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Abstract: This study presents a wavelet neural network-
based approach to dynamically identifying and modeling
a building structure. By combining wavelet decomposi-
tion and artificial neural networks (ANN), wavelet neu-
ral networks (WNN) are used for solving chaotic signal
processing. The basic operations and training method of
wavelet neural networks are briefly introduced, since these
networks can approximate universal functions. The fea-
sibility of structural behavior modeling and the possibil-
ity of structural health monitoring using wavelet neural
networks are investigated. The practical application of a
wavelet neural network to the structural dynamic model-
ing of a building frame in shaking tests is considered in an
example. Structural acceleration responses under various
levels of the strength of the Kobe earthquake were used to
train and then test the WNNs. The results reveal that the
WNNs not only identify the structural dynamic model, but
also can be applied to monitor the health condition of a
building structure under strong external excitation.

1 INTRODUCTION

Simulation models aimed at predicting structural behav-
ior are commonly derived from statistics. However, these
regression methods cannot be used to construct an op-
timal model to simulate actual complex engineering be-
havior. While considering too few factors during regres-
sion leads to inaccurate results, considering too many
factors complicates the model too much for evaluation.

Structural system identification is an important is-
sue in structural engineering. The aim of system iden-
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tification is to identify a predefined simulation model
that approximates a real world system. Hence, the pro-
cess of system identification can be treated as a kind
of function approximation (or mapping). System iden-
tification has its roots in standard techniques and sev-
eral of the basic routines have direct interpretations as
well-known statistical methods such as the least squares
and maximum likelihood methods. Astrom and Bohlin
(1965) applied maximum likelihood estimation to dif-
ference equations (Auto Regressive Moving Average
with eXogenous input models, ARMAX). Thereafter,
many estimation techniques and model parameteriza-
tions were developed. However, the complex nature of
civil structures is such that the available measurements of
their responses are typically incomplete, incoherent, and
noise-polluted. Consequently, conventional system iden-
tification methods cannot yield the required accuracy, re-
liability, and feasibility for current structures. Recently,
developing approaches to providing more accurate mod-
els for analyzing civil engineering structures has received
considerable attention. Of these approaches, artificial
neural network (ANN)-based methods have become
highly effective for use in nonparametric identification.
Utilizing a neural network-based approach for system
identification is demonstrated to yield more satisfactory
results than the traditional approach (Chassiakos and
Masri, 1996; Nerrand et al., 1993; Sjoberg et al., 1994,
1995).

However, the implementation of neural networks suf-
fers from the lack of efficient constructive methods. The
problems of local minima and convergent efficiency are
also important issues and should be addressed when
using ANNs. The recently introduced wavelet decompo-
sition (Chui, 1992; Rao and Bopardikar, 1998) emerges
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as a highly effective approach for function approxi-
mation. Furthermore, wavelet decomposition combined
with the neural network structure, namely, wavelet neu-
ral networks (WNN) has been recently discovered as
a more powerful tool for signal analysis. Zhang and
Benveniste (1992) first proposed this methodology.
Thereafter, several studies extended their work to im-
prove the network structure (Jun and Huihe, 1999;
Zhang et al., 1995), initialization procedure, parame-
ter adoption law, and learning algorithm (Zhang, 1997;
Ciuca and Ware, 1997; Liu et al., 1998; Oussar et al., 1998)
of the WNN. Meanwhile, the adoption of the WNN to
approximate functions has been considered in various
areas of scientific and engineering research (Lu and Li,
1997; Cheng et al., 1998; Adeli and Karim, 2000; Adeli
and Samant, 2000; Karim and Adeli, 2002a). However,
until now, few studies have addressed WNNs in the area
of dynamics of civil engineering structure.

Another relevant issue in structural engineering,
which has actively been studied in recent years, is
the health monitoring of structures. Structural health
monitoring schemes based on a system identifica-
tion approach have been extensively studied during
the past decade (e.g., Agbabian et al., 1991; Masri
et al., 1996; Abdelghani et al., 1997; Nakamura et al.,
1998; Masri et al., 2000). Masri et al. (1996, 2000) and
Nakamura et al. (1998) proposed a practical scheme for
monitoring the health of real structures. In their works,
the artificial neural networks (ANN) was first trained
using the dynamic responses of a healthy (undamaged)
structure. Then, the well-trained ANN was fed with the
dynamic responses under various scenarios for the same
structure. The condition of the structure can be diag-
nosed and evaluated by monitoring the system output
errors of the ANN. The concept behind their proposed
method is adopted in this article to explore the relevance
of WNN to monitoring structural health, based on the
dynamic model identification results for the structure.

This work attempts to demonstrate the feasibility of
adapting a wavelet neural network to model the behav-
ior of a structure in an earthquake. Not requiring in-
formation concerning physical parameters, the proposed
model can easily simulate structural behavior, based only
on the input and the output data of the structure. An ex-
ample of a five-story 1/2-scaled steel frame in different
scales of the Kobe earthquake is considered to elucidate
the power of the proposed model. Illustrative examples
indicate that the proposed WNN system identification
model can yield an exact structural dynamic response.
WNN and ANN approaches will also be compared,
using the same experimental data. The proposed exam-
ple will also clarify the potential of using WNNs for mon-
itoring structural health, according to the computed out-
put errors of WNNs under various levels of excitation.

2 THEORETICAL BASIS

2.1 Artificial neural network model
with one hidden layer

The multilayered neural network is probably the most
frequently used type of network structure in practical
applications. The architecture of the network includes
an input layer, one or more hidden layers, and an out-
put layer. Frequently considered single hidden layer net-
works have the following form:

f (x) =
N∑

i=1

wi hθi (x) (1)

where hθi (·) represents the hidden neurons parameter-
ized by θi , and wi (i = 1 ∼ N) represents a linear combi-
nation of weights of the hidden neurons.

However, implementing neural networks suffers from
a lack of efficient constructive methods of determining
the parameters of the neurons and choosing network
structures. The presence of local minima and low con-
vergent efficiency are also important issues, and must be
addressed when using ANNs.

2.2 Wavelet transform

Wavelet transform and wavelet decomposition have
been newly discovered as powerful tools and have been
applied in many research areas (e.g., Guler et al., 2001;
Jang et al., 2001; Zhao et al., 2001; Samant and Adeli,
2000, 2001; Karim and Adeli, 2002b, 2003; Adeli and
Ghosh-Dastidar, 2003). Wavelet theory states that func-
tions of L2 space can be represented by their projections
onto the space linearly spanned by a family of wavelet
functions. The wavelet functions are typically chosen to
have compact supports in both time and frequency do-
mains, so that they have local time-frequency proper-
ties. Functions can be approximated by the truncated
discrete wavelet decomposition because of their local
time-frequency properties.

A wavelet family associated with the mother wavelet
ψ(x) is generated by two operations—dilation and trans-
lation. It can be written as,

ψa,b(x) = a−1/2ψ

(
x − b

a

)
(2)

where a and b are dilation and translation parame-
ters, respectively. Both are real numbers and a must be
positive.

Using the mother wavelet function ψ(x), the continu-
ous wavelet transform of a signal f (x) is defined as

w (a,b) = a−1/2
∫ +∞

−∞
f (x)ψ

(
x − b

a

)
dt (3)
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whereψ(x) indicates the complex conjugate ofψ(x). The
mother wavelet must satisfy an admissibility condition to
ensure existence of an inverse wavelet transform

Cψ =
∫ +∞

−∞

|Fψ(ω)|2
|ω| dω < ω (4)

where Fψ(ω) indicates the Fourier transform of ψ(x).
The signal f (x) then can be reconstructed by an inverse
wavelet transform of w(a, b) as defined by

f (x) = 1
Cψ

∫ +∞

−∞

∫ +∞

−∞
w(a, b)ψ

(
x − b

a

)
1
a2

da db (5)

To meet the requirement for digital computation, the
continuous inverse wavelet transform is normally trans-
formed to the discrete form,

f (x) =
∑

i

wi a
− 1

2
i ψ

(
x − bi

ai

)
(6)

The discretization involves determining the parameters
wi , ai , bi in Equation (6), based on a data sample.

2.3 Wavelet neural network

A wavelet neural network (Zhang and Benveniste,
1992), which logically connects an artificial neural net-
work with wavelet decomposition, is based on a novel
neural network structure, and involves the wavelet trans-
form. As a matter of fact, Equation (6) refers to a single
hidden layer feedforward network, which is a particu-
lar case of network represented by Equation (1). Here, a
hidden neuron is a dilated and translated wavelet. Some-
times, the function to be approximated is partially linear.
Some additional terms were introduced to the network
specified by Equation (6) to capture the linear charac-
teristics of nonlinear problems. This modification yields

f (x) =
∑

i

wi a
− 1

2
i ψ

(
x − bi

ai

)
+ cTx + d (7)

Figure 1 shows the architecture of the wavelet neural net-
work. In Figure 1, the combination of translation (−bi),
dilation (ai), and wavelet (ψ i), all lying on the same line,
is called a wavelon.

The wavelets are considered as a family of parameter-
ized nonlinear functions which can be used for nonlin-
ear regression. Their parameters are estimated through
a training procedure. In general, the adopted training
algorithm is similar to the one in a back-propagation
procedure.

Fig. 1. Wavelet neural network structure for approximation.

2.4 Dynamic modeling using wavelet neural network

According to several publications on system identifica-
tion (Juang, 1994; Ljung and Glad, 1994), perhaps the
most basic relationship between the input u and output
y, is the linear difference equation,

y(t) = f (y(t − 1), . . . , y(t − na), u(t − nk), . . . ,

u(t − nk − nb + 1)) (8)

where na represents the number of poles and nb − 1 is
the number of zeros, whereas nk is the pure time-delay
(the dead time) in the system. The equation describes the
system in terms of a functional expansion of lagged in-
puts and outputs. Several studies have shown that a large
class of discrete-time nonlinear systems derived from the
difference equation can be represented by the nonlinear
ARMAX (NARMAX) model. Its ability to approximate
a system to a desired accuracy depends on an appropri-
ately selected set of known functions. Wavelet functions
are then involved in an NARMAX model.

The NARMAX model representation of nonlinear
discrete time systems with r input and m output can be
expressed as

y(t) = f (y(t − 1), . . . , y(t − ny), u(t − 1), . . . ,

u(t − nu), e(t − 1), . . . , e(t − ne)) + e(t) (9)

where

y(t) = [y1(t) y2(t) · · · ym(t)]T

u(t) = [u1(t) u2(t) · · · ur (t)]T

e(t) = [e1(t) e2(t) · · · em(t)]T

(10a–c)

are the system output, input, and noise vectors, respec-
tively; ny, nu, and ne are the maximum delay time (lags)
of the output, input, and noise, respectively; e(t) is the
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zero-mean noise signal, and f (·) is a vector-valued non-
linear function.

Here, the use of WNN was extended to identify the
nonlinear system governed by the model:

y(t) = f (y(t − 1), . . . , y(t − ny), u(t − 1), . . . , u(t − nu))

(11)

in which the noise terms in Equation (9) are neglected.
According to Equation (11), the output at the present

time is a functional representation of the past input and
output data. When the WNN is well trained using a
training set of the system input-output responses, the
network structure parameters associated with the WNN
can be considered as the dynamic characteristics of the
system. If the dynamic characteristics of the system do
not change, the trained WNN will perform just like the
measured response of a real structure. However, if the
dynamic characteristics of the system change due to dam-
age or deterioration of structural elements, the network
structure parameters associated with the WNN can no
longer represent the dynamic characteristics of the sys-
tem, and the WNN will exhibit a marked difference be-
tween computed and measured responses.

3 CONSTRUCTING WAVELET
NEURAL NETWORK

Figure 2 briefly depicts the processes of constructing a
WNN. Before training the WNN (searching for the best
parameters, ai , bi , and wi in Equation (7)), some oper-
ating parameters should be determined first. They are
(1) network architecture parameters, such as number of
wavelons; and (2) wavelet initialization parameters, such
as number of scale levels scanned and the minimum num-
ber of input patterns to be covered by each wavelon.

3.1 Selecting the number of wavelons

Like the number of hidden layers and neurons, the
number of wavelons in WNN is critical. The number
of wavelons may be selected by relying on appropriate
versions of standard model order criteria. A systematic
methodology based on information theory and used for
system identification to determine the model order can
be applied to WNN. Akaike’s final prediction error cri-
terion (FPEC) (Akaike, 1969) is adopted here to deter-
mine the number of wavelons. The criterion is defined
as

JFPE( f̂ ) = 1 + np/N
1 − np/N

1
2N

N∑
k=1

( f̂ (xk) − yk)2 (12)

where (xk, yk) are training data pairs; N is the sample
length of training data, and np is the number of parame-
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Fig. 2. The processes of approximation using WNN.

ters in the estimator and is calculated using the following
formula.

np = M(d + 2) + d + 1 (13)

where M is the number of wavelets in the network and
d is the input dimension.

3.2 Selecting the number of wavelet
initialization parameters

Two wavelet initialization parameters, the number of
scale levels scanned during initialization and the mini-
mum number of input patterns to be covered by each
wavelon, can be determined by experiential rule (Zhang
and Benveniste, 1992) as follows:

nc= 2 + nv ; lv= 4 (14a, b)

where nc is the minimum number of input patterns to
be covered by each wavelon; nv is the number of input
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variables, and lv is the number of scale levels scanned
during initialization.

3.3 Mother wavelet

If the function f (x) is mostly compact in both time and
frequency domains, and the mother wavelet is well con-
centrated in both time and frequency domains, then good
approximation of f (x) using a finite number of terms in
Equation (6) can be achieved. Therefore, this article uses
the following mother wavelet adopted in the WNN to
generate a wavelet family:

ψ(x) = (xTx − n) × e− 1
2 xT x, x ∈ Rn (15)

According to the initialization parameters, the
wavelets in the network are selected based on the in-
put/output data of the samples, and the wavelons are
initially established after the wavelet is selected using
regression. Next, the weights in the net are calculated
using quasi-Newton algorithm (Battiti, 1992). After iter-
ative training and adjustment of the parameters ai, bi and
wi in Equation (7), the difference between the measured
outputs and the calculated output values becomes mini-
mum, and the WNN is established and ready to simulate
structural behavior.

4 EXAMPLE

4.1 Problem statement

System identification allows engineers to build mathe-
matical models of a dynamics system, based on measured
data. The most commonly used models are difference
equations. These include ARX and ARMAX models,
and all types of linear state-space models. Lately, black-
box nonlinear structures, such as artificial neural net-
works, fuzzy models, and others, have been extensively
applied. In this article, the feasibility of using a WNN
to model a five-story 1/2-scaled steel frame at the Na-
tional Center for Research on Earthquake Engineering
(NCREE) is examined by processing the dynamic re-
sponses of this test structure to different scales of the
original Kobe earthquake, in shaking table tests. The
test structure is a 3-m long, 2-m wide, and 6.5-m high
steel frame (Figure 3). Lead blocks were piled on each
floor such that the mass of each floor was approximately
3664 kg. The frames were subjected to the base excitation
of the Kobe earthquake, weakened to various extents.
The displacement, velocity, and acceleration response
histories of each floor were recorded during the shaking
table tests. Additionally, some strain gauges were also in-
stalled in one of the columns and near the first floor. The
rate of sampling the raw data was 1000 Hz. For practical
reasons, only the experimental data concerning the ac-

Fig. 3. Photograph of the five-story test structure.

celeration responses in the long span direction are used
here.

4.2 Data processing

The measured story acceleration responses are the in-
put/output data for system identification using WNN.
Five sets of experimental data, which are structural ac-
celeration responses under 20%, 32%, 40%, 52%, and
60% Kobe earthquakes, were considered. The originally
measured data were recorded at a frequency of 1000 Hz.
In order to reduce the dimensionality of the data without
losing the features of the dynamic response, the original
data were processed by changing the sampling rate of the
signal. The data were resampled at ten times the origi-
nal sample rate, 100 Hz. A lowpass FIR filter was used
in resampling. Thus, about 2000 records were used to
identify the system. Moreover, all input/output data of
WNN were normalized by being transformed into a hy-
percube [−1, 1]n. The learning procedure was applied to
this hypercube, and the computed output recovered by
transforming the data back to their original shape.
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4.3 Dynamic modeling of the test frame

Figure 4 presents a proposed feedback predictor net-
work. In Figure 4, Ne is number of external inputs to
the network; Ns is number of state inputs variables to
the network. The WNN is used to identify the accelera-
tion response of the second floor from the data obtained
above and below that floor. Figure 5 schematically de-
picts the network input/output assignment. The response
is selected at these degrees of freedom because: (1) the
structural element is shaken to yield at the bottom floor
under the 60% Kobe earthquake; and (2) practically,
only few of the total degrees of freedom are measured
for a complex structure. Consequently, only the response
data at the first, second, and third floors were considered
here.

During the training, the originally measured data of
the test structure are treated as input-output data. After
training, the computed output and originally measured
data are used as the past time input data to determine
the subsequent output. For example, the acceleration re-
sponses of the first, second, and third stories during the
previous time interval are used as inputs to the WNN,
and the current acceleration response of the second
story is used as the output of the WNN. After training,
the acceleration response is computed using the trained
WNN. The measured acceleration response of the first
and third stories, and the computed previous accelera-
tion response of the second story are input to the input

ψ1

∑

u(n-1)

u(n-Ne)

y(n-1)

y(n-2)

y(n)

Unit

delays

y(n-Ns)

y(n-2)

y(n-1)

y(n-Ns+1)

ψ2

ψΝ ω

Fig. 4. Feedback predictor networks.

Fig. 5. Schematic diagram of network I/O assignment for
steel frame structure.

nodes to calculate the current acceleration response of
the second story.

The normalized root mean square error (RMSE) value
is employed as a performance indicator of the perfor-
mance of the WNN:

RMSE(ŷ) =
√∑

(ŷ − y)2√∑
(ŷ − ȳ)2

(16)

where y is the desired output, ŷ is the computed output,
and ȳ is the mean of computed output. A smaller RMSE
implies a better performing WNN.

4.4 Identification results

The simulation is implemented using the MATLAB
WNET toolbox, provided by Zhang (Anonymous FTP),
on the Windows 2000 Professional platform, using an
AMD Duron-700 PC.

The data concerning the response to a 20% Kobe exci-
tation are used to determine the parameters of the WNN.
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Fig. 6. Radar diagram of RMSE.

First the dynamic model order, ny, nu in Equation (11),
suitable for describing the structural behavior is deter-
mined. According to the authors’ experience, the WNN
can have good performance when the values ny and
nu are set to be the same. The accuracy of the pre-
diction, represented by RMSE, and the computational
times spent initializing and training are both considered
in selecting the order. After trial and error, order ten is
selected, since it yields satisfactory accuracy (RMSE)
and requires relatively little computational time. The
network parameters should be determined. The num-
ber of scale levels scanned and the minimum number of
input patterns to be covered by each wavelon are de-
termined by the empirical rule, Equation (14). Akaike’s
FPEC determines that one wavelon suffices in this ex-
ample. After initialization of the WNN, the WNN was
then trained with the quasi-Newton method.

Based on the WNN parameters obtained above, four
other sets of experimental data obtained at different
excitation levels (i.e., 32%, 40%, 52%, and 60% Kobe
earthquakes) were also used to train their own WNNs.
After training, each trained WNN is tested with the five

sets of experiment data in sequence. Figure 6 presents
simulation results and the performance indicator RMSE
for five difference excitation levels, Kobe 20%, 32%,
40%, 52%, and 60%. Figures 7–10 present and com-
pare the absolute errors between computed and mea-
sured acceleration responses of the structure, at various
excitation levels. Figures 7 and 8 present the results con-
cerning the structural response to Kobe 20% excitation,
used as a training source to simulate the structural re-
sponses to Kobe 32% and 60% excitations. Figures 9
and 10 present the results concerning the structural re-
sponse to Kobe 60% excitation, used as a training source
to simulate the structural responses to Kobe 32% and
60% excitations.

According to the results shown in Figure 6, the net-
work trained with data concerning responses to 20%,
32%, 40%, and 52% Kobe earthquakes can simulate
the structural response under 20%, 32% (Figure 7),
40%, and 52% Kobe earthquakes. The performance
indicators (RMSE) are under 7% and the maximum
absolute errors between the computed and measured
response are around 0.04 g. However the network cannot
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Fig. 7. The WNN system identification results (trained by Kobe NS 20% for forecasting Kobe NS 32%).

perform equally well for the structure under 60% Kobe
earthquake (Figure 8). Furthermore, the network
trained with the data concerning the response to the
60% Kobe earthquake cannot simulate the structural re-
sponse under 20%, 32% (Figure 9), 40%, and 52% Kobe
earthquakes. The maximum absolute error is around
0.2 g. The RMSE slightly exceeds 15%, very far from
the value under 7%. These results imply that the struc-
tural behavior may change when the input excitation ex-
ceeds that of a 52% Kobe earthquake. The results also
imply that, if the structural element does not change (or

yield), then WNNs can obtain almost the same response
as would be measured. However, if the structural ele-
ment does change (or yield), then the WNNs trained
with the response of a baseline (undamaged) structure
will no longer be sufficient to represent the dynamic be-
havior of this structure, and the outputs of the WNNs
significantly differ from the measured response. Inter-
estingly, the frame has been reported (Yeh et al., 1999)
to respond linearly to 20%, 32%, 40%, and 52% Kobe
earthquakes. Measured strains and visual inspection re-
vealed that a 60% Kobe earthquake input caused the
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Fig. 8. The WNN system identification results (trained by Kobe NS 20% for forecasting Kobe NS 60%).

steel columns near the first floor to yield. The dynamic
modeling results shown in this example seem to reflect
such facts.

The structural response is also determined by ANN to
compare the result of system identification using ANN
and WNN. The architecture of the ANN used included
one hidden layer with 4 hidden nodes, and the training al-
gorithm was the Levenberg–Marquardt (LM) algorithm
(Hagan and Menhaj, 1994). Figure 11 presents the sim-
ulation results of the WNN and ANN that were trained
with the 20% and 60% Kobe earthquake data individ-

ually. The figure shows that the WNN gives simulation
results that are similar to those obtained using the ANN.
Although the values of RMSE by the ANN are very close
to those obtained using the WNN, the WNN provides a
more systematic approach to determining the network
structure. Moreover, after the networks are initialized, a
longer training period is needed for the ANN to perform
as well as the WNN in this example. The training time
for the WNN is about 100 seconds, whereas the training
time for the ANN to reach the same level of RMSE is
more than two hours.
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Fig. 9. The WNN system identification results (trained by Kobe NS 60% for forecasting Kobe NS 32%).

5 CONCLUDING REMARKS

This work presents a wavelet neural network-based ap-
proach to dynamically identify and model a building
structure. The proposed approach is applied to analyze
the response of a structure to an earthquake, to verify the
feasibility of modeling structural behavior. The wavelet
neural network, which combines wavelet decomposi-
tion and neural networks, has a very strong mathemat-
ical foundation, rooted in wavelet transformation for
solving chaotic signal processing. The basic operations
and method of training of the wavelet neural network

are introduced owing to its effectiveness in approximat-
ing universal functions. A practical application of the
wavelet neural network to structural dynamic modeling
of a building frame in the shaking tests is illustrated.
Structural acceleration responses to different levels of
the Kobe earthquake were used to train and then test
the WNNs. Based on the results in this study, the follow-
ing conclusions are made:

1. System dynamic models can be obtained by a WNN
with a simple network structure (only one wavelon
is used in the example) and few training iteration
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Fig. 10. The WNN system identification results (trained by Kobe NS 60% for forecasting Kobe NS 60%).

epochs, so the computation and cost and time taken
is low. Simulation results in the example reveal that
the WNN can identify and model a dynamic system.

2. The significant increase in the RMSE can be used
to monitor the health of a structural system and
detect the failure of the structure. The example in
this study shows the possibility of using WNNs for
monitoring structural health purposes.

3. Comparing the RMSE of the WNN with that of
ANNs in previous research shows that WNN is
highly suitable for identifying a system and per-

forms as well as ANN. However, the training time
needed for the WNN is much less than the one for
the ANN.

ACKNOWLEDGMENT

The authors would like to thank the National Science
Council of the Republic of China for financially support-
ing this research under Contract No. NSC-2211-E-009-
031.



Nonparametric identification of a building structure using WNN 367

Fig. 11. RMSE comparison between the WNN and ANN: (a)
trained with the 20% Kobe earthquake data; (b) trained with

the 60% Kobe earthquake data.
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