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Abstract

This article presents numerical methods for computing bound state energies and associated wave functions of three-

dimensional semiconductor heterostructures with special interest in the numerical treatment of the effect of band

nonparabolicity. A nonuniform finite difference method is presented to approximate a model of a cylindrical-shaped

semiconductor quantum dot embedded in another semiconductor matrix. A matrix reduction method is then proposed

to dramatically reduce huge eigenvalue systems to relatively very small subsystems. Moreover, the nonparabolic band

structure results in a cubic type of nonlinear eigenvalue problems for which a cubic Jacobi–Davidson method with an

explicit nonequivalence deflation method are proposed to compute all the desired eigenpairs. Numerical results are

given to illustrate the spectrum of energy levels and the corresponding wave functions in rather detail.
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1. Introduction

Nanoscale semiconductor quantum dots (QDs) have been intensively studied in their physics [1–3] and

applications [4–8]. In addition to theoretical and experimental methods, numerical simulations can also

provide useful insights into a QDs electronic and optical properties [9–11]. However, effective and feasible

numerical methods for three-dimensional (3D) quantum structures are rarely available [12, Section 11.6].

This article presents some novelmethods for calculating bound state energies and their correspondingwave

functions of a 3DQDmodel for which the numerical treatment of band nonparabolicity is of special interest.
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The model assumes a single cylindrical low-bandgap semiconductor island embedded in a wide-bandgap

semiconductor matrix, one-band envelope-function approximation, BenDaniel–Duke boundary conditions,

and nonparabolic band structure. This model is proposed in [13] and later used and extended in various works

[14–16] and in references therein. This is a model that accounts for the effect of spin–orbit splitting in semi-

conductor heterostructures. One of the major applications of the spin–orbit splitting effect in quantum

electronic devices is to develop a new branch of semiconductor electronics, so-called spintronics [17–20].

The Schr€oodinger equation of the model is discretized by finite difference approximation in cylindrical

coordinates with nonuniform mesh by which more grid points are placed around the heterojunction. In
order to retain comparable accuracy of numerical energies with that of experimental values of momentum,

energy gap, and spin–orbit splitting etc., the matrix size of the resulting eigenvalue problems can be up to as

much as 98 millions for some typical size of QD. Our first method is a matrix reduction scheme which

consists of three steps: block diagonalizing the coefficient matrix, reordering the unknown eigenvector, and

transforming into a block diagonal system. As a result, the original system is then transformed to a set of,

for instance, seven subsystems with the matrix size of 274 thousands. The reduction dramatically reduce the

computational time and storage.

The second difficulty for the numerical treatment of the model is caused by band nonparabolicity which
results in a cubic type of eigenvalue systems. To our knowledge, effective methods for solving cubic ei-

genvalue problems such as that presented here are not available in the literature. A cubic version of the

Jacobi–Davidson method is proposed to tackle this difficulty. Moreover, since we are interested in ob-

taining all possible bound states of the model, a new deflation scheme is also presented to successively

compute energies from the ground state up to all excited states. Numerical results are given to demonstrate

the efficiency and accuracy of the proposed methods.

This article is organized as follows. The model is stated in Section 2. The finite difference approximation

of the model and the matrix reduction method are given in Section 3. Section 4 presents the cubic Jacobi–
Davidson method and the explicit nonequivalence low-rank deflation method written in algorithmic format

for a better illustration of the numerical procedures in implementation. Numerical results with 3D graphics

of wave functions are given in Section 5. Some concluding remarks are made in Section 6.
2. The model problem

We consider a model of a cylindrical CdTe QD embedded in the center of a cylindrical InSb matrix
as shown in Fig. 1 [16]. It is natural to use cylindrical coordinates, namely, the radial coordinate r, the
Fig. 1. Structure schema of a cylindrical quantum dot and the heterostructure matrix. Rdot and Rmtx denote the radii of the dot and the

matrix, respectively. Zbtm and Ztop (0 and Zmtx) denote the bottom and top of the dot (matrix).
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azimuthal angle h, and the natural axial coordinate z, to specify an arbitrary position within the target

domain. More specifically, the z coordinates of the bottom and top of the matrix (the dot) are 0 and Zmtx

(Zbtm and Ztop), respectively, and the radii of the dot and the matrix are denoted by Rdot and Rmtx,

respectively.

The Schr€oodinger equation approximating the model is

��h2

2m‘ðkÞ
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where �h is the reduced Planck constant, k is the total electron energy, F ¼ F ðr; h; zÞ is the wave function,

m‘ðkÞ and c‘ are the electron effective mass and confinement potential in the ‘th region. The index ‘ is used
to distinguish the region of the QD (for ‘ ¼ 1) from that of the matrix (for ‘ ¼ 2). Since we expect sig-

nificant effect of spin–orbit splitting in narrow gap semiconductors, it is important to take into account the

nonparabolicity for the electron�s dispersion relation for which the effective mass is given as [13]
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where P‘, g‘, and d‘ are the momentum, main energy gap, and spin–orbit splitting in the ‘th region,

respectively. In our numerical experiments, the values of these parameters are c1 ¼ 0:000, g1 ¼ 0:235,
d1 ¼ 0:81, P1 ¼ 0:2875, c2 ¼ 0:350, g2 ¼ 1:590, d2 ¼ 0:80, and P2 ¼ 0:1993.

For Eq. (1), Dirichlet boundary conditions are prescribed on the top, bottom, and wall of the matrix,

i.e.,

F ðr; h; ZmtxÞ ¼ F ðr; h; 0Þ ¼ F ðRmtx; h; zÞ ¼ 0: ð3Þ

Moreover, the following BenDaniel–Duke boundary conditions are imposed on the interface of the two
different materials:
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where the + and ) signs denote that the corresponding outward normal derivatives on the interface are

defined for the matrix and the dot regions, respectively.
3. Discretization and matrix reduction methods

To discretize the model (1), we modify the disk discretization scheme described in [21] for which the grid

points are shifted with a half mesh width in the radial direction. This setting avoids placing grid points on

the natural axis and hence that the coefficients of the unknown scalars along the axial axis are cancelled out.

Therefore, no pole conditions need to be imposed. Moreover, by using this discretization scheme, we can

mathematically transform the resulting 3D eigenproblem into a set of independent 2D eigenproblems. Only

several 2D eigenproblems are required to be solved for all possible bound states. This reduction dramat-

ically reduce the computational cost without losing the accuracy. Nevertheless, the order of the energy
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levels depends critically on the number of subsystems, i.e., on the partition number in the azimuthal di-

rection.

To generate mesh points, the discretization scheme partitions the domain in the azimuthal direction

uniformly. Since the wave functions change rapidly around the heterojunction, the scheme partitions

the domain in the radial and axial directions in a nonuniform manner by adding more points around

the heterojunction. More specifically, fine meshes with mesh length Drf and Dzf are constructed around the

heterojunction whereas larger mesh lengths Drc (Drf < Drc) and Dzc (Dzf < Dzc) in other regions. Fig. 2

illustrates the discretization for a typical cross-section of the domain in the azimuth direction.
We then use the seven-point central finite difference method to discretize Eq. (1) at these grid points, i.e.,

��h2

2m‘ðkÞ
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þ c‘Fi;j;k ¼ kFi;j;k;

ð5Þ

where Fi;j;k is an approximated value of function F at the grid point ðri; hj; zkÞ for ‘ ¼ 1; 2, i ¼ 1; . . . ; q,
j ¼ 1; . . . ; l, and k ¼ 1; . . . ; f. The indices q, l, and f are grid point numbers in r, h, and z directions, re-
spectively. Here, Dr1 and Dr2 are left and right mesh lengths at the point along the radial direction rep-

resenting either Drc or Drf according to the location of the point in the domain. Similarly, the mesh lengths

along the axial direction Dz1 and Dz2 represent either Dzc or Dzf . By letting r0 ¼ 0 and using the grid points,

it can be seen that the coefficients of F0;j;k are zero. At the heterojunction, the interface conditions are

approximated by regular two-point finite difference with the fine mesh size Drf and Dzf . Finally, the nodal
values on the boundary of the domain are set to zero according to the Dirichlet conditions (3).
Fig. 2. Schema of the nonuniform discretization scheme of a 2D half plane. Rdot and Rmtx denote the radii of the dot and the matrix,

respectively. Zbtm and Ztop denote the bottom and top of the dot. Zmtx denotes the top of the matrix. Grid points are indexed from 1 to q
(1 to f) in the radial (axial) coordinate. Note that fine meshes are used around the heterojunction.
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These discrete equations can easily grow to an unduly large qlf-by-qlf eigenvalue system as the suffi-

ciently large number of grid points are required for numerical simulation of the model. Instead of solving

the huge system in a straightforward manner (which is obviously infeasible in practical simulation), we

devise a divide-and-conquer approach which is briefly described as follows. First of all, we observe that, for

each k ¼ 1; . . . ; f, Eq. (5) and the grid points represent a subsystem corresponding to a slice of horizontal

disk (in polar coordinates) and can be assembled as follows:

T1ðkÞ E1ðkÞ
B2ðkÞ T2ðkÞ E2ðkÞ

. .
. . .

. . .
.

Bf�1ðkÞ Tf�1ðkÞ Ef�1ðkÞ
BfðkÞ TfðkÞ
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3777775
F:;:;1
F:;:;2
..
.

F:;:;f�1

F:;:;f

2666664

3777775 ¼ DðkÞ

F:;:;1
F:;:;2
..
.

F:;:;f�1

F:;:;f

2666664

3777775; ð6Þ

where F:;:;k is an unknown vector corresponding to some disk and the matrices Bk, Ek, and Tk are defined by

Bk ¼ diag B1;k; . . . ;Bq;k

� �
2 Rql�ql;
Ek ¼ diag E1;k; . . . ;Eq;k

� �
2 Rql�ql;
Tk ¼

S1;k H1;k 0

G2;k S2;k H2;k

. .
. . .

. . .
.

Gq�1;k Sq�1;k Hq�1;k

0 Gq;k Sq;k

2666664

3777775 2 Rql�ql: ð7Þ

Here, the matrices Si;k, Gi;k, Hi;k, Bi;k, and Ei;k are defined by either one of the following two cases.

Case (i). If the matrices do not involve the interface,

Si;k ¼ � �h2

2m‘ðkÞ

gi;k � 2bi bi bi

bi gi;k � 2bi bi

. .
. . .

. . .
.

bi gi;k � 2bi bi

bi bi gi;k � 2bi

2666664

3777775; ð8Þ
Gi;k ¼ � �h2

2m‘ðkÞ
uiIl; Hi;k ¼ � �h2

2m‘ðkÞ
aiIl;
Bi;k ¼ � �h2

2m‘ðkÞ
.kIl; Ei;k ¼ � �h2

2m‘ðkÞ
skIl;

where Si;k, Gi;k, Hi;k, Bi;k, and Ei;k belong to Rl�l, bi ¼ l2=ðr2i p2Þ with

ri ¼
ði� 1=2ÞDrc if 16 i6q1;
rq1 þ ði� q1ÞDrf if q1 þ 16 i6q3;
rq3 þ ði� q3ÞDrc if q3 þ 16 i6q;

8<:
where gi;k, ui, ai, .k, and sk are constants defined in Tables 1 and 2.



Table 1

Definition of the coefficients .k and sk

k 1; . . . ; f1 � 1 f1 f1 þ 1; . . . ; f3 � 1

.k 1=ðDzcÞ2 2=½ðDzc þ Dzf ÞDzc	 1=ðDzf Þ2
sk 1=ðDzcÞ2 2=½ðDzc þ Dzf ÞDzf 	 1=ðDzf Þ2
jk 2=ðDzcÞ2 2=ðDzcDzf Þ 2=ðDzf Þ2

k f3 f3 þ 1; . . . ; f4 � 1 f4

.k 2=½ðDzc þ Dzf ÞDzf 	 1=ðDzcÞ2 2=½ðDzc þ Dzf ÞDzc	
sk 2=½ðDzc þ Dzf ÞDzc	 1=ðDzcÞ2 2=½ðDzc þ Dzf ÞDzf 	
jk 2=ðDzcDzf Þ 2=ðDzcÞ2 2=ðDzcDzf Þ

k f4 þ 1; . . . ; f6 � 1 f6 f6 þ 1; . . . ; f

.k 1=ðDzf Þ2 2=½ðDzc þ Dzf ÞDzf 	 1=ðDzcÞ2
sk 1=ðDzf Þ2 2=½ðDzc þ Dzf ÞDzc	 1=ðDzcÞ2
jk 2=ðDzf Þ2 2=ðDzcDzf Þ 2=ðDzcÞ2

The constants jk are used to define gi;k in Table 2. See Fig. 2 for the definition of mesh point indices f1–f6 and f.

Table 2

Definition of the coefficients ui; ai and gi;k

i 1; . . . ;q1 � 1 q1

ui 1=ðDrcÞ2 � 1=ð2riDrcÞ 2=½ðDrc þ Drf ÞDrc	 � 1=½rq1 ðDrc þ Drf Þ	
ai 1=ðDrcÞ2 þ 1=ð2riDrcÞ 2=½ðDrc þ Drf ÞDrf 	 þ 1=½rq1 ðDrc þ Drf Þ	
gi;k �2=ðDrcÞ2 � jk �2=ðDrcDrf Þ � jk

i q1 þ 1; . . . ; q3 � 1 q3

ui 1=ðDrf Þ2 � 1=ð2riDrf Þ 2=½ðDrc þ Drf ÞDrf 	 � 1=½rq3 ðDrc þ Drf Þ	
ai 1=ðDrf Þ2 þ 1=ð2riDrf Þ 2=½ðDrc þ Drf ÞDrc	 þ 1=½rq3 ðDrc þ Drf Þ	
gi;k �2=ðDrf Þ2 � jk �2=ðDrcDrf Þ � jk

i q3 þ 1; ; . . . ;q � 1 q

ui 1=ðDrcÞ2 � 1=ð2riDrcÞ 1=ðDrcÞ2 � 1=ð2riDrcÞ
ai 1=ðDrcÞ2 þ 1=ð2riDrcÞ 0

gi;k �2=ðDrcÞ2 � jk �2=ðDrcÞ2 � jk

Note that the constants jk are defined in Table 1. See Fig. 2 for the definition of mesh point indices q1, q2, q3, and q.
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Case (ii). Otherwise, we have

Si;k ¼
�h2

2m1ðkÞ

�
þ �h2

2m2ðkÞ

�
Il ð9Þ

and the matrices Bi;k, Ei;k, Gi;k, Hi;k are defined by either one of the three cases shown in Table 3.

Finally, the block diagonal matrix D is defined as

D ¼ diag ðk
h

� c2ÞIql; . . . ; ðk � c2ÞIql; ~II ; ÎI ; . . . ; ÎI ; ~II ; ðk � c2ÞIql; . . . ; ðk � c2ÞIql

i
;

Table 3

Possible choices of matrices Bi;k , Ei;k , Gi;k , Hi;k while the mesh points involve interface

Interface type Bi;k Ei;k Gi;k Hi;k

Sidewall 0l 0l ð��h2=2m1ðkÞÞIl ð��h2=2m2ðkÞÞIl

Top ð��h2=2m1ðkÞÞIl ð��h2=2m2ðkÞÞIl 0l 0l

Bottom ð��h2=2m2ðkÞÞIl ð��h2=2m1ðkÞÞIl 0l 0l
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where

~II ¼ diag 0q2l; ðk
�

� c2ÞIðq�q2Þl
�
2 Rql�ql;

and

ÎI ¼ diag ðk
�

� c1ÞIðq2�1Þl; 0l; ðk � c2ÞIðq�q2Þl
�
2 Rql�ql:

The coefficient matrix in (6) is then transformed to a block diagonal matrix by the following steps.

(i) Block diagonalizing the coefficient matrix in (6).

The matrices Si;k defined in (8) can be written in the form of

Si;k ¼ gi;kI � 2biC;

where the matrix C is symmetric and circulant. As shown in [22], a symmetric and circulant matrix can be

diagonalized by using the Fourier matrix transformation which is also a similarity transformation. That is,

there exists an orthonormal matrix bWW 2 Rl�l such that bWW TC bWW is diagonal. Moreover, since the matrices
Gi;k, Hi;k, Bi;k, and Ei;k are multipliers of identity matrix, they remain unchanged through multiplications of

the orthonormal matrix bWW T from left and bWW from right. Therefore, by letting

W ¼ diag½ bWW ; . . . ; bWW 	; ð10Þ

we see that W TTkW contains nonzeros in the main diagonal, the lth superdiagonal, and the lth subdiag-

onal. The matrix W TTkW can be further transformed to a block diagonal matrix by suitable permutations.

That is, there exists a permutation matrix P1 2 Rql�ql such that

PT
1W

TTkW P1 ¼ diag T1;k; . . . ; Tl;k

� �
; ð11Þ

where Tj;k are q-by-q tridiagonal matrices for j ¼ 1; . . . ;l.
Applying

WPD ¼ diag½W P1; . . . ;W P1	;

Eq. (11), and a suitable permutation P2 2 Rqlf�qlf to the coefficient matrix in (6), we obtain

PT
2W

T
PD

T1 E1

B2 T2 . .
.

. .
. . .

.
Ef�1

Bf Tf

2666664

3777775WPDP2 ¼ PT
2

diag½T1;1; . . . ;Tl;1	 E1

B2
. .
. . .

.

. .
. . .

.
Ef�1

Bf diag½T1;f; . . . ;Tl;f	

2666664

3777775P2

¼

eTT1

. .
.

eTTl

2664
3775; ð12Þ

where

eTTj ¼

Tj;1 eEE1eBB2 Tj;2 eEE2

. .
. . .

. . .
.eBBf�1 Tj;f�1

eEEf�1eBBf Tj;f

26666664

37777775 2 Rqf�qf for j ¼ 1; . . . ; l;
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and eBBi, eEEi are q-by-q diagonal matrices. In other words, the coefficient matrix is now transformed to a

block diagonal matrix.

(ii) Reordering the unknown eigenvector.

We shall now transform the eigenvector in (6)accordingly. To do so, we simply define

½eFF1; . . . ; eFFl	T ¼ PT
2W

T
PD½F:;:;1; . . . ; F :; :;f 	T; ð13Þ

where eFFj 2 Rqf�1 for j ¼ 1 to l and F:;:;k 2 Rql�1 for k ¼ 1 to f. In other words, the unknowns in the same

vertical slice of the domain are grouped together in Eq. (13). For clarity, the effect of the permutations

P1 2 Rql�ql and P2 2 Rqlf�qlf are shown as follows:

F1;1;k; . . . ; F1;l;k; F2;1;k; . . . ; F2;l;k; . . . ; Fq;1;k; . . . ; Fq;l;k

� �
P1

¼ F1;1;k; . . . ; Fq;1;k; F1;2;k; . . . ; Fq;2;k; . . . ; F1;l;k; . . . ; Fq;l;k

� �
;

and

F T
:;:;1; . . . ; F

T
:;:;f

h i
diag P1; . . . ;P1½ 	P2 ¼ F T

:;1;:; . . . ; F
T
:;l;:

h i
where

F:;j;: ¼ ½F1;j;1; . . . ; Fq;j;1; F1;j;2; . . . ; Fq;j;2; . . . ; F1;j;f; . . . ; Fq;j;f	T:

Finally, the diagonal matrix D in Eq. (6) is reordered as

ðPT
2W

T
PDÞDðWPDP2Þ ¼ PT

2DP2 ¼ diag½eDD1; . . . ; eDDl	; ð14Þ

where eDDj is a qf-by-qf diagonal matrix for j ¼ 1; . . . ; l.
(iii) Transforming Eq. (6) into a block diagonal system.

Using Eqs. (12)–(14), the qlf-by-qlf eigenvalue system (6) can be transformed to the following form:eTT1

. .
. eTTl

264
375 eFF1

..

.eFFl

264
375 ¼

eDD1

. .
. eDDl

264
375 eFF1

..

.eFFl

264
375: ð15Þ

Note that eTTl�jþ1 ¼ eTTj, and eDDl�jþ1 ¼ eDDj for j ¼ 2; . . . ; l=2 (or ðl � 1Þ=2, if l is odd).
In short, we have successfully divided the large qlf-by-qlf 3D eigenvalue problem (6) into l inde-

pendent qf-by-qf 2D subsystemseTTj
eFFj ¼ eDDj

eFFj; ð16Þ

for j ¼ 1; . . . ; l.
4. Cubic Jacobi–Davidson and deflation methods

We now focus on solving each individual subsystem in (16), which can be rewritten as a generalized

eigenvalue problem

GðkÞF ¼ DðkÞF; ð17Þ

where GðkÞ is a qf-by-qf matrix, F is the unknown vector, and DðkÞ is the corresponding diagonal matrix.

Note that the entries of the matrix GðkÞ involve the eigenvalues k in the denominator originated from the

mass Eq. (2). We first reformulate the problem to the following form:
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AðkÞF ¼ ðk3A3 þ k2A2 þ kA1 þ A0ÞF ¼ 0 ð18Þ

by multiplying the common denominator in the right-hand side of the mass equation to (17). Here the

matrices A1, A2, and A3 are independent of k and are obtained by a linear combination of various parts of

GðkÞ and DðkÞ.
This eigenvalue problem is of cubic type for which numerical methods are rarely available in the liter-

ature when compared with, for instance, the quadratic eigenvalue problems. We propose here two methods

for this cubic eigenvalue problem. For computing the smallest eigenpair, the first method is a generalization

of the quadratic Jacobi–Davidson method described, for example, in [23, Section 9.2]. The method simply

replaces the quadratic matrix polynomial by the cubic matrix polynomial and replaces the iteration indices

0; 1; 2 by 0; 1; 2; 3 with some modifications on the deflation transformations to be described below.

To find the successive eigenpairs for linear eigenvalue problems, the Jacobi–Davidson method combined

with the implicit deflation technique based on Schur forms (see e.g. [24, Sections 4.7 and 8.4]) performs well.
However, it is not clear how to incorporate the deflation technique with the quadratic or high-order ei-

genvalue problems. The main reason is that Schur forms do not exist for a quadratic or a polynomial pencil

in general. To overcome the difficulty, a locking and restarting quadratic eigensolver is recently proposed in

[25]. The locking and restarting strategy is based on a partial Schur form of the linearized problem. It

essentially locks the desired eigenvalues in a reduced quadratic pencil by an equivalence projection. For the

cubic problem (18), the corresponding linearized problem is

0 I 0

0 0 I
A0 A1 A2

24 35 F

kF
k2F

24 35 ¼ k
I 0 0

0 I 0

0 0 �A3

24 35 F

kF
k2F

24 35: ð19Þ

Our next method is an explicit nonequivalence low-rank deflation method together with the locking and

restarting strategy using the partial Schur form of this linearized problem. Once the smallest eigenvalue is

obtained, it is then transformed to infinity by the deflation scheme, while all other eigenvalues remain

unchanged. The next successive eigenvalue thus becomes the smallest eigenvalue of the newly transformed

cubic eigenvalue problem which is then again solved by the cubic Jacobi–Davidson method. Only several

transformations are needed for determining the corresponding eigenvectors. We elaborate the explicit

nonequivalence deflation as follows. Let ðK1; Y1Þ 2 Rr�r � Rn�r with Y T
1 Y1 ¼ Ir be an eigenmatrix pair of

AðkÞ, i.e.,

A3Y1K
3
1 þ A2Y1K

2
1 þ A1Y1K1 þ A0Y1 ¼ 0; ð20Þ

where n is the dimension of the eigenvalue problem and the scalar r 
 n. Suppose that 0 62 rðK1Þ where

rðK1Þ denotes the spectrum of K1. The new deflated cubic eigenvalue problem is defined aseAAðkÞF ¼ ðk3 ~AA3 þ k2 ~AA2 þ k ~AA1 þ ~AA0ÞF ¼ 0; ð21Þ

where

~AA0 ¼ A0;
~AA1 ¼ A1 � ðA1Y1Y T

1 þ A2Y1K1Y T
1 þ A3Y1K

2
1Y

T
1 Þ;

~AA2 ¼ A2 � ðA2Y1Y T
1 þ A3Y1K1Y T

1 Þ;
~AA3 ¼ A3 � A3Y1Y T

1 :

8>><>>: ð22Þ

As stated in the following two theorems, the scheme described in (21) and (22) deflates the computed

eigenvalues of AðkÞ, i.e., rðK1Þ, while all other unknown eigenvalues of AðkÞ remain unchanged. By

iteratively updating the matrix eAAðkÞ, all desired eigenpairs can thus be successively computed. Note that a

proof of the theorems can be readily extended from that of [26].



150 W. Wang et al. / Journal of Computational Physics 190 (2003) 141–158
Theorem 1. Let ðK1; Y1Þ 2 Rr�r � Rn�r with Y T
1 Y1 ¼ Ir be an eigenmatrix pair of AðkÞ as in (20). Then the new

deflated cubic polynomial ~AAðkÞ defined by (21) and (22) has the same eigenvalues as those of AðkÞ except that r
eigenvalues of K1 are replaced by r infinity eigenvalues, i.e., ðrðAðkÞÞ n rðK1ÞÞ [ f1g ¼ rðeAAðkÞÞ:

Theorem 2. Suppose that k2 62 rðK1Þ and ðk2; y2Þ is an eigenpair of AðkÞ.
Define

T ðkÞ ¼ In � kY1K
�1
1 Y T

1 ð23Þ

and

~yy2 ¼ ðIn � k2Y1K
�1
1 Y T

1 Þy2 ¼ T ðk2Þy2: ð24Þ

Then ðk2; ~yy2Þ is an eigenpair of eAAðkÞ.

Now we can compute the successive eigenpairs by repeatedly applying the explicit nonequivalence de-

flation scheme and the cubic Jacobi–Davidson method straightforwardly extended from the quadratic

version presented in [24]. In the first part of the cubic Jacobi–Davidson iteration, the approximate Ritz pair
of the projected polynomial problem ðV TAðhÞV Þs ¼ 0 is solved. The matrix V 2 Rn�q, q < n, is the search

subspace. Then we compute the approximate eigenvector u ¼ Vs, the residual r ¼ AðhÞu, and the vector

p ¼ A0ðhÞu. Secondly, we solve approximately the correction equation

I
�

� pu�

u�p

�
AðhÞðI � uu�Þt ¼ �r ð25Þ

by computing

t ¼ �M�1
A r þ eM�1

A p with e ¼ u�M�1
A r

u�M�1
A p

: ð26Þ

The matrix MA is a preconditioner of AðhÞ. In the SSOR preconditioning scheme [27],

AðhÞ � MA ¼ ðD� xLÞD�1ðD� xUÞ;

where x is a scalar, AðhÞ ¼ D� L� U with D ¼ diagðAðhÞÞ, L and U are strictly lower and upper triangular

of AðhÞ. However, this straightforward cubic Jacobi–Davidson approach is not efficient since it is associated

with the deflated system (21) and (22). As more and more eigenpairs to be determined, the number of

deflation transformations with low rank updates (21) and (22) would increase.

Fortunately, we can eliminate the deflation transformations to reduce computational costs by the fol-

lowing observation. If we directly extend the quadratic Jacobi–Davidson method to fit the cubic polyno-

mial, the computations of the vector ~rr (~rr ¼ eAAðhÞ~uu), the vector ~pp (~pp ¼ eAA0ðhÞ~uu), and the parameter e will be
affected by the deflation transformations. However, by using the definition of eAAðkÞ, we haveeAAðhÞT ðhÞ ¼ AðhÞ ð27Þ

and eAA0ðhÞT ðhÞ ¼ A0ðhÞ � ½A3Y1ðK2
1 þ hK1 þ h2IrÞY T

1 þ A2Y1ðK1 þ hIrÞY T
1 þ A1Y1Y T

1 	; ð28Þ

where ðh; ~uuÞ is the approximate Ritz pair of eAAðkÞ. Besides, since Theorem 2 suggests that

u ¼ T ðhÞ�1~uu; ð29Þ
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we can replace ~uu by T ðhÞu in the computation of ~rr and ~pp so that

~rr ¼ AðhÞu ð30Þ
and

~pp ¼ A0ðhÞu� A3Y1 K2
1

��
þ hK1 þ h2Ir

�
Y T
1 þ A2Y1 K1ð þ hIrÞY T

1 þ A1Y1Y T
1

�
u: ð31Þ

In other words, the computations of ~rr and ~pp involve only the original system, rather than the deflated

system.
By (25), (26), (30), and (31), we compute

t ¼ �M�1
A ~rr þ eM�1

A ~pp with e ¼ u�M�1
A ~rr

u�M�1
A ~pp

for the correction equation

ðI � ð~ppu�Þ=ðu�~ppÞÞAðhÞðI � uu�Þt ¼ �~rr:

We then obtain a more efficient cubic Jacobi–Davidson method that no deflated system eAAðhÞ is involved.
This solution process is repeated until all bound state eigenpairs are found. Algorithms 3 and 4 summarize

these ideas by dropping the tilde notation (~) since the computations involve the original, not the deflated,

space only.

Algorithm 3. Cubic Jacobi–Davidson method with explicit deflation.

Step (1) Choose an n-by-m orthonormal matrix V
Step (2) For i ¼ 0; 1; 2; 3
Compute Wi ¼ AiV and Mi ¼ V �Wi

Step (3) Iterate until convergence

(3.1) Compute the eigenpairs ðh; sÞ of

ðh3M3 þ h2M2 þ hM1 þM0Þs ¼ 0

(3.2) Select the desired eigenpair ðh; sÞ with ksk2 ¼ 1:
(3.3) Compute u ¼ Vs, r ¼ AðhÞu, and p by Eq. (31)
(3.4) If(krk2 < e), k ¼ h, x ¼ u; Quit
(3.5) Compute t ¼ �M�1

A r þ eM�1
A pwhere e ¼ u�M�1

A r

u�M�1
A p

(3.6) Orthogonalize t against V , v ¼ t=ktk2:
(3.7) For i ¼ 0; 1; 2; 3

Compute wi ¼ Aiv, Mi ¼ ½ Mi V �wi

v�Wi v�wi
	; Wi ¼ ½Wi ;wi	

(3.8) Expand V ¼ ½V ; v	

Step (4) Output ðh; uÞ as the computed eigenpair

Algorithm 4. The main algorithm.

Step (0) Given AðkÞ ¼ k3A3 þ k2A2 þ kA1 þ A0.

Step (1) Initialize i ¼ 0. Let K1 and Y1 be empty sets.
Step (2) Solve the ith deflated system (21) with (22) by Algorithm 3 to obtain the eigenpair (ki;Fi).

Step (3) Output the ith smallest positive eigenvalue ki and Fi

Step (4) If (no more eigenpair is needed) then Stop; Otherwise

(4.1) Update K1 and Y1 by orthogonalizing Fi against current Y1, normalizing Fi ¼ Fi

kFik, and then
expanding Y1 ¼ ½Y1;Fi	;

(4.2) Let i ¼ iþ 1,

(4.3) Goto Step (2)
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5. Numerical results

As a typical example, we provide here some numerical and graphical results of computed energy levels

and corresponding wave functions of the model with the diameter and the height being 12 and 2 nm, re-

spectively, for the QD and being 72 and 12 nm for the matrix. The QD size is chosen so that it is ap-

proximately comparable with that of the experimental model presented in [28] and the nonparabolic effect

of the band structure is significant [29].

For our numerical experiments, the algorithms have been implemented by Fortran 90 programming
language. All numerical tests were performed on a Compaq AlphaServer DS20E workstation equipped

with 667 MHz CPU and one gigabytes main memory. The operating system running on the machine is

Compaq Tru64 UNIX version 5.0. The timing results are in seconds. The iterative processes of Algorithm 3

were terminated when the residual of Eq. (18) is less than 1:0� 10�8.

The first part of numerical results illustrates one of important issues in dealing with semiconductor

heterostructures, namely, the interface problem. Note that the two-point finite difference approximation of

the interface conditions is of linear order. Uniform and nonuniform meshes are both considered.

Case 1. Uniform meshes: Drf ¼ Drc ¼ Dzf ¼ Dzc ¼ 0:1, 0.05, or 0.025 nm. The matrix size of the re-
sulting systems is 43078, 172558, or 690718, respectively, as shown on the dashed line in Fig. 3. The

computed ground state energies increase to 0.1066.

Case 2. Nonuniform meshes: Drf ¼ ref ratio� Drc, Dzf ¼ ref ratio� Dzc, Drc ¼ Dzc ¼ 0:1, 0.05, or 0.025
nm, ref ratio ¼ 1=5.
Case 3. Nonuniform meshes: Same as Case 2 except that ref ratio ¼ 1=10. All of the corresponding

ground state energies converge to an approximate value 0.1091. Obviously, the uniform case is not efficient

at all as indicated by the comparison between the approximated energies 0.1066 and 0.1091 in corre-

spondence with the matrix sizes of 690718 and 751900. Moreover, although the mesh around the interface is
Fig. 3. The effect of nonuniform meshes. Various coarse mesh lengths and refinement schemes are used. The size of resulting matrix

(q � f) are inscribed next to the eigenvalue data.
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doubly refined from that of Case 2 to Case 3, the value is improved only slightly from 0.1089 to 0.1091. We

conclude that advanced numerical treatments such as higher-order approximation, unstructured and

adaptive mesh refinement, and error estimation, on the interface problem remain to be explored in the

future development for modelling semiconductor heterostructures.

The second part of our numerical results is to show that the methods proposed here can attain bound

states as many as possible within the confinement potential 0.35. The nonuniform mesh of Case 3 with

Drf ¼ 1
10
Drc is used in what follows so that the computed eigenvalues are accurate up to three significant

digits. An important factor for this part of results is the partitioning in the azimuthal direction, i.e., the
number of partitions l. For this, the results are organized into the following two subcases.

Subcase 3.1. l ¼ 360, Drc ¼ 0:040 nm and Drf ¼ 0:004 nm. The matrix size of the resulting 3D discrete

eigenvalue system is 866� 360� 316 (about 98 millions). The system is then reduced to 360 subsystems

with the matrix size of 866� 316 ¼ 273656 by the reduction method. A total of 11 bound state energies

were calculated as shown in Table 4 and graphically displayed in Fig. 4. Note particularly that only the 2D

eigenproblems associated with the vertical slices j ¼ 1; . . . ; 7 are required for the computation of these

bound states whereas other subsystems j ¼ 8; . . . ; 360 are not required since all subsystems are independent

of each other as Eq. (16) is inferred. In other words, if we are interested in only bound states, we only have
to solve seven subsystems for this particular partition. This implies that the computational efforts can be

tremendously reduced when compared with a full solution on the original 3D system. Nevertheless, the rest

of subsystems were also solved in our experiment and the corresponding energy levels are shown in Fig. 4 as

a continuous spectrum out of the confinement potential.

Subcase 3.2. l ¼ 90, 180, or 360 and Drc ¼ 0:1, 0.05, or 0.025 nm. A question on the value of l, i.e., the
partition number in the azimuthal direction is thus evident. To explore the effect of different ls, we compute

the smallest eigenvalue of the subsystem associated with h ¼ 2p=l for a certain l. This computed eigenvalue

approximates the first excited state energy of the model. The ground state energy is not computed in the
numerical experiments here since it is embedded in the subsystem with h ¼ 0 and is thus independent to l.
Table 5 shows the first excited state energies computed by using different partition numbers in the azimuthal

direction. As shown in the table, higher partition numbers in the azimuthal direction result in more accurate

estimation. The improvement is however not significant. The computed energy levels are accurate up to five

significant digits for all three different ls.
Several remarks on Table 4 and Figs. 5 and 6 are in order. First of all, the global order of the energy

levels (denoted by kGlobal�Ord) depends essentially on the order of the azimuthal index j and the local order
Table 4

Computed discrete energy levels results

j kLocal-Ord kGlobal-Ord k QN Time (s)

1 1 1 0.1090 ð1; 0; 1Þ 2444

1 2 4 0.1925 ð2; 0; 1Þ 539

1 3 10 0.3136 ð3; 0; 1Þ 1855

2 1 2 0.1393 ð1; 1; 1Þ 1757

2 2 6 0.2477 ð2; 1; 1Þ 1116

3 1 3 0.1767 ð1; 2; 1Þ 1183

3 2 8 0.3025 ð2; 2; 1Þ 1463

4 1 5 0.2181 ð1; 3; 1Þ 1126

5 1 7 0.2615 ð1; 4; 1Þ 1506

6 1 9 0.3055 ð1; 5; 1Þ 906

7 1 11 0.3481 ð1; 6; 1Þ 2117

The heading indicates the order of the azimuthal index (j), the local order of the energy levels in the jth subsystem (kLocal-Ord), the

global order of the energy levels (kGlobal-Ord), the energy levels k, the quantum numbers (nr, nh, nz), and the computational time in

seconds.



Fig. 4. Spectrum of the energy levels (eigenvalues). The corresponding order and quantum numbers are listed on the two sides of the

spectrum.

Table 5

Computational results for the first excited state energy with different mesh lengths (Drc) and different partition number in the azimuthal

direction (l)

Matrix size 58,900 203,500 751,900

Drc in nm 0.1 0.05 0.025

l ¼ 90 0.13905034 0.13921712 0.13935382

l ¼ 180 0.13905559 0.13922237 0.13935907

l ¼ 360 0.13905690 0.13922368 0.13936038

Note that the fine mesh Drf ¼ 0:1Drc.
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of the energy levels is determined by the subsystem (denoted by kLocal-Ord in Table 4). For example, only the

first three eigenvalues obtained by solving the first subsystem of Eq. (16) are within the confinement po-

tential. Secondly, the order of the energy levels of a subsystem indicates the number of nodal lines of the

corresponding wave function in the radial direction. We use the notation (nr, nh, nz) as a quantum number
representing the numbers of nodal lines in the radial, azimuthal, and axial directions, respectively. For

instance, the second wave function (associated with the first excited state k2 ¼ kð1;1;1Þ) shown in Fig. 5 has

one nodal line in each direction. All the wave functions shown in Figs. 5 and 6 were plotted on the hor-

izontal disk passing through the center of the dot. Thirdly, the computing time required for each eigenvalue

is moderate as shown in the last column of Table 4.

We finally note that the small reduced subsystems are closely related to the symmetry of the model

problem. Since the wave function is periodic in h, it can be represented by the truncated Fourier series

F ðr; h; zÞ ¼
Xl=2�1

l¼�l=2

/lðr; zÞe
ffiffiffiffi
�1

p
lh;



Fig. 5. The wave functions corresponding to the first six smallest energy levels.
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where l is the orbital quantum number and /l is the Fourier component in the ðr; zÞ space. Substituting this

series in Eq. 1, we obtain a series of 2D problems for which we need to specify different boundary con-

ditions on the line z ¼ 0 according to the types (even or odd) of the wave functions /l, which is also related

to the number of nodal lines nh ¼ j� 1 in Table 4. By choosing certain values for h, the 3D solutions can

then be obtained by multiplying the computed 2D solutions with the above exponential function. However,



Fig. 6. The wave functions corresponding to the 7th to the 11th smallest energy levels.
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when the symmetry is broken as many shapes of the quantum dot being reported in the literature, we

inevitably need to deal with 3D discretization. The reduction method proposed here may be extended to
more general 3D matrices provided that relatively few rows or columns break the symmetry. This is in-

teresting and challenging topic deserved to be further investigated.
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6. Conclusion

This paper is concerned with efficient and accurate methods for calculating bound state energies and

associated wave functions of semiconductor quantum dots with special interest in the treatment of

mathematical difficulties incurred by the nonparabolic band structure. Band nonparabolicity plays an es-

sential role in the study of the effect of spin–orbit splitting in semiconductor heterostructures especially for

small size QDs. We present here a discretization scheme and a matrix reduction method that can dra-

matically reduce huge eigenvalue systems to relatively very small subsystems which are obtained by means
of permutations and Fourier matrix transformations. Due to nonparabolicity, these subsystems are of cubic

eigenvalue problems for which a nonlinear Jacobi–Davidson method and a deflation scheme are proposed

to compute all desired eigenpairs. The order of bound state energies depends essentially on the first few

subsystems that in turn are ordered in the azimuthal direction. Moreover, the corresponding wave functions

can be characterized by the quantum numbers associated with both of the order of these subsystems and the

order of computed eigenvalues of each individual subsystem.

Our methods can be used for various semiconductor materials with various dot sizes. Although the dot is

restricted to cylindrical shape in this paper, these methods can be used for other shapes of the dot with some
modification on the discretization of the interface condition imposed on the heterojunction. For example, if

the interface does not align with the grid points, a weighted finite difference approximation of the interface

condition can be used according to the distance between the grid point and the interface. This still preserves

the low-rank nature for the deflation scheme. However, we may expect to require more subsystems than

that of cylindrical shape since the symmetry is broken. Another example that is of interest is the pyramidal

QD. For this type of QD, the domain is not radial symmetric and the reduction scheme can not be applied

directly. Different reduction methods should be devised. Finally, the treatment of interface conditions with

structured meshes is also a critical issue for QD simulations. We have used here linear finite difference
approximation for the interface conditions. The convergence rate can be improved with higher-order ap-

proximation. We shall report our numerical results for various shapes of QDs with higher-order approx-

imation of the interface conditions in future papers.
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