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N-Sided Hole Filling and Vertex Blending
Using Subdivision Surfaces*

WEI-CHUNG HWANG AND JUNG-HONG CHUANG
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Hsinchu, 300 Taiwan

To fill an N-sided hole on a NURBS surface and to blend a corner formed by
NURBS surfaces, we propose a regular N-sided open uniform quadratic subdivision sur-
face derived by applying the open uniform quadratic subdivision scheme to a regular
N-sided control mesh which is confined to the hole or to the region of the vertex blend.
Boundary conditions such as C0 and G1-continuity required for the hole filling and vertex
blending, are ensured by certain refinement steps performed in the course of the subdivi-
sion. The shape of the filling or blending surface is controlled by using fullness parame-
ters. Methods are also proposed to represent the resulting regular N-sided open uniform
quadratic subdivision surface using non-uniform rational B-spline surfaces.

Keywords: geometric modeling, subdivision surfaces, boundary control, N-sided hole
filling, vertex blending

1. INTRODUCTION

N-sided hole filling and surface blending for both edges and corners are recurring
operations in computer aided geometric design (CAGD). N-sided hole filling aims to pro-
vide surface patches that interpolate the hole’s boundary curves, and needs also to satisfy
smoothness conditions if the hole is a trimmed hole on a surface. Surface blending pro-
vides a smooth transition between adjacent base or primary surfaces so that sharp edges
and corners can be rounded; see Fig. 1(a) for an illustration. The blend of two base
surfaces is usually called edge blend, while the vertex blend is used to smoothly blend a
corner formed by three or more base surfaces.

1.1 Previous Work

1.1.1 N-sided hole filling

Previously proposed methods for N-sided hole filling fall into two general ap-
proaches. The first approach fills a hole with rectangular patches by first splitting the hole
into a rectangular mesh and then interpolating the mesh using a set of rectangular patches.
The splitting is usually performed by connecting a center vertex of the hole to the middle
point on each boundary curve. The bicubic Hermite patch is used in [1, 2] for the surface
interpolation, while in [3] the rational Gregory patch is used. This approach may incur the
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well-known twist compatibility problem [4], in which the twist vectors for patches around
the center vertex are difficult to derive, especially when the number of incident edges is
even.

The second approach fills the N-sided hole using a single patch. In [5, 6], the N in-
cident edges, together with their cross tangents are blended with a blending function in a
polygonal domain. In [7, 8], the polygonal patches are defined on non-planar domains.
The use of non-planar domains introduces degrees of freedom which can be used in the
construction of appropriate geometric continuity constraints between patches. The
non-planar domain schemes have been shown to have difficulties when N is greater than
six. In [9, 10], the S-patch is proposed to represent the N-sided patches. This method con-
structs a Berstein-Bézier polynomial defined on an N − 1 dimensional simplex. There still
exist difficulties in practical applications when using this kind of representation for the
N-sided patch. For example, the computation and evaluation of such representations are
usually complicated, and it is hard to convert or exchange data between applications that
have different N-sided patch representations.

1.1.2 Vertex blending

While many studies have been done on the edge blend [11-14], there are relatively
few publications for the vertex blend due to its geometric and topological complexity [4,
6, 15-17]. The vertex blending for a corner formed by parametric surfaces is often de-
rived by first blending the incident edges and filling the hole left around the corner. Posi-
tional and tangential continuity between the edge blend and each of the base surfaces
must be satisfied along respective linkage or contact curves, on which the edge blend
contacts the base surfaces. The same criteria must be satisfied between the vertex blend
and base surfaces as well as incident edge blends.

As described in [4, 15], two different ways of the vertex blending have been pro-
posed. The first, called non-setback, performs edge blends toward a corner until each pair
of neighboring linkage curves meet, as shown in Fig. 1(a). The vertex blend becomes the
filling of the N-sided hole bounded by N boundary cross sections of the incident edge
blends (called the profile curves). Alternatively, a setback is specified for each edge to
shrink the edge blend with the given setback distance from the corner; see Fig. 1 (b).
Now we obtain a 2N-sided hole that is bounded by N profile curves as well as N spring
curves, each of which lies on a base surface and connects the pair of neighboring profile
curves lying on the base surface [4].

(a) Non-setback vertex blend. (b) Setback vertex blend.

Fig. 1. Non-setback and setback vertex blends.
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As in the case of hole filling, the vertex blend can be represented by a single N-sided
patch that interpolates the boundary curves and their relevant cross tangents. This repre-
sentation is, however, not in a standard form. To represent the vertex blend using rectan-
gular patches, most methods use the center split scheme that subdivides the hole by con-
necting a center point of the hole to the middle point of each profile and each spring
curve (see Fig. 2(b)). The center split approach, however, often incurs the so called twist
compatibility problem, as mentioned in section 1.1.1. A setback split scheme is proposed
in [4] to circumvent the problem, by which the split interior regions usually have an add
member of sides and there hence exists no twist incompatibility problem (see Fig. 2 (c)).

(a) n-sided patch (b) center split (c) setback split

Fig. 2. Methods to construct the vertex blend.

1.1.3 Subdivision surfaces and its boundary control

The subdivision surface, first introduced in [18, 19], is defined by recursively subdi-
viding a mesh of arbitrary topology. At each step more vertices and smaller faces are cre-
ated, and the subdivision surface is defined as the limit of the subdivision process.

Subdivision surfaces have recently been found to be useful in several areas, includ-
ing reconstruction of unorganized 3D points [20], deformation [21], and character anima-
tion [22]. Before the subdivision surface become a popular representation in CAGD,
however, methods that are able to control the shape and the boundary of the subdivision
surfaces are highly desirable. In [23, 24] the boundary control of the quadratic subdivi-
sion surface is achieved by extending the control vertices along the boundary and the
corner faces of the given mesh. The boundary control is, however, achieved only on the
limiting subdivision surface. Although this allows us to control the C0-continuity between
adjacent limiting subdivision surfaces, its practical use in CAGD is still troublesome. In
[25] a new open uniform quadratic subdivision scheme is proposed which is capable of
achieving more effective boundary control, including C0 and G1-continuity at every sub-
division step.

1.2 Overview

In this paper the open uniform subdivision scheme proposed in [25] is applied to a
regular N-sided control mesh which is confined to the hole or to the region of the vertex
blend. The boundary conditions, such as C0 and G1-continuity, required for hole filling
and vertex blending are ensured by certain refinement steps performed in the course of
the subdivision. The shape of the filling or blending surface can also be controlled by
using fullness parameters.

In section 2 we propose regular N-sided open uniform quadratic subdivision surfaces
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which are especially designed for N-sided hole filling and vertex blending. With proposed
open uniform quadratic subdivision surfaces, the interpolating schemes in [11, 26] for
edge blending of parametric surfaces can be easily revised for construction of vertex
blends. In sections 3 and 4 we detail how an N-sided hole on a parametric surface is filled
and how a corner is blended by the regular N-sided open uniform quadratic subdivision
surfaces, respectively. We then describe in section 5 how to represent and approximate
the regular N-sided open uniform quadratic subdivision surface using non-uniform ra-
tional B-spline (NURBS) surfaces. Several implementation issues and examples are
given in section 6. Section 7 gives some concluding remarks and future work.

2. REGULAR N-SIDED OPEN UNIFORM QUADRATIC
SUBDIVISION SURFACE

2.1 Regular N-Sided Control Meshes

We first define a regular N-sided control mesh of level m, denoted N
mRM , as the con-

trol mesh that has one N-sided face in the center, which is surrounded by N rectangular
meshes 0

mG , 1
mG , and 1−N

mG , where i
mG is an m × (m + 1) rectangular mesh of the

following form

,

)1(1)1(0)1(

11110

00100





















=

−−−
i

mm
i
m

i
m

i
m

ii

i
m

ii

i
m

ggg

ggg

ggg

G

L

MLMM

L

L

(1)

Fig. 3. A regular N-sided control mesh.
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where the i
jkg are control vertices; see Fig. 3. Each control mesh i

mG is joined to one of its
neighboring mesh Ni

mG mod)1( + such that control vertices i
jmg and Ni

jmg mod)1(
)1(

+
− are coincident

for j = 0, 1, …, m − 1. The centered N-sided face is then defined by vertices i
mmg )1( − , i = 0,

1, …, N − 1. Fig. 4 depicts examples of the regular N-sided control meshes N
mRM for N =

3, 5, 6, 9, 10, and m = 2, 3, 4, 8. The meshes in the leftmost column are of level m = 2 and
are the simplest regular N-sided control meshes, in which each i

mG is a 2 × 3 control
mesh.

m = 2 m = 3 m = 4 m = 8

Fig. 4. Regular N-sided control meshes of different levels for N = 3, 5, 6, 9, and 10.
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2.2 Open Uniform Quadratic Subdivision Scheme

The open uniform quadratic subdivision scheme described in [25] is proposed for
control meshes of restricted topology. Note that, for a given regular N-sided control mesh

N
mRM , boundary and corner faces are all 4-sided. Moreover, all interior faces are 4-sided

as well, except the centered face which is N-sided. According to [25] different subdivi-
sion weights are applied to corner, boundary, and interior faces as follows:

1. Given a 4-sided face F with four vertices Pij, Pi(j+1), P(i+1)j, and P(i+1)(j+1), we have the
following three types of subdivision:

(a) Suppose F is a corner face in which Pij is the corner vertex, P(i+1)j and Pi(j+1) are two
boundary vertices, and P(i+1)(j+1) is the interior vertex. The four new vertices after
the subdivision are:
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(b) Suppose F is a boundary face in which Pij and P(i+1)j are the boundary vertices, and
Pi(j+1) and P(i+1)(j+1) are the interior vertices. The four new vertices after the subdivi-
sion are
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(c) Suppose F is a 4-sided interior face. The four new vertices after the subdivision are
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which turns out to be the same as the quadratic subdivision scheme in [18, 19].

2. Suppose that the centered N-sided face is defined by vertices Qj, j = 0, 1, 2, …, N − 1.
After one step of subdivision, the new control vertex Q'i corresponding to Qi is defined

as ,
0

1
∑ =

−=′ jiji QQ
j

N α where weights αij are computed in a similar manner as Eq. 4.

We obtain the following weights
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which is, again, the standard quadratic subdivision scheme described in [18, 19].
A regular N-sided control mesh remains as a regular N-sided control mesh after each

step of the open uniform quadratic subdivision. In fact, for an initial regular N-sided con-
trol mesh of level m, a regular N-sided control mesh of level (m − 2) + 2j-1 is generated
after the j-th subdivision step. When the open uniform quadratic subdivision scheme is
applied to the regular N-sided control mesh, we denote the resulting limiting surface as
the regular N-sided open uniform quadratic subdivision surfaces, or the regular N-sided
subdivision surface for short.

2.3 Boundary Conditions of Regular N-sided Subdivision Surfaces

When the proposed regular N-sided subdivision surface is applied to fill an N-sided
hole on a parametric surface, we require that the regular N-sided surface subdivision sur-
face maintain C0- and G1-continuity to the trimmed surface. Thus we need to have a
mechanism that is able to ensure C0- and G1-continuity, at least within a guaranteed tol-
erance. The boundary conditions achieved by the regular N-sided subdivision surface
enable us to fulfill these goals; see [25].

To address the boundary conditions for the i-th boundary of the regular N-sided sub-
division surface derived from a regular N-sided control mesh N

mRM , we consider the fol-
lowing boundary rectangular control mesh
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where the first m + 1 columns are i
mG of Eq. 1 and the last m − 1 columns form the trans-

pose of the top-left (m − 1) × m submatrix of ;mod)1( Ni
mG + that is, i

mS represents the strip of
all control vertices along the i-th boundary of N

mRM ; see Fig. 3. If we apply the open
uniform subdivision scheme to i

mS , we obtain a sub-patch of the regular N-sided subdivi-
sion surface which is the B-spline patch i

mU defined by the rectangular control
mesh i

mS using the open knot vector 32 +m
oK = [0001…(2m − 3) (2m − 2) (2m −

2) (2m − 2) ] in the v direction and semi-open knot vector 3+m
sK = [0001…m ] in the u

direction. The boundary conditions for the i-th boundary of the regular N-sided subdivi-
sion surface is identical to the boundary conditions of i

mU as detailed in the following:

1. The i-th boundary curve of the regular N-sided subdivision surface is the open uniform
B-spline curve defined by the control points { ,00

ig ,01
ig …, ,0

i
mg ,mod)1(

0)2(
Ni

mg +
−

…,
Nig mod)1(

00
+ } of N

mRM and knot vector 32 +m
oK .

2. The cross tangent along the i-th boundary curve of the regular N-sided subdivision
surface is the open uniform B-spline curve defined by control points { −ig00 ,10

ig
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With such boundary control mechanism the proposed regular N-sided subdivision
surface can be used for N-sided hole filling and vertex blending, which is addressed in
sections 3 and 4.

3. FILLING AN N-SIDED TRIMMED HOLE ON
A PARAMETRIC SURFACE

Given an N-sided hole on an NURBS surface P(s, t) (as shown in Fig. 5), we show
how to fill the N-sided hole using the proposed regular N-sided subdivision surface.
Moreover, the shape of the filling surface can be adjusted by assigning fullness parame-
ters that are associated with corners of the subdivision surface. Suppose that the N-sided
hole on P(s, t) is specified by trimming curves Ti(u), i = 0, …, N − 1, defined on the (s,
t)-domain. The regular N-sided subdivision surface will fill the hole and smoothly con-
nect to P(s, t) in the sense that C0 and G1-continuity along Ti(u), i = 0, …, N − 1, is within
a pre-specified tolerance.

Fig. 5. An N-sided hole on a parametric surface.
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To derive the N-sided filling subdivision surface, we first construct an initial regu-
lar N-sided control mesh that is of level 2 and confines to the trimming curves, then sub-
divide the mesh using the open uniform quadratic subdivision. In the meantime, after
each step of subdivision the control mesh is refined so that the sampled boundary C0 and
G1-continuity between P(s, t) and the N-sided filling surface are ensured. The construc-
tion procedure consists of the following steps:

1. Construct an initial regular N-sided control mesh of level 2 and let j = 2.
2. Perform one step of the open uniform quadratic subdivision and do the following:

(a) For each boundary curve of the N-sided hole, we sample 2j + 1 data points and then
refine the boundary faces of the regular N-sided control mesh according to the sam-
pled data points.

(b) For each corresponding boundary curve of the N-sided hole and the current regular
N-sided subdivision surface, we examine the C0 and G1-continuity error tolerances. If
the error checking is satisfied for each boundary curve, we output the result and exit;
otherwise set j = j + 1 and go to Step 2.

Next, we detail the computation in each step.

Step 1: To construct an initial N-sided control mesh of level 2, we first sample three ver-
tices and one surface normal vector along each trimming curve of the N-sided hole. As a
result, we obtain for each Ti(u), i = 0, …, N − 1, a set of three vertices Vi = {vi0, vi1, vi2}
and a normal vector 1in

r

at vi1, where vi0 = P(Ti(0)), vi1 = P(Ti(0.5)), and vi2 = P(Ti(1.0)).

Vertices in each Vi are then interpolated by a quadratic open uniform B-spline curve
Ci(u) using a uniform parametric interval. Suppose pi0, pi1, pi2, and pi3 are four control
points of Ci(u). They are then used as the vertices on the i-th boundary of the initial regu-
lar N-sided control mesh; see Fig. 6(a). Note that the sampled vertex vi1 is at the middle
of

21 ii pp since the sampled vertices are interpolated using a uniform parametric intervals.
After deriving boundary vertices of the initial regular N-sided control mesh of level

2, we further derive the immediate interior vertices qi0, i = 0, …, N − 1. The cross tangent
along the i-th boundary of the regular N-sided subdivision surface derived from this ini-
tial regular N-sided control mesh is an open uniform B-spline curve defined by the set of
control points {pi0 – p(i + 1)2, pi1 – qi0, pi2 – q(i –1)0, p(i –1)0 – p(i –1)1}. Thus the cross tangent
of the subdivision surface at the middle of

21 ii pp is

.
222 1
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iiiiii
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qqppqq
t −

+
=+−

+
= −−r

To ensure G1-continuity at the sampled vertex vi1 on the i-th boundary curve, it
r

must lie on plane Ni1 passing through vertex vi1 and orthogonal to sampled normal vector

1in
r

. If we require that both qi0 and q(i-1)0 lie on plane Ni1, then it
r

will also lie on plane
Ni1. That is, qi0 can be chosen from intersection line Li0 of plane Ni1 and plane N(i+1)1,
where N(i+1)1 is the plane passing through vertex v(i+1)1 and orthogonal to surface normal

1)1( +in
r

at v(i+1)1; see Fig. 6(b). Setting qi0 to be the projection of point pi0 onto line Li0 yields
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an N-sided filling subdivision surface with fullness parameter 0 at corner pi0. In general,
qi0 can be chosen according to a user-specified fullness parameter fi ≥ 0 using the follow-
ing equation (see Fig. 6(c)):

Fig. 6. The construction of an initial N-sided control mesh of level 3 in step 1.

,0
*
00 iiii lfqq

r

+= (7)

where *
0iq is the projection of pi0 onto Li0 and 0il

r

is the normalized tangent direction of
line Li0. Note that the qi0 obtained by Eq. 7 ensures that cross tangent it

r

of the regular
N-sided subdivision surface lies on plane Ni1, and hence the regular N-sided subdivision
surface derived from the current regular N-sided control mesh will maintain
G1-continuity with P(s, t) at the sampled vertex vi1.

Step 2(a): Suppose we have performed the j-th step of open uniform subdivision. As a
result, 2j + 2 new control vertices and new boundary faces are obtained along each
boundary of the regular N-sided control mesh. To achieve a better C0-continuity between
P(s, t) and the regular N-sided subdivision surface along a trimming curve, say Ti(u), we
next sample 2

j
+ 1 vertices vi0, vi1, …, and vi(2j) uniformly on Ti(u) and derive associated

normal vectors 1in
r

,
2in

r , …, and
)12( −ji

n
r at vi1, vi2, …, and vi(2j-1), respectively. Each set

of vertices Vi = {vi0, vi1, …, vi(2j)} for the i-th boundary is then interpolated using uniform
parameters {u0, u1, …, u2j} by a quadratic open uniform B-spline curve. The interpolation
yields a curve Ci(u) defined by 2j + 2 control points {pik | k = 0, …, 2j + 1}. We next re-
place those newly derived control vertices (the result of the j-th step of subdivision) on
the i-th boundary of the regular N-sided control mesh by pi0, pi2, …, pi(2j+1); see Fig. 7(a).
Such a replacement aims to improve the C0-continuity between P(s, t) and the regular
N-sided subdivision surface.

Now, having derived a new set of boundary vertices, interior vertices qik, for k = 0,
1, …, 2j − 1, derived at j-th step of subdivision must be refined to ensure G1-continuity
(with bounded error) along trimming curve Ti(u). That is, to achieve G1-continuity along
trimming curve Ti(u), we refine qik to q'ik, for k = 0, 1, …, 2j − 1. To obtain G1-continuity
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at the sampled vertex vi1, qi0 must lie on intersection line Li0 of the planes Ni1 and N(i+1)1,
where Ni1 is the plane passing vertex vi1 and orthogonal to surface normal 1in

r

at vi1, and
N(i+1)1 is the plane passing vertex v(i+1)1 and orthogonal to surface normal 1)1( +in

r

at v(i+1)1. To
do so, we project qi0 onto line Li0 to obtain q'i0; as shown in Fig. 8(b). Other interior ver-
tices qik, k = 1, …, (2j − 1), are refined to new interior vertices q'ik in a similar manner. Let
plane Nik be plane passing the vertex vik and orthogonal to ikn

r

. The new interior vertices
q'ik must lie on both planes Nik and Ni(k+1) and is obtained by projecting qik onto intersec-
tion line Lik of planes Nik and Ni(k+1); as depicted in Fig. 7(b).

(a) (b)
Fig. 7. The refinement of corner interior vertex qi0 in step 2(a).

(a) (b)

Fig. 8. The refinement of other interior vertices qik in step 2(a).

Step 2(b): As a result of Step 2(a), the boundary curves of the regular N-sided subdivi-
sion surface is Ci(u), which uniformly interpolates the sample points on corresponding
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boundary curves of the N-sided hole; that is, the interpolation occurs at the uniform pa-
rameter values {u0, u1, …, u2j+1} along boundary curves Ti(u).

In step 2(b), the C0 and G1-continuity conditions of each mid-span between two ad-
jacent parameter values are examined on each boundary curve. For each Ci(u), we project
points cik = Ci((uk + uk+1)/2), for k = 0, …, 2j, onto the NURBS surface P(s, t) and obtain
projection point c'ik and normal vector iko

r

at c'ik. C0-continuity at cik is ensured by check-
ing whether the Euclidean distance between cik and c'ik is smaller than a pre-specified
tolerance ∈d, while G1-continuity at cik is ensured by testing if the inner product of

iko
r

and cik − dik is smaller than a specified tolerance ∈n. If the test succeeds for all sam-
pled points on all boundary curves, we stop and output the current regular N-sided control
mesh; otherwise we repeat Step 2. Note that the maximum error within a span [uk, uk+1]
does not usually occur at its midpoint. Nevertheless, reparameterization can in general
move the maximum to the span’s midpoint see for example [27].

4. VERTEX BLENDING OF PARAMETRIC SURFACES

The derivation of the regular N-sided subdivision surface for N-sided hole filling
can be extended to vertex blend for either non-setback or setback paradigm, with one
difference that here vertex blend can meet incident edge blends with C1-continuity along
the profile curves.

4.1 Non-setback Vertex Blending

For non-setback vertex blend, the boundary curves of the N-sided hole are the pro-
file curves of the incident edge blends. Suppose we have N incident edge blends Gi(s, t)
and their associated profile curves Pi(u) defined by

Pi(u) = Gi(s(u) = 1, t(u) = u),

for i = 0, 1, …, N − 1; that is, Pi(u) is the boundary cross section curve of the edge blend
Gi(s, t); see Fig. 9. The vertex blend can be derived by first filling the N-sided hole
bounded by profile curves Pi(u), i = 0, 1, …, N − 1, using the procedure described in sec-
tion 3. The hole filling procedure results in a regular N-sided subdivision surface of level
m, for some m ≥ 2, that has G1-continuity to each incident edge blend at sampled points
along the profile curve. Although the cross tangent of edge blends along the profile curve
can be easily computed, ensuring C1-continuity in the course of the hole filling process,
however, may introduce conflict on cross tangent conditions derived from some pairs of
neighboring edge blends. Hence, we first do the N-sided hole filling procedure and then,
along each profile curve, adjust the cross tangent of the edge blend to be exactly the same
as the corresponding cross tangent of the regular N-sided subdivision surface. That is,
after the hole filling process, we perform one more derivation of edge blends in which the
cross tangent conditions (in terms of control vertices) derived from the regular N-sided
subdivision surface can be satisfied. Hence the edge blends and the regular N-sided sub-
division surface can be joined exactly with C1-continuity along each profile curve Pi(u), i
= 0, 1, ..., N − 1.
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Fig. 9. Non-setback vertex blend.

4.2 Setback Vertex Blending

The boundary curves for the setback vertex blend for a corner are the profile curves
of the incident edge blends as well as the spring curves that connect neighboring profile
curves [4]. Suppose we have N edge blends incident to the corner. There will be N profile
curves Pi together with N spring curves Si, for i = 0, …, N − 1. One difference from the
derivation of the non-setback vertex blend is that the interior vertices immediately adja-
cent to boundary vertices can be obtained according to the cross tangents of the edge
blends without introducing any conflict.

Suppose profile curve Pi, for i = 0, 2, …, N − 1, is represented by an open uniform
B-spline curve with four control points pi0, pi1, pi2, and pi3. The control points themselves
are used as control vertices on the i-th boundary of the initial N-sided regular control
mesh. To ensure exact C1-continuity between edge blends Gi(s, t) and the regular N-sided
subdivision surface along profile curve Pi, interior vertices qi0 and q(i+1)0 can be obtained
directly using the cross tangents of Gi(s, t) along Pi (see Fig. 10); that is,

qi0 = pi1 + 1it
r

and q(i+1)0 = pi2 + 2it
r

(8)

Fig. 10. Construction of a setback vertex blend.

where 1it
r

and 2it
r

are the cross tangents of the edge blend Gi(s, t) at pi1 and pi2, respectively.
Note that since edge blend Gi and iS2 (Eq. 6) of the initial regular N-sided control mesh
have collinear cross tangents of the same magnitude, Gi and the surface represented
by i

mS of the regular N-sided control mesh of level m, for some m ≥ 2, are joined with
C1-continuity; see [25]. As a consequence, the final regular N-sided subdivision surface is
C1-continuous with each incident edge blend along the profile curve. However, the con-
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tinuity between the regular N-sided subdivision surface and each base surface is only
approximate; i.e., it is only exact at only sampled points along the spring curve, like what
we have seen for the N-sided hole filling.

5. REPRESSENTING THE REGULAR N-SIDED SUBDIVISION
SURFACES USING NURBS SURFACES

The N-sided hole filling or vertex blending procedure results in a regular N-sided
control mesh N

mRM , for some level m ≥ 2. Representing the regular N-sided subdivision
surface derived from N

mRM using NURBS surfaces is sometimes necessary since current
CAD tools have no support for subdivision surfaces. One straightforward way is to rep-
resent the subdivision surface portion bounded by each rectangular mesh i

mG of Eq. 1, i =
0, 1, …, N − 1, with a rectangular NURBS patch i

mR using semi-open knot vector 4+m
sK =

[0001…(m + 1) ] in the v direction and 3+m
sK = [0001…m ] in the u direction, and to

leave an N-sided hole in the center; as shown in Fig. 11(a). To ensure C1-continuity be-
tween i

mR and Ni
mR mod)1( + , for i = 0, 1, …, N − 1, each i

mG is expanded to i
mG ' by sharing

the same boundary faces with Ni
mG mod)1( + along their common boundary; that is,

.
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(a) Regular split method. (b) Mid-edge split method.

Fig. 11. Split of a regular N-sided quadratic subdivision surface.

Consequently, the B-spline patch i
mR ' derived from i

mG ' using semi-open knot vector
5+m

sK = [0 0 0 1
�

( m + 2 ) ] in the v direction and 3+m
sK in the u direction is thus

smoothly joined with C1-continuity to )'mod)1(( Ni
mR + derived from )'mod)1(( Ni

mG + using the same
knot vectors. The regular N-sided subdivision surface can then be approximated by N
B-spline patches 0

mR ', 1
mR ', …, )1( −N

mR ', together with the centered N-sided hole. We call
such a method the regular split method.
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Note that this representation will always leave an N-sided hole in the center. The
area of the centered hole can be reduced by repeated application of the open uniform
quadratic subdivision; that is, when we apply one step of the open uniform quadratic
subdivision to the current mesh N

mRM , we obtain a new regular N-sided control mesh of
level 2(m − 1), N

mRM 12 − ; but with smaller center hole. Such an open uniform quadratic
subdivision can be applied until the area of the center hole becomes smaller than a given
tolerance. We then represent the regular N-sided subdivision surface with B-spline
patches i

lR ', i = 0, …, N − 1, for some l > m, and the centered polygon. We should note
that such a repeated application of the open uniform subdivision on N

mRM does not change
the boundary continuity we obtained at the end of the hole filling and vertex blending
process.

5.1 An Approximate NURBS Representation

We also propose a mid-edge split method, in which the regular N-sided control mesh
is split into N rectangular meshes by adding a center face point cm at the centroid of the
center N-sided hole and m mid-edge points to be defined as follows. Given N

mRM , a regu-
lar N-sided control mesh of level m, for each rectangular mesh i

mG , we insert m mid-edge
points i

md0 , i
md1 ,

�
and i

mmd )1( − , defined by

;1,,1,0,
2
)1( −=

+
= − mk

gg
d

i
km

i
mki

km L

see Fig. 12. Control mesh N
MRM is then split into N rectangular meshes 0

mM , 1
mM , …,

and 1−N
mM , each of which shares with the adjacent mesh the inserted mid-edge points

i
md0 , i

md1 , …, and i
mmd )1( − , and the center face point cm; that is, the rectangular mesh

i
mM is defined by the following m � m matrix of vertices:

Fig. 12. Inserting the mid-edge point.
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see Fig. 11(b). The regular N-sided subdivision surface is then approximated by N
B-spline surfaces 0

mB , 1
mB , …, and 1−N

mB , where i
mB is defined by the control array i

mM
using open uniform knots 3

0
+mK = [0001…(m − 3)(m − 2)(m − 2)(m − 2)] in both

directions. In the following, we claim that each patch i
mB , for i = 0, 1, …, N − 1, is guar-

anteed to join its adjacent patches with C1-continuity and lies on the regular N-sided sub-
division surface derived from N

mRM , except in the region of the center hole:

1. Since each B-spline patch i
mB shares the same boundary vertices (the mid-edge points

i
kmd , k = 0, 1, …, m − 1, and the center face point cm) with patch ,mod)1( Ni

mB + and both
are derived using open uniform knots, they are exactly connected to each other with
C0-continuity.

2. Consider the following control mesh i
msM , which is obtained from i

mM of Eq. 10 by
removing the last row; that is,

;
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see Fig. 13 (a). Let i
msB be the B-spline patch derived from i

msM using open knot 4
0

+mK =
[0001…(m − 2)(m − 1)(m − 1) (m − 1)] in the v direction and semi-open knot 3+m

sK
= [0001…m] in the u direction. Since we have i

kmd = ,2/)( )1(
i
km

i
mk gg +− k = 0, …, m − 1,

the two patches i
mR and i

msB will have the same control mesh and knot vectors in both di-
rections if knot refinement in the v direction is applied to i

msB . Thus, each sub-patch i
msB , i

= 0, 1, …, N − 1, lies exactly on the regular N-sided subdivision surface.
3. Since the adjacent vertices between the two control meshes i

msM and Ni
mM mod)1( + are col-

linear, and both patches use an open uniform knot along their common boundary, i
msB is

joined to patch Ni
mB mod)1( + with C1-continuity.

4. Let i
mpM be the control mesh derived from i

mM by removing the last column; that is,

;
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see Fig. 13(b). Let i
mpB be the B-spline patch defined by i

mpM using open knot 4+m
oK in the

u direction and semi-open knot 3+m
sK in the v direction. Similar to the argument depicted

in items 2 and 3, each i
mpB also lies exactly on the regular N-sided subdivision surface and

is joined to Ni
mB mod)1( − with C1-continuity.

From the above arguments, we conclude that each of the N split B-spline patches
0
mB , 1

mB , …, and 1−N
mB lies exactly on the regular N-sided subdivision surface and

smoothly joins its adjacent patches with C1-continuity as well, except in the region that is
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���� �

(a) Control meshes i
msM . (b) Control mesh i

mpM .

Fig. 13. Control meshes i
msM and i

mpM .

not covered by both control meshes i
msM and i

mpM , for i = 0, 1, …, N − 1; i.e., except in
the region of the center N-sided hole where only C0-continuity is achieved. As previously
stated, if we apply one step of the open uniform quadratic subdivision scheme to the
regular N-sided control mesh N

mRM , we obtain a new regular N-sided control mesh of
level 2(m − 1), but with a smaller center N-sided hole. Such a subdivision can be applied
until the area of the centered N-sided hole is smaller than a given tolerance. Fig. 14 shows
a regular 6-sided subdivision surface that is the result of four subdivision iterations and is
represented using the regular split method and mid-edge split method, respectively.

���������� �

(a) Regular split method. (b) Mid-edge split method.

Fig. 14. Splitting of a regular 6-sided subdivision surface.

6. EXAMPLES

The proposed method has been implemented on an SGI (with MIPS
R5000/180MHZ CPU) as part of our cggmlib toolkit library in the C programming lan-
guage. Fig. 15 shows the filling of a 5-sided hole on a B-spline surface using two differ-
ent fullness parameters. Fig. 16 shows the setback vertex blends of a box’s corner using
two different fullness parameters. Fig. 17 shows the vertex blends for three intersecting
planes having edge blends of mixed convexities. In Fig. 17(a) the setbacks of the convex
edge blend are set to zero, and the vertex blending surface is 4-sided. In Fig. 17(b) the
setback of the convex edge blend is non-zero, and the vertex blending surface becomes
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6-sided. In Fig. 17(c), the fullness parameter corresponding to the convex edge blend is
set to be larger than that for the other two concave edge blends. Fig. 18 shows the vertex
blend of a box’s corner where incident edge blends are all degenerated. Fig. 19 shows the
non-setback vertex blend of a corner formed by six planes. Table 1 shows the number of
subdivision steps required for C0 and G1-continuity tolerances of ∈d = 10–3 and ∈d = 10–2,
respectively, and the time spent to construct the vertex blends. The proposed method is
efficient since major computations involve only the evaluation of points, normal vectors
of parametric surfaces, and the interpolation of data points.

Table 1. Statistics for constructing vertex blends.

Example Fig. 16(b) Fig. 17(b) Fig. 18 Fig. 19
No. of subdivisions 3 3 4 3

Time in second 1.17 1.14 0.46 0.31

Fig. 15. Filling a 5-sided hole using fullness 0 (middle) and 1.0 (right).

���������

(a) With a smaller fullness parameter.

����������

(b) With a larger fullness parameter.

Fig. 16. Setback vertex blends of a box’s corner using different fullness parameters.
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�����

(a) Non-setback vertex blend.

�������

(b) Setback vertex blend.

�������

(c) With a larger fullness parameter for the convex edge blend.

Fig. 17. Vertex blends for three planes having edge blends of mixed convexities.

Experimental results show that our proposed methods are capable of constructing
the vertex blend for corners having incident edge blends of mixed convexities and also
provide some degree of flexibility in shape control using fullness parameters. The regular
N-sided subdivision surface for all examples are finally converted into NURBS surface
using the mid-edge split method. The area of the centered polygonal is usually small
when the C0 and G1-continuity tolerances are satisfied. For the examples shown in 16(b)
and 17(b), three steps of the subdivision are used to satisfy the C0 and G1-continuity for
tolerances ∈d = 10–3 and ∈d = 10–2, respectively, and the ratio of the area ratio of the final
center hole to the initial regular N-sided control mesh is 0.05631 and 0.07984 for exam-
ples shown in Figs. 16(b) and 17(b), respectively. The maximum G1-continuity error be-
tween split NURBS patches in the region of the center hole is 0.000269 and 0.040511 for
the examples shown in Figs. 16(b) and 17(b), respectively. These G1-continuity errors are
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considered to be small enough for visual smoothness. Nevertheless, different from the
area of the center hole, the maximum G1-continuity error between split NURBS patches
in the region of the centered hole is not guaranteed to converge to 0 when the subdivision
of the regular N-sided mesh goes to infinitely many steps. Note that the maximum
G1-continuity error between NURBS patches resulting from the mid-edge split always
occurs at the center split vertex since the difference of the cross tangents between two
adjacent NURBS patches is defined by a quadratic B-spline curve in which the control
points are all zero except at the center split vertex. Hence, the cross tangent difference is
linearly increasing from 0 at ,)1(

i
mmd −

for i = 0, 1, …, N − 1, and reaches a maximum at the
center split vertex cm.

���������

Fig. 18. A vertex blend of a box’s corner having degenerated incident edge blends.

����������

Fig. 19. Non-setback vertex blend of six planes having edge blends of mixed convexities.

7. CONCLUSIONS

We have proposed a regular N-sided open uniform quadratic subdivision surface to
fill an N-sided hole on a parametric surface and to blend a corner formed by NURBS sur-
faces. The N-sided open uniform quadratic subdivision surface is derived by applying the
open uniform quadratic subdivision proposed in [25] to an initial regular N-sided control
mesh which confines to the hole or to the region of the vertex blend. The boundary
conditions required for hole filling and vertex blend, including positional and tangential
continuity, are obtained by some refinement steps guided by the boundary control
mechanism possessed by the subdivision scheme. We have also proposed fullness pa-
rameter for the shape control on the regular N-sided open uniform quadratic subdivision
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surface. The resulting subdivision surface is itself an exact representation for the hole
filling surface and the vertex blend. In order to incorporate the proposed methods to cur-
rent CAD systems, however, the subdivision surface can either be represented hybridly
by a set of NURBS surfaces and a centered N-sided hole, or solely by a set of NURBS
surfaces that are exactly on the subdivision surface, except in the region of the centered
N-sided hole where the subdivision surface is only approximated. However, in order to
incorporate the proposed methods into current CAD systems, the subdivision surfaces
can be represented in either of the following two ways:

1. by a set of NURBS surfaces and a center N-sided hole,
2. by a set of NURBS surfaces that are exactly on the subdivision surface.

In our current implementation, the tolerance value in section 3 still has to be manu-
ally adjusted. In the future, we will try to find better mechanisms to adjust the error tol-
erance, and improve the speed of the whole process. We are also currently investigating
the convergence rate for the area of the center N-sided hole and an error measure for the
NURBS approximation in the region of the centered hole.
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