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Generalized Cross-Validation for Wavelet
Shrinkage in Nonparametric Mixed Effects

Models

Henry HORNG-SHING LU , Su-Yun HUANG , and Fang-Jiun LIN

A nonlinear wavelet shrinkage estimator was proposed in an earlier article by Huang
and Lu. Such an estimator combined the asymptotic equivalence to the best linear unbiased
prediction and the Bayesian estimation in nonparametric mixed-effects models. In this
article, a data-driven GCV method is proposed to select hyperparameters. The proposed
GCV method has low computational cost and can be applied to one or higher dimensional
data. It can be used for selecting hyperparameters for either level independent or level
dependent shrinkage. It can also be used for selecting the primary resolution level and the
number of vanishing moments in the wavelet basis. The strong consistency of the GCV
method is proved.

Key Words: Asymptotic BLUP; Bayesian wavelet shrinkage; Soft thresholding.

1. INTRODUCTION

In the last decade wavelets have been an important and successful tool in signal and
image processing, especially for denoisingand compression. In denoisingand compression,
the wavelet coef� cients are truncated or shrunk toward zero. There are different approaches
for truncating and shrinking wavelet coef� cients. Hard and soft thresholding schemes were
proposed and studied in a series of papers by Donoho and Johnstone (see, e.g., Donoho
and Johnstone 1994; Donoho 1995). Later, various Bayesian wavelet shrinkage methods
were studied by several authors (Chipman, Kolaczyk, and McCulloch 1997; Abramovich,
Sapatinas and Silverman 1998; Vidakovic 1998a,b; Huang and Lu 2000, 2001). The works
of Huang and Lu proposed an adaptivenonlinear shrinkagemethod, BLUPWAVE, based on
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GENERALIZED CROSS-VALIDATION FOR WAVELET SHRINKAGE 715
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Figure 1. Shrinkage schemes by hard, soft, and BLUPWAVE thresholdings.

perspectives of the Bayesian estimation and the Gauss–Markov estimation (i.e., the BLUP).
The shrinkage curve of BLUPWAVE falls between those of hard and soft thresholdings, as
seen in Figure 1. These three different thresholding approaches can be summarized by the
following.

hard thresholding:¢H (d; ¯ ) = d I(jdj ¶ ¯ );

soft thresholding: ¢S(d; ¯ ) = sign(d) (jdj ¡ ¯ ) I(jdj ¶ ¯ );

and

BLUPWAVE: ¢D(d; ¯ ) = 1 ¡ ¯ 2

d2
d I(jdj ¶ ¯ );

where d is a wavelet coef� cient, ¯ is a threshold parameter, I(¢) is the indicator function,
and sign(¢) is the signum function. The BLUPWAVE shrinkage rule compromises between
hard and soft thresholding by drawing positive aspects of both strategies.

The generalized cross-validation method for parameter selection was proposed and its
related consistency was studied in the literature (Craven and Wahba 1979; Golub, Heath,
and Wahba 1979;Li 1985, 1986, 1987;Wahba 1990). In wavelet shrinkage estimation,data-
driven procedures based on cross-validation or generalized cross-validation for selecting
parameters of soft and hard thresholdings were studied by Weyrich and Warhola (1995,
1998);Nason (1996,1999);Jansen,Malfait,and Bultheel(1997);Jansen and Bultheel(1999,
2001); and Jansen (2001). In this article we propose a generalized cross-validation method
for selecting parameters encountered in the BLUPWAVE scheme, including selection of
threshold parameters at different resolution levels, the primary resolution level and the
number of vanishing moments in the wavelet basis. Extending from consistency results
in Li (1985, 1986, 1987) for linear estimation, we present the consistency of GCV for
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716 H. H.-S. LU, S.-Y. HUANG, AND F.-J. LIN

the nonlinear BLUPWAVE. Simulation studies are performed to explore the � nite sample
behavior in practice.

2. BLUPWAVE

We consider the following model of a discrete noisy signal:

yi = f (ti) + ° i; i = 1; : : : ; n; (2.1)

where ti’s are equally spaced design points over an interval [a; b] and the errors ° i’s are
iid normal random variables with zero mean and variance ¼ 2. In vector form, we use the
notation

y = f + ° ; (2.2)

where y = (y1; : : : ; yn)0, f = (f (t1); : : : ; f(tn))0 and ° = ( ° 1; : : : ; ° n)0. The sample size
is assumed n = 2m+ 1, m 2 N . Expand the mean function f(t) in terms of wavelet basis as

f (t) =
k

­ j;k ¿ j;k(t) +

1

` = j k

® `;kÁ`;k(t); (2.3)

where j is the primary resolution level, f ¿ (¢); Á(¢)g are a pair of orthogonalscaling function
and mother wavelet that generate a multiresolutionanalysis, and ¿ j;k(t) = 2j=2 ¿ (2jt ¡ k),
Á`;k(t) = 2j=2Á(2jt ¡ k).

We adopt a Bayesian approach, with coef� cients f­ j;kg being treated as unknown
scalars (i.e., � xed effects) and f ® `;kg being treated as random variables (i.e., random ef-
fects) having prior distributionN (0; ² `), where ² ` is a variance. An adaptive reconstruction
scheme, called BLUPWAVE, was proposed by Huang and Lu (2000) for this model (also
known as a nonparametric mixed-effects model). The reconstruction therein is a threshold-
ing rule that combines keep-or-kill and shrinkage with the following form

f̂(t) =

2j

k = 1

­̂ j;k ¿ j;k(t) +

m

=̀ j

2`

k = 1

1 ¡ ¶

ˆ® 2
`;k +

ˆ® `;kÁ`;k(t); (2.4)

where ­̂ j;k’s and ˆ® `;k’s are the empirical scaling and wavelet coef� cients, respectively, ¶

is a certain parameter involving ¼ , and (¢) + means max(¢; 0). The Bayesian estimation for
nonparametric mixed effects is also the best linear unbiased prediction (BLUP). Such a
predictor has the following asymptotic form

f̂BLUP(t) =

2j

k = 1

­̂ j;k ¿ j;k(t)

+

m

` = j

2`

k = 1

1 ¡ ¶

² ` + ¶
ˆ® `;kÁ`;k(t) + O

1
n¶

almost surely:
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GENERALIZED CROSS-VALIDATION FOR WAVELET SHRINKAGE 717

Every ˆ® 2
`;k, k = 1; : : : ; 2`, is an asymptotically unbiased estimator for ² ` + ¶ . Hence, it

leads to the nonlinear BLUPWAVE scheme (2.4). The details were studied by Huang and
Lu (2000). The empirical coef� cients, ­̂ j;k and ˆ® `;k, can be obtained in linear complexity
by a discrete wavelet transform (DWT) of y

­̂

ˆ®
=

W yp
n

;

where W is the orthogonal matrix associated with the DWT (Mallat 1989). Hereafter, we
work on the coef� cients w which comes from w = W y, instead of the coef� cients (­̂ ; ˆ® ).
Model (2.2) can then be represented as

w = W f + W ° = u + ° ¤ ; (2.5)

where the errors ° ¤ are still iid normal with zero mean and variance ¼ 2. For notational
simplicity, we make no distinction between ° and ° ¤ henceforth, and use the notation ° for
both of the errors ° and ° ¤ . The BLUPWAVE thresholding scheme becomes

û¶ ;i =
wi for i = 1; : : : ; 2j;

1 ¡ n¶
w2

i +
wi for i = 2j + 1; : : : ; n:

(2.6)

The focus of this article is on GCV selection of the parameter ¶ . The GCV method can be
also extended to select level dependent (i.e., scale dependent) thresholds for one or higher
dimensional data.

3. THE GENERALIZED CROSS-VALIDATION METHOD

3.1 GCV FOR LEVEL INDEPENDENT THRESHOLDING

De� ne the mean square error Rn( ¶ ) = 1
n

jjû¶ ¡ ujj22 = 1
n

n
i = 1 û¶ ;i ¡ ui

2
: The

GCV score is de� ned by

GCVn( ¶ ) =
1
n

jjû¶ ¡ wjj22

1 ¡ 1
n

n
i = 1

@û¶ ;i

@wi

2

=
1
n

jjû¶ ¡ wjj22

1 ¡ 2j

n
¡ 1

n
n
i = 2j + 1(1 + n¶

w2
i
)I(w2

i > n¶ )
2 :

The GCV estimate of ¶ , given by ˆ¶ n = arg min ¶ ¶0 GCVn( ¶ ), serves as an estimate of the
argument minimizer for Rn( ¶ ). The strong consistency of the GCV theorem (see Theorem
1) assures that the GCV estimate ˆ¶ n achieves the minimum value for Rn( ¶ ) asymptotically
under Assumptions 1–3.

Assumption 1. Assume that the underlying function f (t) is in the Sobolev space
W s

2 [a; b], where s > 0 is the degree of regularity (or smoothness). Also assume that the
wavelet basis used has the number of vanishing moments v with v > s.
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718 H. H.-S. LU, S.-Y. HUANG, AND F.-J. LIN

Assumption 2. Assume that ¶ ! 0 and n¶ ! 1, as n ! 1; also assume that the
primary resolution level j ! 1, as n ! 1.

Assumption 3. Assume that the threshold parameter ¶ and the primary resolution
level j satisfy the constraint limn ! 1 22js ¶ = 1.

By Assumption1, f is in a certain Sobolevspace W s
2 . There are also some relatedBesov

spaces Bs
p;q imbedded in W s

p . As the error criterion adopted in this article is the mean square
error, we take p = 2. Let C ¬ denote the class of functions that are uniformly Lipschitz
with exponent ¬ > 0. The following imbeddings are useful: W s

2 = Bs
2;2, Bs+

2;q ¡ » Bs
2;q,

and Cs » W s ¡

2 , where 0 < s¡ < s µ s+ < 1, and 0 < q¡ µ q. We know that
piecewise Lipschitz functions with exponent s are not in W s

2 . They are not in Bs
2;q , either.

The discontinuityat jump point(s) will lower the global regularity.However, such functions
are in some other Sobolev spaces with a smaller regularity depending on the type(s) of
singularity at the jump point(s). For examples, we discuss four test functions, Blocks,
Bumps, HeaviSine, and Doppler, which are used later in the simulation studies. For the
Blocks, every block is C 1 in the interior of its block interval. However, at jump points,
the regularity is less than 1/2. The entire Blocks signal belongs to the space W s

2 [0; 1] for
any 0 < s < 1=2, but the regularity will never reach 1/2. By the above imbedding results,
the Blocks signal is also in Bs

2;q for any 0 < s < 1=2 and 2 µ q µ 1. The HeaviSine
signal has the same phenomenon. It is C 1 in the interiors of intervals (0; 0:3), (0:3; 0:72),
and (0:72; 1). At jump points, 0.3 and 0.72, the regularity is less than 1/2. The HeaviSine
signal belongs to the same Sobolev space as the Blocks does. As for the Bumps, the signal
is in W s

2 [0; 1] for any 0 < s < 3=2, and hence in Bs
2;q[0; 1] for any 0 < s < 3=2 and

2 µ q µ 1. As for the Doppler, the signal is in C 1 [h; 1 ¡ h] for arbitrarily small h > 0,
but the regularity near the right boundary is less than 3/2. Hence, the Doppler signal belongs
to W s

2 [h; 1] for any 0 < s < 3=2 and Bs
2;q[h; 1] for any 0 < s < 3=2 with 2 µ q µ 1.

The following Sobolev characterization by Mallat (1989) will be used. A function f

is in W s
2 [a; b] if and only if it satis� es the condition: `;k 2 Z(1 + 22`s)jhf; Á`;kij2 < 1.

Therefore, for f 2 W s
2 [a; b], we have

1
n

n

i = 2j + 1

u2
i =

m

` = j

2`

k = 1

jhf; Á`;kij2 = O 2¡2js :

As required by Assumption 2, the primary resolution level j increases to in� nity as the data
size n ! 1. Usually, j goes to in� nity at a somewhat slow rate. An intuitive explanation
for this slow rate is as follows. For smoother functions (i.e., larger s), j goes to in� nity at
a slower rate to allow a wider smoothing bandwidth. Assumption 2 requires that ¶ ! 0
and n¶ ! 1, while Assumption 3 controls the convergence speed so that ¶ goes to
zero at a rate slower than O(2¡2js). If the primary resolution level is of the optimal order
2j = O(n1=(2s + 1)), then ¶ is required to go to zero at a rate slower than O(n¡2s=(2s+ 1))

and n¶ is required to go to in� nity at a rate faster than O(n1=(2s + 1)). That is, the threshold
n¶ for BLUPWAVE is theoretically approaching in� nity at a faster rate than the universal
threshold 2 ¼ 2 log n. From Figure 1, the BLUPWAVE must have a larger threshold value
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GENERALIZED CROSS-VALIDATION FOR WAVELET SHRINKAGE 719

than soft thresholding has, if one intends to have the same shrinkage effect (i.e., have the
same resulting shrunk coef� cient) for both methods. If we draw a horizontal line in the
upper half plane in Figure 1, we have to shift the curve of soft thresholding to the left,
which means that the soft thresholding must have a smaller threshold parameter ¯ , to meet
with the BLUPWAVE curve at the same intersection point with the horizontal line.

Theorem 1. (GCV Theorem): Under Assumptions 1, 2, and 3, we have

lim
n! 1

Rn( ˆ¶ n)

Rn( ¶ ¤
n)

= 1 almost surely;

where ˆ¶ n = arg min ¶ ¶0 GCVn( ¶ ) and ¶ ¤
n = arg min ¶ ¶0 Rn( ¶ ).

Theorem 2. Under Assumptions 1, 2, and 3, we have

lim
n! 1

GCVn( ¶ ) = lim
n! 1

Rn( ¶ ) + ¼ 2 almost surely:

3.2 PROOFS FOR THEOREM 1 AND THEOREM 2

De� ne the following notation:

· n( ¶ ) =
1
n

n

i= 2j + 1

1 +
n¶

w2
i

I(w2
i > n¶ );

pn( ¶ ) =
1
n

n

i = 2j + 1

(û ¶ ;i ¡ ui)(wi ¡ ui);

and

hn( ¶ ) = Rn( ¶ ) ¡ GCVn( ¶ ) + ¼ 2 ¡ 2pn( ¶ ):

The next lemmas are established for Theorem 1 and Theorem 2.

Lemma 1. Under Assumptions 1, 2, and 3, we have

1
n

n

i = 2j + 1

Prfw2
i > n¶ g = O

e¡n¶ =(8 ¼ 2)

p
n¶

:

Proof: Recall that n¡1 n
i = 2j + 1 u2

i = O 2¡2js . By Assumption 3, ¶ = o(2¡2js),
then we have juij <

p
n¶ =2 for i = 2j + 1; : : : ; n, for suf� ciently large n. Then

1
n

n

i= 2j + 1

Prfw2
i > n¶ g =

1
n

n

i = 2j + 1

Prf( ° i + ui)
2 > n¶ g

µ 2
n

n

i = 2j + 1

1

p
n¶ =2

e¡y2=(2¼ 2)

p
2 º ¼

dy µ 1p
º

1

n¶ =(8¼ 2)

e¡t

p
t

dt

µ 2
p

2 ¼ e¡n¶ =(8¼ 2)

p
º n¶

= O
e¡n¶ =(8¼ 2)

p
n¶

:
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720 H. H.-S. LU, S.-Y. HUANG, AND F.-J. LIN

The last inequality follows from the inequality 1=
p

t µ 2
p

2 ¼ =
p

n¶ , valid for t in the
limits of integration.

Lemma 2. Assume Assumptions 1, 2, and 3. For any arbitrary ¬ > 0, we have

1
n

n

i= 2j + 1

I(w2
i > n¶ ) = o

1
(n¶ ) ¬

almost surely:

Proof: For arbitrary ¬ > 0 and q > 2 ¬ , we have

max
2j +1 µ i µ n

juij<
p

n¶ =2

(n¶ )2 ¬ E I(w2
i > n¶ ) = max

2j +1µ i µ n

juij<
p

n¶ =2

(n¶ )2¬ Prfw2
i > n¶ g

µ max
2j + 1µiµn

(n¶ )2¬ Prfj° ij >
p

n¶ =2g

µ max
2j + 1µiµn

4qEj° ij2q

(n¶ )q¡2¬
< 1:

The second inequality above is a Markov inequality. We then apply the strong law of large
numbers for uncorrelated random variables having a common upper bound to their second
moments (Chung 1974, theorem 5.1.2), and get

lim
n! 1

1
n

n

i = 2j + 1

(n¶ ) ¬ I(w2
i > n¶ )

= lim
n ! 1

1
n

n

i = 2j + 1

(n¶ ) ¬ E I(w2
i > n¶ ) almost surely: (3.1)

By Lemma 1, the limit in (3.1) is zero. Therefore, we can conclude Lemma 2.

Lemma 3. Assume Assumptions 1, 2, and 3. For any arbitrary ¬ > 0, we have

· n( ¶ ) = o
1

(n¶ ) ¬
almost surely:

Proof: Note that (1+ n¶
w2

i
)I(w2

i > n¶ ) µ 2I(w2
i > n¶ ). Thus, · n( ¶ ) µ 2

n
n
i = 2j + 1

I(w2
i > n¶ ). We can conclude Lemma 3 from Lemma 2.

Lemma 4. Assume Assumptions 1, 2, and 3. For any arbitrary ¶ 1 > 0, ¶ 2 > 0 and

¬ > 0, we have jpn( ¶ 1) ¡ pn( ¶ 2)j = o (n¶ 2)1=2=(n¶ 1) ¬ almost surely.
Proof: Without loss of generality, we may assume that ¶ 1 µ ¶ 2. For µ = 1; 2, let

A µ ;n = fi : 2j + 1 µ i µ n and w2
i > n¶ µ g and Ac

µ ;n = fi : 2j + 1 µ i µ ng n A µ ;n.

jpn( ¶ 1) ¡ pn( ¶ 2)j =
1
n

n

i= 2j + 1

(û ¶ 1;i ¡ û¶ 2 ;i)(wi ¡ ui)

=
1
n

A2;n

(n¶ 1 ¡ n¶ 2) ° i

wi
+

A1;n \ Ac
2;n

wi ¡ n¶ 1

wi
° i : (3.2)
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GENERALIZED CROSS-VALIDATION FOR WAVELET SHRINKAGE 721

Similar to the proof for Lemma 2, we have

1
n

A2;n

(n¶ 1 ¡ n¶ 2) ° i

wi
µ n¶ 2

A2;n
j° ij

n
= o (n¶ 2)¡ ¬ + 1=2 almost surely:

for arbitrary ¬ > 0, and

1
n

A1;n \ Ac
2;n

wi 1 ¡ n¶ 1

w2
i

° i = o
(n¶ 2)1=2

(n¶ 1) ¬
almost surely: (3.3)

Therefore, we can conclude Lemma 4.

Lemma 5. Assume Assumptions 1, 2, and 3. For any arbitrary ¶ 1 > 0 and ¶ 2 > 0,
we have

jhn( ¶ 1) ¡ hn( ¶ 2)j = O
4j

n2 + O
1

n 2j(s¡1)
almost surely:

Proof: Without loss of generality, we may assume ¶ 1 µ ¶ 2. Let ¸ n( ¶ ) = 2j=n +

· n( ¶ ). Observe that 1
n

jjû ¶ ¡ wjj22 = Rn( ¶ ) ¡ 2pn( ¶ ) ¡ 1
n

2j

i = 1 ° 2
i + 1

n
n
i = 2j + 1 ° 2

i : Then
hn( ¶ ) and hn( ¶ 1) ¡ hn( ¶ 2) can be expressed as follows

hn ( ¶ ) =
(Rn( ¶ ) + ¼ 2)(1 ¡ ¸ n( ¶ ))2 ¡ n ¡ 1jjû ¶ ¡ wjj2

2 ¡ 2pn( ¶ )(1 ¡ ¸ n( ¶ ))2

(1 ¡ ¸ n( ¶ ))2
;

hn( ¶ 1) ¡ hn( ¶ 2) =
fRn( ¶ 1) + ¼ 2 ¡ 2pn( ¶ 1)gf¡ 2 ¸ n( ¶ 1) + ¸ 2

n( ¶ 1)g
f1 ¡ ¸ n ( ¶ 1)g2

¡ fRn( ¶ 2) + ¼ 2 ¡ 2pn( ¶ 2)gf¡ 2 ¸ n( ¶ 2) + ¸ 2
n( ¶ 2)g

f1 ¡ ¸ n ( ¶ 2)g2

= ¼ 2 f¡ 2 ¸ n( ¶ 1) + ¸ 2
n ( ¶ 1)g

f1 ¡ ¸ n( ¶ 1)g2
¡ f¡ 2̧ n ( ¶ 2) + ¸ 2

n ( ¶ 2)g
f1 ¡ ¸ n( ¶ 2)g2

+
fRn( ¶ 1) ¡ 2pn( ¶ 1)gf¡ 2 ¸ n( ¶ 1) + ¸ 2

n( ¶ 1)g
f1 ¡ ¸ n( ¶ 1)g2

¡ fRn( ¶ 2) ¡ 2pn( ¶ 2)gf¡ 2̧ n (¶ 2) + ¸ 2
n ( ¶ 2)g

f1 ¡ ¸ n( ¶ 2)g2

def
= I + II ¡ III: (3.4)

As Rn( ¶ ) = O 2j

n + O 2¡2js , pn( ¶ ) = O 2¡js , and ¸ n( ¶ ) = O 2j

n , almost
surely, we have

jIj = O( ¸ n( ¶ 1)) + O( ¸ n( ¶ 2)) = O
2j

n
; and

jII j = O Rn( ¶ 1) ¡ 2pn( ¶ 1) O ¸ n( ¶ 1)

= O
2j

n
+ O 2¡js O ¸ n( ¶ 1)

= O
4j

n2 + O
1

n2j(s¡1)
: (3.5)
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722 H. H.-S. LU, S.-Y. HUANG, AND F.-J. LIN

Similarly, III has the same order as II . Therefore, we can conclude Lemma 5.

Proof for the GCV Theorem: Notice that

1 µ Rn( ˆ¶ n)

Rn( ¶ ¤
n)

=
GCVn( ˆ¶ n) ¡ ¼ 2 + 2pn( ˆ¶ n) + hn( ˆ¶ n)

Rn( ¶ ¤
n)

µ GCVn( ¶ ¤
n) ¡ ¼ 2 + 2pn( ˆ¶ n) + hn( ˆ¶ n)

Rn( ¶ ¤
n)

=
Rn( ¶ ¤

n) ¡ 2pn( ¶ ¤
n) + 2pn( ˆ¶ n) + hn( ˆ¶ n) ¡ hn( ¶ ¤

n)

Rn( ¶ ¤
n)

= 1 +
¡ 2pn( ¶ ¤

n) + 2pn(ˆ¶ n) + hn( ˆ¶ n) ¡ hn( ¶ ¤
n)

Rn( ¶ ¤
n)

: (3.6)

Let An = fi : 2j + 1 µ i µ n and w2
i > n¶ g and Ac

n = fi : 2j + 1 µ i µ ngn An. Notice
that

Rn( ¶ ) =
1
n

2j

i = 1

° 2
i +

1
n

i 2 An

(ûi ¡ ui)
2 +

1
n

i 2 Ac
n

u2
i ¶ 1

n

2j

i = 1

° 2
i ¹ 2j ¼ 2

n
; (3.7)

where an ¹ bn means that limn ! 1 an=bn = 1. By Lemmas 4 and 5 and inequalities (3.6)
and (3.7), we have

lim
n ! 1

¡ 2pn( ¶ ¤
n) + 2pn( ˆ¶ n) + hn( ˆ¶ n) ¡ hn( ¶ ¤

n)

Rn( ¶ ¤
n)

= 0 almost surely:

Therefore, limn! 1 Rn( ˆ¶ n)=Rn( ¶ ¤
n) = 1, almost surely.

Proof for Theorem 2: This follows immediately from the proof for Theorem 1 by
observing that limn ! 1 h( ¶ ) = 0 almost surely and that limn ! 1 pn( ¶ ) = 0 almost surely

3.3 LEVEL-DEPENDENT THRESHOLDING

A more � exible approach, introduced by Johnstone and Silverman (1997), is to allow
the threshold parameter of wavelet shrinkage to be level dependent. We will consider the
following level-dependent BLUPWAVE scheme

û¶ ;i =
wi for i = 1; : : : ; 2j;

1 ¡ n¶ `

w2
i +

wi for 2` + 1 µ i µ 2` + 1; ` = j; : : : ; m:
(3.8)

The thresholds, ¤ = ( ¶ j; : : : ; ¶ m), form an array of nonnegativeparameters.
Since the GCV score function for level dependent thresholding is multivariate, it is

dif� cult to minimize. To reduce the multivariateminimizationproblem to a univariateprob-
lem iteratively,we minimize the GCV score function by coordinatewise descent. This turns
the multivariate minimization problem into a sequence of easily solved one-dimensional
problems. The initial threshold parameters are set equal to the level independent threshold,
that is, ¤̂0 = ( ˆ¶ ; : : : ; ˆ¶ ) and k = 0. The next iteration, ¤̂k + 1 is computed as follows.
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GENERALIZED CROSS-VALIDATION FOR WAVELET SHRINKAGE 723

° ˆ¶ k + 1;m = arg min ¶ m¶0GCV( ˆ¶ k;j ; : : : ; ˆ¶ k;m¡1; ¶ m); ¶ m Á ˆ¶ k + 1;m:

° ˆ¶ k + 1;m¡1 = arg min ¶ m ¡ 1¶0GCV( ˆ¶ k;j ; : : : ; ˆ¶ k;m¡2; ¶ m¡1; ˆ¶ k + 1;m); ¶ m¡1 Á
ˆ¶ k + 1;m¡1:
...

° ˆ¶ k + 1;j = arg min ¶ j¶0GCV( ¶ j ; ˆ¶ k + 1;j + 1; : : : ; ˆ¶ k + 1;m); ¶ j Á ˆ¶ k + 1;j .

For each level, the golden section search method is used to solve the one-dimensional min-
imization problem. We found that GCV scores are close to convergence after one iteration
of coordinatewise descent. Furthermore, the average square errors (ASEs) are found to be
reduced by this method. Hence, in principle, one iteration of coordinatewisedescent is used
in our simulation studies reported later. The iteration order can go from m to j or from j to
m. Our simulation results shows that different iterationorders are not signi� cantly different.

3.4 GCV SELECTION FOR THE PRIMARY RESOLUTION LEVEL AND FOR THE NUMBER

OF VANISHING MOMENTS IN THE WAVELET BASIS

Nason (1999) discussed choosing the number of vanishing moments in the wavelet
basis, primary resolution j, and the threshold in wavelet shrinkage by cross-validation. He
considered wavelet shrinkage using the universal threshold ¯ =

p
2 log n ¼ (with ¼ = 1

in his simulation study) and applied the leave-one-out cross-validation method to select
the level j as well as the number of vanishing moments v in the basis. Conditioned on
the selected values of (j; v), he then minimized the leave-one-out cross-validation score
function to select the level independent threshold ¶ .

To reduce the computational complexity, we use the GCV method to select level de-
pendent thresholds ¤ = ( ¶ j ; : : : ; ¶ m) and parameters (j; v) for the BLUPWAVE. We � rst
compute the minimums of the GCV score functions for the BLUPWAVE with a level inde-
pendent threshold with respect to all possible values of the primary resolution level ranging
from 0 to m and the numberof vanishingmoments in the Symmlet basis rangingfrom 4 to 10,
where Symmlet refers to the least asymmetric wavelet described in Daubechies (1992). The
GCV scores are denoted as GCV( ˆ¶ (j; v); j; v), j = 0; : : : ; m, and v = 4; : : : ; 10. Then, we
select the primary resolution level |̂ and the number of vanishingmoments v̂ which achieves
the minimum among GCV( ˆ¶ (j; v); j; v). Conditioned on the selected (|̂; v̂), we then con-
sider the level dependent thresholds and apply the multivariate GCV method described in
the previous section to select the threshold for every level.

The foregoing discussion for 1-D signals can be extended naturally to 2-D images or
higher p-dimensional data. The details are reported in the technical report by Lu, Huang,
and Lin (2002).

4. SIMULATION RESULTS AND DISCUSSIONS

4.1 ONE-DIMENSIONAL SIGNALS

Four test signals,Blocks,Bumps,HeaviSine, and Doppler, from Donohoand Johnstone
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diff=1.0005

Figure 2. The GCV/¼ 2 and ASE/¼ 2 curves by BLUPWAVE for four noisy signals when n = 1,024 and SNR = 7.

(1994), are used in the simulation study. The periodic Symmlet wavelet basis over [0; 1] is
applied, since these four examples are periodic. The computation is based on the WaveLab
package developed by Donoho, Duncan, Huo, and Levi-Tsabari (1999) for MATLAB.

4.1.1 Level Independent Thresholding for 1-D Data

De� ne the average square error by ASE =
n
i = 1ff̂ (ti) ¡ f (ti)g2=n and the standard-

ized ASE by

standardized ASE =
1

n¼ 2

n

i= 1

ff̂ (ti) ¡ f (ti)g2:

Notice that the ASE is the same as the mean square error Rn(¢), since f = W 0u and
f̂ = W 0û, where W is the orthogonal matrix associated with the DWT. The GCV/ ¼ 2 and
ASE/ ¼ 2 curves by BLUPWAVE for four test noisy signals are plotted in Figure 2, where
n = 1024 and the signal to noise ratio is SNR = 7. The SNR is de� ned by (

p
n ¼ )

¡1jjf ¡
f̄ jj`2 with f̄ =

n
i = 1 f (ti)=n. Two reference statistics are given for each plot to check

the performance of the GCV procedure in � nite samples. They are the difference, diff =
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Figure 3. Averages and standard errors of standardized ASE’s based on 100 replications of BLUPWAVE and soft
thresholding, with SNR = 7.

min ¶ GCV( ¶ )=¼ 2 ¡ min ¶ ASE( ¶ )=¼ 2, and the relative ef� ciency

R =
min ¶ ¶0 ASE( ¶ )

ASE( ˆ¶ )
;

where ˆ¶ is the GCV selection of ¶ . Both quantities, diff and R, should approach 1 as n

goes to in� nity. The search domain of the threshold parameter, ¯ 2 = n¶ , in these four test
signals is set to [0; 2 ¼ 2 log n]. For the purpose of presentation, the horizontal axis in Figure
2 is taken to be x = n¶ =( ¼ 2 logn), 0 µ x µ 2.

These four test signals are further studied with sample sizes varying from n = 256 to
n = 8192, SNRs equal to 3, 5, 7 and 10. The Symmlets with eight vanishing moments are
used. The primary resolution level is j = 5 and the remaining � ne scales are all included up
to the � nest possible resolution. The averages and standard errors of standardized average
square errors based on 100 replication runs with various sample sizes and SNRs were
reported by Lu, Huang, and Lin (2002) for BLUPWAVE and soft thresholding. Note that
the reported numbers are based on standardized ASEs, which are ASEs scaled by error
variance ¼ 2. In other words, the larger SNR cases have the ASEs divided by smaller ¼ 2

and result in in� ated standardized ASEs. Therefore, the reader may � nd larger standardized
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Figure 4. Comparison of the standardized ASEs for BLUPWAVE and soft thresholding with level dependent (LD)
thresholds, with SNR = 7.

ASEs for higher SNR cases. The purpose of standardization is to facilitate comparison of
the GCV and ASE curves. Plots of standardized ASEs along with §1:96 times standard
errors are given in Figure 3. In the case of Blocks, Bumps, and Doppler, the BLUPWAVE
performs better than the soft thresholdingdoes, while in the case of HeaviSine both methods
perform with the same quality.

4.1.2 Level Dependent Thresholding for 1-D Data

The averages and standard errors of standardized ASEs based on 100 replications of
test signals with various sample sizes and SNRs are reported in the technical report for
BLUPWAVE and soft thresholding (Lu, Huang, and Lin 2002).

The comparison of standardized ASEs of BLUPWAVE with or without level dependent
(LD) thresholding based on 100 replications when SNR = 7 is reported in the technical
report (Lu, Huang, and Lin 2002). We observe that the BLUPWAVE has similar quality of
performance for level independentand leveldependentthresholding.Theprimary resolution
levelhere is j = 5.ThecomparisonplotsforBLUPWAVE and soft thresholdingare in Figure
4. Again, with level dependent thresholding, the BLUPWAVE has smaller standardized
ASEs than soft thresholding does in most cases.
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Figure 5. Comparison of the standardized ASEs for BLUP/LD (with pre-assigned j = 5 and v = 8) versus
BLUP/LD/JV (using GCV selection for j and v), with SNR = 7.

4.1.3 Adjustment for the Primary Resolution Level and the Number of Vanishing
Moments in the Wavelet Basis for 1-D Data

We take the case of Blocks with n = 1;024 and SNR = 7 in this simulation as an
example. The minimums of GCV=¼ 2 values for the BLUPWAVE with level independent
thresholding for various values of (j; v) are reported in the technical report (Lu, Huang,
and Lin 2002). Among these values the minimum in this table is marked with an asterisk
¤, which corresponds to |̂ = 3 and v̂ = 8. Then, conditioned on |̂ = 3 and v̂ = 8, the
level dependent thresholds ˆ¶ 3; : : : ; ˆ¶ 9 are computed and the standardized ASE is found
to be 0:3054. The corresponding value for the case of level dependent thresholding with
preassigned primary resolution level j = 5 and preassigned number of vanishing moments
v = 8 is 0:3344 (Lu, Huang, and Lin 2002). Thus the further adjustment of (j; v) does
indeed reduce the standardized ASE.

The standardized ASE for BLUPWAVE with preassigned values j = 5 and v =

8 using level dependent thresholding (denoted by BLUP/LD) is compared in Figure 5
with the standardized ASE with further adjustment for (j; v) (BLUP/LD/JV) based on 100
replications and with SNR = 7. It is observed that the GCV selection for j and v do reduce
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Figure 6. Comparison of the standardizedASEs for BLUP/LD/JV versus SOFT/LD/JV based on 100 replications,
with SNR = 7.

the standardized ASE, especially when n is small. For the case of SNR = 7, the averages
and standard errors of standardized ASEs based on 100 replications for various sample sizes
are reported in the technical report for BLUPWAVE and soft thresholding (Lu, Huang, and
Lin 2002). Comparisons of BLUP/LD/JV and SOFT/LD/JV are shown in Figure 6. The
standardized ASEs of BLUP/LD/JV are smaller than those of SOFT/LD/JV in most cases.

4.2 2-D IMAGES

We also investigated the performance of GCV selection on eight standard test images
and obtainedresults that demonstrate the usefulnessof BLUPWAVE here also.Details about
this work were given by Lu, Huang, and Lin (2002).

5. CONCLUDING DISCUSSION

The BLUPWAVE shrinkage scheme is based on the use of best linear unbiased predic-
tion as well as Bayesian modeling and estimation. The GCV selection for hyperparameters
is proposed. Based on our simulation experience, we � nd the GCV selection method fast
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GENERALIZED CROSS-VALIDATION FOR WAVELET SHRINKAGE 729

and reliable, and it can also be applied to the selection of level-dependent thresholds, the
primary resolution level and the number of vanishing moments in the wavelet basis. With
the help of the GCV selection for parameters involved in the BLUPWAVE scheme, we
� nd that BLUPWAVE performs well. Compared to other Bayesian shrinkage schemes, the
BLUPWAVE has a very simple asymptotic form. Though its derivation and theoretical
background may seem complicated, its � nal form for shrinkage is really straightforward
and easy to implement.

For one-dimensional test signals, BLUPWAVE has smaller standardized ASEs than
soft thresholding does. Moreover, the BLUPWAVE has similar performance quality for
both the level independent thresholdingand the level dependent thresholding.Furthermore,
standardized ASEs can be reduced by using GCV to also select the primary resolution level
and the number of vanishing moments in the wavelet basis. Especially when n is small, the
reduction is quite signi� cant. BLUPWAVE also offers some advantages for denoising 2-D
images.

ACKNOWLEDGMENTS
This research was partially supported by the National Science Council, Taiwan, R.O.C. The authors thank

the associate editor and referees for their valuable comments and editorial suggestions.

[Received February 2001. Revised July 2002.]

REFERENCES

Abramovich, F., Sapatinas, T., and Silverman, B. W. (1998), “Wavelet Thresholding via a Bayesian Approach,”
Journal of the Royal Statistical Society, Ser. B, 60, 725–749.

Chipman, H. A., Kolaczyk, E. D., and McCulloch, R. E. (1997), “Adaptive Bayesian Wavelet Shrinkage,” Journal
of the American Statistical Association, 92, 1413–1421.

Chung, K. L. (1974), A Course in Probability Theory (2nd ed.), Boston: Academic Press.

Craven, P., and Wahba, G. (1979), “Smoothing Noisy Data with Spline Functions: Estimating the Correct Degree
of Smoothing by the Method of Generalized Cross-Validation,” Numerische Mathematik, 31, 377–403.

Daubechies, I. (1992),Ten Lectures on Wavelets, CBMS-NSF Series of Applied Mathematics, Philadelphia:SIAM.

Donoho, D. L. (1995), “De-noising by Soft-Thresholding,” IEEE Transactions on Information Theory, 41, 613–
627.

Donoho, D. L., Duncan, M., Huo, X., and Levi-Tsabari, O. (1999), “About WaveLab,” Technical Report, Depart-
ment of Statistics, Stanford University.

Donoho, D. L., and Johnstone, I. M. (1994), “Ideal Spatial Adaptation by Wavelet Shrinkage,” Biometrika, 81,
425–455.

Golub, G., Heath, M., and Wahba, G. (1979), “Generalized Cross-Validation as a Method for Choosing a Good
Ridge Parameter,” Technometrics, 21, 215–223.

Huang, S. Y., and Lu, H. H.-S. (2000), “Bayesian Wavelet Shrinkage for Nonparametric Mixed-Effects Models,”
Statistica Sinica, 10, 1021–1040.

(2001), “Extended Gauss-Markov Theorem for Nonparametric Mixed-Effects Models,” Journal of Mul-
tivariate Analysis, 76, 249–266.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

9:
30

 2
7 

A
pr

il 
20

14
 



730 H. H.-S. LU, S.-Y. HUANG, AND F.-J. LIN

Jansen, M. (2001),Noise Reductionby Wavelet Thresholding, Lecture Notes in Statistics, 161,New York: Springer-
Verlag.

Jansen, M., and Bultheel, A. (1999), “Multiple Wavelet Threshold Estimation by Generalized Cross-Validation
for Images with Correlated Noise,” IEEE Transactions on Image Processing, 8, 947–953.

(2001), “Asymptotic Behavior of the Minimum Mean Squared Error Threshold for Noisy Wavelet Coef-
� cients of Piecewise Smooth Signals,” IEEE Transactions on Signal Processing, 49, 1113–1118.

Jansen, M., Malfait, M., and Bultheel, A. (1997),“Generalized Cross-Validation for Wavelet Thresholding,”Signal
Processing, 56, 33–44.

Johnstone, I. M., and Silverman, B. W. (1997), “Wavelet Threshold Estimators for Data With Correlated Noise,”
Journal of the Royal Statistical Society, Ser. B, 59, 319–351.

Li, K. C. (1985), “From Stein’s Unbiased Risk Estimates to the Method of Generalized Cross Validation,” The
Annals of Statistics, 13, 1352–1377.

(1986), “Asymptotic Optimality of CL and Generalized Cross-Validation in Ridge Regression With Ap-
plication to Spline Smoothing,” The Annals of Statistics, 14, 1101–1112.

(1987),“AsymptoticOptimality forCp , CL , Cross-Validation and Generalized Cross-Validation:Discrete
Index Set,” The Annals of Statistics, 15, 958–975.

Lu, H. H.-S., Huang, S. Y., and Lin, F. J. (2002), “Generalized Cross-Validation for Wavelet Shrinkage in Non-
parametric Mixed-EffectsModels (extended version),”available at http://www.stat.nctu.edu.tw/faculty/hslu/
techreport.htm.

Mallat, S. G. (1989), “Multiresolution Approximations and Wavelet Orthonormal Bases of L2(R),” Transactions
of the American Mathematical Society, 315, 69–87.

Nason, G. P. (1996), “Wavelet Shrinkage Using Cross-Validation,” Journal of the Royal Statistical Society, Ser.
B, 58, 463–479.

(1999), “Fast Cross-Validatory Choice of Wavelet Smoothness, Primary Resolution and Threshold in
Wavelet Shrinkage using the Kovac–Silverman Algorithm,” technical report, Department of Mathematics,
University of Bristol, United Kingdom.

Vidakovic, B. (1998a), “Non-linear Wavelet Shrinkage with Bayes Rules and Bayes Factors,” Journal of the
American Statistical Association, 93, 173–179.

(1998b), “Wavelet-Based Nonparametric Bayes Methods,” in Practical Nonparametric and Semipara-
metric Bayesian Statistics, eds. D. Dey, P. Müller, and D. Sinha, New York: Springer-Verlag, pp. 133–155.

Wahba, G. (1990), Spline Models for Observational Data, CBMS-NSF Series of Applied Mathematics, Philadel-
phia: SIAM.

Weyrich, N., and Warhola,G. T. (1995),“De-noisingUsingWavelets and Cross Validation,”ApproximationTheory,
Wavelets and Applications, 523–532.

(1998), “Wavelet Shrinkage and Generalized Cross Validation for Image Denoising,” IEEE Transactions
on Image Processing, 7, 82–90.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

9:
30

 2
7 

A
pr

il 
20

14
 


