one

 x j
1= the input value of jth node at layer one

 a j
1= parameter of trapezoidal membership func-

tion

 b j
1= parameter of trapezoidal membership func-

tion

The main function for this layer is to fuzzify the
input values by utilizing membership function and
then determine membership degrees of  input
variables.  Since each detection point is composed of

Fig. 3  Detection logic for a FNNCIVD system

Fig. 4  Interface for network training
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R, G, B nodes, the number of nodes at this layer is 3q
(q is the number of detection points).  Trapezoidal
membership function as shown in Fig. 6 is utilized
because its shape can correspond to the situations of
whether or not one vehicle is passing.  A difference
of pixel value (  x j

1) less than or equal to the left thresh-
old value (  a j

1 ) implies that no vehicle is passing
through the detector.  If  x j

1 is greater than the right
threshold value (  b j

1 ), it is judged as one vehicle
passing.  If  a j

1<  x j
1<  b j

1 , the corresponding membership
degree must be first calculated and the training algo-
rithm is then employed to identify whether there ex-
ists a vehicle.

Rule layer, the second layer, is to establish vari-
ous rules of fuzzy inference to obtain a reasonable
output.  The fuzzy rules can be stated as “IF the dif-
ference of  R or  G or  B pixel  values  var ies
substantially, THEN a signal of vehicle passing is
identified at the detection points.”  The nodes at this
layer will perform a summation operation as follows.

   ok
2 = f (uk

2) = wjk
2 ⋅ x jk

2*Σ
j = 1

J
  for  j=1~J, k=1~K

where

  x jk
2* = x jk

2 z j

  wjk
2 = 1 , ∀ j and k

Since each detection point is composed of R, G,
B nodes, a pseudo line detector with q detection points
will have 3q nodes.  In this paper, q=3, 5, 7 points
are experimented and equally spaced out on an arbi-
trary traffic lane.  To avoid counting any lane-chang-
ing vehicle occupying very small portion of the lane,
the values for the middle detection nodes are set larger
than those for the two-end nodes.  Table 1 presents
an example of the fixed values distribution over the
detection nodes.

For instance, the case of seven detection points
is explained as follows. Since nodes 1, 4, 7, 10, 13,
16, 19 at layer one will be aggregated into node 1 (R)
at layer two, node R can then be expressed as:

   ok
2 = wjk

2 ⋅ x jk
2*Σ

j
  for k=1, j=1, 4, 7, 10, 13, 16, 19

Similarly, node G and node B can be expressed
as:

   ok
2 = wjk

2 ⋅ x jk
2*Σ

j
  for k=2, j=2, 5, 8, 11, 14, 17, 20

   ok
2 = wjk

2 ⋅ x jk
2*Σ

j
  for k=3, j=3, 6, 9, 12, 15, 18, 21

The third layer, output layer, performs the
defuzzification to obtain numerical outputs by utiliz-
ing the center average defuzzifier.  The connection
weight   wkm

3  between kth rule and mth output node rep-
resents the consequence fuzzy singleton.  Output layer
will produce binary output values -- “0” representing
no vehicle passing and “1” indicating one vehicle
passing. At this layer, the node operation is expressed
as follows:

   om
3 = f (um

3 ) = wkm
3 ⋅ xkm

3Σ
k = 1

v
  for  m=1~M

Since the number of nodes in the third layer is

R G B R G B R G B

R G

Σ

B

R G B

1st Detection
Point

2nd Detection
Point

3rd Detection
Point

qth Detection
Point

Layer 3
(Output Layer)

Layer 2
(Rule Layer)

Layer 1
(Membership Layer)

Table 1 An illustration of fixed values distribu-
tion

Number of Number
Fixed value Nodes

detection of nodes
(zj) (j)

points layer two

3   9 0.25 1,2,3,7,8,9
0.5 4,5,6

5 15 0.1 1,2,3,13,14,15
0.2 4,5,6,10,11,12
0.5 7,8,9

7 21 0.05 1,2,3,19,20,21
0.1 4,5,6,16,17,18
0.2 7,8,9,13,14,15
0.3 10.11.12

Fig. 5  A fuzzy neural network with q detection points

Fig. 6  Trapezoidal membership function
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only one, M is equal to one in this node operation.
The connection weights   wkm

3  are further adjusted by
the supervised training algorithm, which is explained
in the appendix.

2. Vehicle Detection Module

This module is to determine whether there are
vehicles passing through the pseudo line detector.
Fig. 7 shows the designed vehicular detection inter-
face where the users can select appropriate environ-
ments and lighting conditions.  As we move the
cursor to any position within the traffic scene, this
module will automatically read the exact X and Y co-
ordinates as well as the corresponding instantaneous
traffic image pixel (R, G, B) values.

IV. EXPERIMENTS

1. Data Collection and Evaluation Criteria

To take the roadway upstream and downstream
traffic flow scenes, a video camera is placed on a
grade overpass.  The camera’s field of view is set ver-
tical to the road surface in order to reduce the vehicle
occlusion situations in the daytime and to decrease
the error signals (false) caused by headlights or tail-
lights in the nighttime.  In this study, a downstream
view is taken when recording the traffic scenes in the
daytime; while in the nighttime, both upstream and
downstream views are taken so that the effects of
vehicle headlights and taillights on detection accu-
racy can be compared.

A pseudo line detector, with three-, five- and
seven-detection points equally spaced out on a

specific traffic lane, is placed on the monitor.  The
detection performances for both CIVD and FNNCIVD
systems are then compared.  The detection outcomes
are classified into three situations-- “success,”
“missing,” and “false.” “Success” is defined as the
situation that a vehicle is detected when it actually
passes through the pseudo line detector.  “Missing”
is the case when no vehicle is detected but a vehicle
actually passes.  “False” is identified when a vehicle
is detected but actually no vehicle does exist.

The detection performance is evaluated by these
three criteria.  In this paper, traffic on a designated
lane is detected.  Thus, any lane-changing vehicle,
which takes only a small portion of that designated
lane width, will not be counted as a success outcome
on that lane.  Videotapes for both freeway mainline
and urban street traffic scenes are recorded from 3
pm to 4 pm (daytime) and from 6 pm to 7 pm
(nighttime).  Validation experiments are then con-
ducted off-line by sampling from the videotapes.
Details of the experimental results are presented as
follows.

2. Experiment on Freeway Mainline

The study location is at the Hsin Chu mainline
section of Taiwan Freeway No.1 with three lanes
southbound and four lanes northbound.  Training ex-
amples under different lighting conditions associated
with various detection points are collected for net-
work training.  Table 2 presents the number of train-
ing examples and the converged epochs correspond-
ing to the error values (TE).  For instance, the num-
ber of training examples for nighttime downstream
viewing with seven detection points is 1,195.  The

Fig. 7  Interface for vehicular detection module
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energy function is converged at about the 600th ep-
och with an error value of 119.

Table 3 summarizes the detection performance.
Note that with various detection points in both CIVD

and FNNCIVD systems, the “success” rate in the
daytime is slightly higher than that in the nighttime.
Downstream viewing detection performance is
slightly better than upstream viewing.  Also note that

Table 2  Network training on freeway mainline

Detection points Videotape recording time Training examples Training epochs Error value

Daytime 1,837 4,500 84
Three Nighttime(upstream viewing) 1,600 2,307 7

Nighttime(downstream viewing) 1,040 6,000 64

Daytime 1,837 850 105
Five Nighttime(upstream viewing) 1,600 800 25

Nighttime(downstream viewing) 1,040 2,000 47

Daytime 1,837 700 38
Seven Nighttime(upstream viewing) 1,600 400 37

Nighttime(downstream viewing) 1,040 600 119

Table 3  Detection performance on freeway mainline

Lighting
Criteria Systems Three points Five points Seven points

conditions

CIVD (interval search method) 159 (68.2%) 174 (75.9%) 178 (78.1%)
Success CIVD (regression method) 161 (70.0%) 168 (73.0%) 176 (77.5%)

FNNCIVD 198 (86.8%) 210 (92.5%) 212 (92.9%)
CIVD (interval search method) 61 (26.1%) 46 (20.0%) 42 (21.0%)

Daytime
Missing CIVD (regression method) 59 (25.6%) 52 (22.6%) 34 (14.9%)

(n=220)
FNNCIVD 22 (9.6%) 10 (5.2%) 8 (3.5%)

CIVD (interval search method) 13 (5.7%) 9 (4.1%) 8 (2.9%)
False CIVD (regression method) 10 (4.4%) 10 (4.4%) 7 (7.6%)

FNNCIVD 8 (3.6%) 7 (3.8%) 8 (3.5%)

Success CIVD (interval search method) 72 (56.2%) 82 (64.5%) 86 (67.1%)
CIVD (regression method) 70 (53.4%) 83 (64.3%) 84 (63.2%)

FNNCIVD 106 (84.8%) 111 (88.8%) 113 (90.2%)
Nighttime

Missing CIVD (interval search method) 47 (36.7%) 37 (29.1%) 33 (25.7%)
upstream

CIVD (regression method) 49 (37.4%) 36 (27.9%) 35 (26.3%)
viewing

FNNCIVD 13 (10.4%) 8 (4.5%) 6 (4.0%)
(n=119)

False CIVD (interval search method) 9 (7.1%) 8 (6.4%) 9 (7.2%)
CIVD (regression method) 12 (9.1%) 10 (7.8%) 14 (10.5%)

FNNCIVD 6 (4.8%) 5 (2.2%) 4 (1.8%)

Success CIVD (interval search method) 136 (63.5%) 144 (67.9%) 148 (67.8%)
CIVD (regression method) 135 (63.9%) 146 (69.5%) 149 (69.9%)

FNNCIVD 186 (85.3%) 190 (90.0%) 188 (89.9%)
Nighttime

Missing CIVD (interval search method) 63 (29.4%) 52 (24.5%) 48 (22.0%)
downstream

CIVD (regression method) 61 (28.9%) 50 (23.8%) 47 (22.1%)
viewing

FNNCIVD 10 (4.5%) 6 (2.8%) 8 (3.8%)
(n=196)

False CIVD (interval search method) 18 (7.1%) 16 (7.6%) 22 (10.2%)
CIVD (regression method) 15 (7.2%) 14 (6.7%) 17 (8.0%)

FNNCIVD 22 (10.9%) 15 (7.1%) 13 (6.2%)

Note: n represents the actual number of vehicles being observed.
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the performances for seven and five detection points
are much better than that for three points.  Five
detection points perform almost as well as seven de-
tection points. For the CIVD system, both interval
search method and regression method in effect make
little difference in the detection performance.  How-
ever, if we compare the CIVD with FNNCIVD, we
find that the FNNCIVD system obviously outper-
forms. For instance, with seven detection points the
“success” rates of FNNCIVD are improved from
78.1% of the interval-search CIVD (77.5% of the
regression CIVD) to 92.6% in the daytime, from
67.1% (63.2%) to 90.2% in the nighttime upstream
viewing, and from 67.8% (69.9%) to 89.9% in the
nighttime downstream viewing.  Compared with the
interval-search CIVD system, the FNNCIVD system
with various detection points can increase success
rates in a range of 14% to 22% on the freeway
mainline.

We have found that in the two cases of detec-
tion failure, “missing” mostly occurs in upstream
viewing, while “false” often happens in downstream
viewing.  The main reason for detection failure in the
daytime is due to resemblance of color pixels between
the vehicles and the road background.  Most of those
vehicles are gray or gray-like.  The second reason is
the lane-changing vehicles that occupy a small por-
tion of the lane width, and are not counted in the de-
tected lane.

The high missing rate for nighttime upstream
viewing is due to a fairly high threshold value being
trained in the FNN module.  In the nighttime, a ve-
hicle is counted only when two headlights are simul-
taneously detected by the pseudo line detector.  If
merely one headlight is detected (lane-changing ve-
hicles are the most cases), then that vehicle will not
be counted.  In contrast, the high false rate for night-
time downstream viewing can be ascribed to a fairly
low threshold value being trained.  Lane changing
vehicles are mostly seen in this case.

3. Experiment on Urban Street

The study location is at section I of Chung Hwa
Road, Taipei City, with four lanes northbound and
five lanes southbound.  Training examples under vari-
ous lighting conditions with three, five and seven
detection points are collected for network training.
Table 4 illustrates the training conditions in the day-
time and nighttime.  For instance, in the nighttime
downstream viewing with seven detection points, the
number of training examples is 1,040 and the energy
function converges at around 400th epoch with an er-
ror value of 38.

Table 5 summarizes the detection performance.
It is found that the detection performance by the in-
terval search method is about the same as that by the
regression method for the CIVD system.  The detec-
tion “success” rate for the FNNCIVD system is supe-
rior to the CIVD system no matter which method is
used.  With seven detection points, for instance, the
“success” rates of FNNCIVD can be enhanced from
interval-search CIVD of 75.7% (regression CIVD of
75.3%) to 93.1% in the daytime, from 63.8% (63.7%)
to 87.8% in the nighttime upstream viewing, and from
63.5% (64.9%) to 89.4% in the nighttime downstream
viewing.  Compared with the interval-search CIVD
system, the FNNCIVD system with various detection
points can increase the success rates in a range of 18%
to 26% on the urban street.

The trends of “missing” and “false” on the ur-
ban street under various lighting conditions are quite
similar to those on the freeway mainline.  Reasons
for the detection failure on urban street are also the
same as those addressed in the freeway mainline case.

V. CONCLUDING REMARKS

In this study, a color image vehicular detection
(CIVD) system is developed and validated off-line
under different lighting conditions.  A fuzzy neural

Table 4  Network training on urban street

Detection points Videotape recording time Training examples Training epochs Error value

Daytime 860 1,500 54
Three Nighttime(upstream viewing) 1,600 2,307 7

Nighttime(downstream viewing) 1,040 6,000 83

Daytime 860 1,100 53
Nighttime(upstream viewing) 1,600 800 25

Five Nighttime(downstream viewing) 1,040 2,000 47

Daytime 860 900 58
Seven Nighttime(upstream viewing) 1,600 850 17

Nighttime(downstream viewing) 1,040 400 38
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Table 5  Detection performance on urban street

Lighting
Criteria Systems Three points Five points Seven points

conditions

Success CIVD (interval search method) 111 (67.6%) 120 (74.5%) 125 (75.7%)
CIVD (regression method) 115 (69.6%) 119 (73.9%) 122 (75.3%)

FNNCIVD 135 (83.8%) 144 (90.5%) 148 (93.1%)
Missing CIVD (interval search method) 42 (26.0%) 33 (19.1%) 28 (16.9%)

Daytime
CIVD (regression method) 38 (23.0%) 34 (21.1%) 31 (19.1%)

(n=153)
FNNCIVD 18 (11.1%) 9 (5.6%) 5 (3.1%)

False CIVD (interval search method) 8 (6.4%) 8 (6.4%) 12 (7.4%)
CIVD (regression method) 12 (7.4%) 8 (5.0%) 9 (5.6%)

FNNCIVD 8 (5.1%) 6 (3.7%) 6 (3.7%)

Success CIVD (interval search method) 58 (55.2%) 63 (61.1%) 67 (63.8%)
CIVD (regression method) 57 (56.4%) 60 (59.4%) 65 (63.7%)

FNNCIVD 84 (82.3%) 88 (89.7%) 87 (87.8%)
Nighttime

Missing CIVD (interval search method) 38 (36.0%) 33 (32.0%) 29 (27.6%)
upstream

CIVD (regression method) 39 (38.6%) 36 (35.6%) 31 (30.3%)
viewing

FNNCIVD 12 (11.8%) 8 (8.2%) 9 (9.1%)
(n=96)

False CIVD (interval search method) 9 (8.8%) 7 (6.9%) 9 (8.6%)
CIVD (regression method) 5 (5.0%) 5 (5.0%) 6 (6.0%)

FNNCIVD 6 (5.9%) 2 (2.1%) 3 (3.1%)

Success CIVD (interval search method) 90 (57.0%) 103 (65.1%) 101 (63.5%)
CIVD (regression method) 91 (59.0%) 105 (68.6%) 100 (64.9%)

FNNCIVD 130 (83.3%) 137 (90.8%) 135 (89.4%)
Nighttime

Missing CIVD (interval search method) 54 (34.6%) 41 (25.9%) 43 (27.0%)
downstream

CIVD (regression method) 53 (34.4%) 39 (25.4%) 44 (28.5%)
viewing

FNNCIVD 14 (8.9%) 7 (4.6%) 9 (5.9%)
(n=144)

False CIVD (interval search method) 12 (8.4%) 14 (9.0%) 15 (9.4%)
CIVD (regression method) 10 (6.6%) 9 (6.0%) 10 (6.6%)

FNNCIVD 12 (7.8%) 8 (5.1%) 7 (4.6%)

Note: n represents the actual number of vehicles being observed.

network (FNN) is further introduced to this CIVD
system.  Both freeway mainline and urban street are
chosen as the experimental environments in which the
traffic images are photographed by a camera such that
the field of view is set vertical to the road surface in
order to reduce vehicle occlusion situations in the
daytime and to decrease the error signals (false) by
headlights or taillights in the nighttime.  A down-
stream view is taken when recording the traffic scenes
in the daytime; while in the nighttime, both upstream
and downstream views are taken so that the effects
of vehicle headlights and taillights on detection ac-
curacy can be compared.

We conclude that under different environments
(freeway and urban street) and various lighting con-
ditions (daytime and nighttime), the detection suc-
cess rates for interval search and regression methods
of a CIVD system are about the same.  No matter
which method is used, however, the CIVD system has

performed worse than the FNNCIVD system.  Com-
pared with the interval-search CIVD, the FNNCIVD
system can enhance the detection “success” rates at a
range of 14% to 22% on the freeway and 18% to 26%
on the urban street.  Both CIVD and FNNCIVD sys-
tems perform slightly better in the daytime than in
the nighttime.

We find that detection failure in the daytime
mainly results from the resemblance of the color pix-
els between vehicles and road backgrounds.  The other
reason is due to vehicles lane changing, which are
not counted in this single-lane vehicular detection
system.  In the nighttime, “missing” mostly occurs in
the upstream viewing while “false” often happens in
the downstream viewing.  High missing rate in the
nighttime upstream viewing is due to a high thresh-
old value.  High false rate in the nighttime down-
stream viewing, on the contrary, is owing to a low
threshold value.
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This paper deals only with single-lane traffic
detection.  To apply the FNNCIVD system to mul-
tiple-lane traffic detection, one must place a pseudo
line detector on the monitor across the entire road
section.  Besides, one needs to set up rules for as-
signing any lane-changing vehicle to a specific lane
in order to avoid missing or double counting.  Future
studies may measure more traffic parameters such as
vehicle length (classification), headways, and speeds
by allocating tandem pseudo line detectors. Moreover,
different types of FNN structures can also be explored
and tested.

In this paper, the traffic flow images are photo-
graphed near 90 degrees (vertical) from the overpass
crossing the street or the freeway.  It is thought that
different photograph angles may influence the detec-
tion results and this is worthy of further experiments.
In addition, near dawn or dusk or in bad weather, the
FNNCIVD system may need real-time training to
obtain more appropriate threshold values that can
cope with the lighting change.  More experiments on
such real-time training also deserve to be carried out.
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NOMENCLATURE

a parameter of trapezoidal membership func-
tion

 a j
1 parameter of trapezoidal membership func-

tion at layer one
b parameter of trapezoidal membership func-

tion
 b j

1 parameter of trapezoidal membership func-
tion at layer one

d desired output
  dm

3 (t) desired output of the tth training example at
layer three

j  jth node at layer one
J number of nodes in the first layer
k kth node at layer two
K number of nodes in the second layer
m mth node at layer three
M number of nodes in the third layer
n number of current training epochs
N number of total training epochs
o output value at each layer

 o j
1 output value of jth node at layer one

 ok
2 output value of kth node at layer two

  om
3 output value of mth node at layer three

  om
3 (t) network output of the tth training example

at layer three
q number of detection points
t tth training example in FNN
TE energy function
w connection weight

  wjk
2 connection weight between jth node and kth

node
  wkm

3 connection weight between kth node and mth

node
x input value at each layer

 x j
1 input value of jth node at layer one

  x jk
2 input value from jth node to kth node at layer

two
  xkm

3 input value from kth node to mth node at layer
three

zj fixed values
α momentum parameter
δ error signal

 δ j
1 jth error signal at layer one

 δk
2 kth error signal at layer two

  δm
3 mth error signal at layer three

∆ differencing value of a specific parameter
between t+1th and tth training example

   ∆a j
1(t)   = a j

1(t + 1) – a j
1(t)

   ∆b j
1(t)   = b j

1(t + 1) – b j
1(t)

∆Bi differencing of blue pixel values of i th

pseudo point detector
∆Gi differencing of green pixel values of i th

pseudo point detector
∆Ri differencing of red pixel values of ith pseudo

point detector
   ∆wkm

3 (t)   = wkm
3 (t + 1) – wkm

3 (t)
ε arbitrary small number
η learning rate
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APPENDIX

In this paper, the training algorithm can be de-
composed by the following nine steps.
Step 1. Set network parameters(α ,  a j

1 ,  b j
1)

   η = 1 – n
N

The term η  represents the learning rate which
decreases as the number of training cycles n increases.
N represents the number of the total training epochs.
Initially, the network parameters including momen-
tum parameter α ,  a j

1 ,  b j
1  are set equal to 0.8, 20, 35,

respectively.
Step 2. Input a training example and compute the net-

work output
A training example is composed of an input

vector (differences of pixel values) and an output
vector (binary values indicating vehicles passing
information).  The output values at each layer are
calculated by the equations shown in the section of
layers operation.
Step 3. Employ a network output and desired output

to get   δm
3  for the output layer

   δm
3 (t) = dm

3 (t) – om
3 (t)

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

9:
30

 2
7 

A
pr

il 
20

14
 



670 Journal of the Chinese Institute of Engineers, Vol. 26, No. 5 (2003)

Step 4. Renew the connection weight   wkm
3  between

rule layer and output layer

   wkm
3 (t + 1) = wkm

3 (t) + η ⋅ δm
3 (t) ⋅ xkm

3 (t) + α∆wkm
3 (t)

where    ∆wkm
3 (t) = wkm

3 (t + 1) – wkm
3 (t)

Step 5. Compute the propagated error signal  δk
2  for

the rule layer

   δk
2 = δm

3 ⋅ wkm
3

Step 6. Compute the propagated error signal  δ j
1  for

the membership layer

   δ j
1 = δk

2 ⋅ z j

Step 7. Renew the adjusted parameters for the mem-
bership layer

  a j
1(t + 1)

   
= a j

1(t) + η ⋅ δ j
1 ⋅

x j
1 – b j

1

(b j
1 – a j

1)(b j
1 – a j

1)
+ α∆a j

1(t)

where    ∆a j
1(t) = a j

1(t + 1) – a j
1(t)

  b j
1(t + 1)

   
= b j

1(t) + η ⋅ δ j
1 ⋅

a j
1 – x j

1

(b j
1 – a j

1)(b j
1 – a j

1)
+ α∆b j

1(t)

where    ∆b j
1(t) = b j

1(t + 1) – b j
1(t)

Step 8. Repeat step 2 to step 7
In this step, the sum of error squares is
calculated.  Repeat step 2 to step 7 until all
training examples are finished (called an
epoch).  The energy function for the nth ep-
och (TEn) is calculated by

   TEn = 1
2

[dm
3 (t) – om

3 (t)]2Σ
t = 1

T

where   dm
3 (t) is the desired output for the tth

training example and   om
3 (t) is the output of tth

training example in FNN.
Step 9. Test if the stop condition satisfies

Training is terminated when a predetermined
number of training cycles is reached or the
energy function converges; namely, |TEn−
TEn−1|≤ε ,  where ε is an arbitrary small
number.  If the TE value decreases smoothly,
a stop condition is reached.  Otherwise, go to
step 2.  In this paper, the former condition is
used.
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