
354 IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 3, SEPTEMBER 2003

Optimal Information-Dispersal for Fault-Tolerant
Communication Over a Burst-Error Channel

Shiuh-Pyng Shieh, Yea-Ching Tsai, and Yu-Lun Huang

Abstract—The ( ) wireless information dispersal scheme
(WIDS) is useful for fault-tolerant parallel wireless communica-
tions, where it can be used to tolerate up to path (sub-
channel) failures. This paper constructs a performance model of
( ) WIDS used in wireless communications, and proposes an
algorithm to find the optimal set of ( ) with the highest reli-
ability. This algorithm reduces the complexity of finding the can-
didate set of( ) from ( 2) to ( ); is the maximum
number of available sub-channels.

Index Terms—Fault tolerance, security, threshold scheme, wire-
less communications.

ACRONYMS1

IDS information-dispersal scheme
WIDS Wireless IDS

NOTATION

the degree of information dispersal
greatest-integer-lower-bound of
greatest-integer-lower-bound of
greatest-integer-lower-bound of
[see -WIDS]
ratio of information expansion;

-WIDS a WIDS which breaks a data block into
pieces and transmits them in parallel over
wireless channels such that ‘any pieces
received’ suffice for reconstructing the data
block;
maximum number of available communica-
tion sub-channels
upper bound of the information expansion
ratio,

a sub-channel can deliver the correct in-
formation piece

the transmitted data
block can be correctly constructed using the
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1The singular and plural of an acronym are always spelled the same.

critical probability: the such that

piece # of -WIDS,
-WIDS; for all

: feasible WIDS set
TR tolerable error

DEFINITIONS

dispersal
degree:

the number of sub-channels used to
transmit the data.

information
expansion
ratio

the ratio expanded when transmitting a
message . For example, if one makes
copies of a message and transmits these
copies over channels, then the expansion
ratio of the message is .

I. INTRODUCTION

I N THE PAST decade, wireless communications technology
emerged rapidly. Wireless networks allow people to com-

municate with each other anytime and anywhere. With the rapid
development of communication networks, the need for reliable-
transmission increases. The probability of successful transmis-
sion in a wire-line environment is very high nowadays. But in
wireless environments, the probability of transmission failure
can increase because of bad weather, terrain, weak transmission
power, etc. When a data-set is transmitted incorrectly, then it
needs to be retransmitted. Retransmission can be very expensive
and unacceptable for real-time applications. To support more re-
liable transmission quality in such environments, some schemes
are needed to increase the probability of successful transmis-
sion.

We have already used IDS to increase the reliability of a net-
work service provided by a cluster of servers [9]. This paper pro-
poses and analyzes the WIDS to support fault-tolerant, parallel
wireless communications. In an WIDS, the sender trans-
forms a message into pieces, , and trans-
mits them over parallel wireless channels such that anypieces
collected at the receiver suffice for reconstructing the message

. In parallel wireless communications, fixed assignment pro-
tocols partition a wireless communication link into channels in
time, frequency, or code domain. These pieces of data-packets
can be transmitted in parallel overchannels, and can still be
reconstructed by the receiver even if up to packets fail.

This paper proposes the WIDS to support fault-tolerant, par-
allel wireless communications, and gives the algorithm to find
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the optimal set of WIDS which gives the highest com-
munication reliability. This algorithm greatly reduces the com-
plexity of finding the candidate set of from to

.
Section II introduces the WIDS used in the fault-tolerant

parallel wireless communications. Related research on wireless
communications is also reviewed. Section III discusses and
analyzes the success probability of parallel transmission using
WIDS. Then it presents some theorems for the WIDS model
used in parallel wireless communications. These theorems
help develop the schemes that find the with the optimal
performance. Section IV proposes some methods of getting the
optimal WIDS set to achieve better reliability. Section V
discusses some properties of WIDS for fault tolerance.

II. I NFORMATION DISPERSALSCHEME

In a wireless communication environment, there are many
factors that can cause a data-transmission error. These include
bad weather and outside noise. Although error-correcting codes
[3], [8] can be used to control error in the transmission, the
probability of a channel failure still can not be negligible, es-
pecially in bad transmission conditions. An intuitive solution
[10] to this problem is to send a message along a path, request
a confirmation, and retransmit it along a different path in case
of failure. However, re-transmission is time-consuming and ex-
pensive, thus it is undesirable for communications. WIDS can
be used to increase the probability of successful transmission.

IDS [6] was first proposed as a method of breaking a file
into packets of length , where , such that
of them suffice to reconstruct the original file. Let

be a string of characters; be 3 integers
with . For simplicity, assume thatis a multiple of .
Find a matrix such that all its submatrices
are inevitable. Break into strings of length :

The splitting operation transforms into pieces by

...
...

...
. ..

...

Obviously, is independent of , where is the
length of . The total number of characters produced by WIDS
is . Then the information expansion ratio of WIDS
is . The computation complexity is .

Since then, WIDS has been applied to fault-tolerant par-
allel communications in several types of networks, such as
hyper-cube and Omega networks [1], [2], [4]. These methods
can prevent paths or channels from failing. Ifpieces are
transmitted over vertex-disjoint paths or channels, it can
tolerate up to packet failures. However, there is little
research to date discussing the relations among the 3 important
factors which influence communication reliability:

• information dispersal degree,
• information expansion ratio,
• successful transmission of each packet.

Also there is no efficient way to determine the optimal set of
WIDS with the highest communication reliability when

applying WIDS in wireless communications.
Reference [7] defines a burst-error channel using a Markov

model; and describes the throughput analysis method of a hybrid
automatic repeat request (ARQ) under the burst-error channel
using the 3-state Markov model. The applicable range of the
burst-error channel has been clarified for the hybrid ARQ using
burst-error correction codes—convolutional coding.

After the sequence of analysis step in this paper, theof a
burst-error correction code is:

occurrence probability of each burst length,
1 error bit occurrence after silent section length

,
burst length,
guard length, as described in (11).

and
are found from the bit error rate of the channel,
which depends on the noise condition of the envi-
ronment.

Let:
the average silence length,
the average burst length.

If the transmitted data is large, the average burst number of a
packet is when the packet consisting of bits.
So, the error correction probability of the packet ofbits is:

.
size of the data, in bits.

When applying WIDS in a system with a fixed code
rate , a message, , will be transformed into pieces. Each
piece of the packet is framed with a fixed size . Thus,
the packet size of data is . The packet size is
influenced by . If the packet size of WIDS is , then
the packet size of WIDS is . In wireless commu-
nications, the error probability can be influenced by the packet
size.

Because these pieces of message are transmitted
simultaneously over adjacent subchannels, assume that these
data packets are transmitted in the same environment: the
bit error-rate of each subchannel is the same. The same bit
error-rate derives the same and and thus results in
the same for every parallel subchannel.

Let the original packet size be L, and let the success proba-
bility of transmitting a message be . When using the
WIDS to transmit the message , the success probability be-
comes . When using the WIDS to transmit this mes-
sage over the burst-error subchannels, the packet size becomes

, independent of . Thus, the success probability of each
data packet becomes . Similarly, when using the
WIDS to transmit this message over the burst-error wireless sub-
channels, the probability of the successful transmission of each
packet becomes .
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This result can be applied to the WIDS used in parallel wire-
less communication. Section III discusses some useful theorems
of WIDS used in a wireless environment. These theo-
rems can help to find the optimal set of WIDS.

III. FUNDAMENTAL THEOREMS

This section describes the fundamental theorems of the pro-
posed -WIDS in the followingAssumption.

• All communication sub-channels have the same success
probability of transmitting a data packet.

In a WIDS, the probability of successful trans-
mission of each packet is . Thus, the sum of the prob-
abilities in the following cases calculate the communica-
tion reliability :

• a receiver receives any pieces from the sub-channels
and reconstructs :

• a receiver receives any pieces from the sub-chan-
nels and reconstructs :

• a receiver receives pieces from the sub-channels and
reconstructs

Theorem 3.1: is strictly increasing for .
(See Appendix A for the proof)
Theorem 3.1 suggests that , for fixed & , is pro-

portional to : the increases as the of individual
sub-channel increases.

Theorem 3.2:If , then
for .

(See Appendix B for the proof) Theorem 3.2 suggests that the
communication reliability of WIDS is lower than that of

WIDS: if more pieces of the message are sent, but
the same number is needed to be received in order to recover the
message, then the communication reliability is improved.

Fig. 1 shows the distribution of reliability curves. When
, then . Similarly, when , then

Fig. 1. The communication reliability curve for a (3, 4) WIDS.

. The following theorems (3.3)–(3.8) the optimal
among .

Theorem 3.3:If , then
when . (See Appendix C for the proof.)

Theorem 3.3 implies that any WIDS which needs fewer mes-
sage pieces to reconstruct the original message, has higher relia-
bility, while the message dispersal degreeis fixed and .
Hence, corollary 1 is true.

Corollary 1: is the optimal of when ,
for .

Theorem 3.4: is the optimal of when
for . (See Appendix D for the proof.)

By Theorem 3.4, is a critical number, while the success
probability of communication channels is very low. Theorems
3.5–3.7 show that the curves of do not
have intersections.

Theorem 3.5:Let
where .

the set of integers from 0 to , but not including
the integer: 1. Then there exists one , such that
increases in and decreases in .

(See Appendix E for the proof.)
Theorem 3.6:If then .
(See Appendix F for the proof.)
Theorem 3.7:If then there exists exactly one

critical probability, , such that

(See Appendix G for the proof.)
As in Theorem 3.7, every pair of WIDS has, at most, 1 critical

probability. Define as the critical probability of
2 different WIDS, WIDS and WIDS, that satisfies
the following 3 conditions:

1) if ,
2) if ,
3) if .

Thus these Theorems (3.5)–(3.7) indicate that for any 2 WIDS in
the WIDS class, a WIDS can have better reliability in a range of

, but worse reliability in the other range. That is, a particular
WIDS does not always give better reliability than another. This
suggests that a designer must determine the range offirst,
and then choose the right WIDS in the class.
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Fig. 2. The curves of communication reliability for(m; 20) WIDS, where
1 � m � n.

Theorem 3.8 proves the intersections of
have decreasing order whenincreases for fixed .

Based on this and previous Theorems 3.5–3.7, it is possible to
find the optimal WIDS with low complexity.

Theorem 3.8:For fixed , if , then

(See Appendix H for the proof.)
Theorem 3.1 proves that is an increasing function

from 0 to 1. Fig. 2 is the graph of all WIDS curves for
.

In Fig. 2, some functions rapidly increase to 1 when
approaches 0.1. The transmission reliability is greatly im-

proved when is very small. The performance of WIDS ap-
proaches 1 when is greater than some value, such as 0.1 in
this example. The simulation results show that the greateris,
the faster approaches 1. When choosing the optimal

combination, this phenomenon suggests that there will
be no difference in choosing those which approach 1;
this is discussed in Section V.

IV. OPTIMAL INFORMATION DISPERSALSCHEME

Section IV-A provides a method for determining the optimal
WIDS with highest communication reliability when the fixed
sub-channels are all used in the parallel communication. The op-
timal value depends on what region,
belongs to. Algorithm 4.1 reduces the complexity of finding the
optimal WIDS which have optimal communication reli-
ability from to .

Then, Section IV-B considers the case of the WIDS used to
support fault-tolerant communication when the maximum avail-
able sub-channels, , is given. The optimal WIDS uses a total
of sub-channels when the problem of ‘information expansion
ratio’ is ignored. Section IV-C considers the information ex-
pansion ratio. A method is proposed to determine the candidate
WIDS set of the optimal WIDS when an upper-bound
of information expansion ratio and the number of available
sub-channels are given. This method can reduce the number
of elements in candidate WIDS set from to .

A. Determining Optimal With Fixed for WIDS

This section proposes a method to determine the op-
timal WIDS with the highest communication reliability over
sub-channels. Theorem 3.6 shows that when , the
WIDS has higher communication reliability than
WIDS. Theorem 3.7 shows that if ,

Fig. 3. The relationships between theR(1; n); R(2; n); R(3; n), and
R(4; n).

then is better than ; otherwise, is
better than . Thus, the optimal WIDS for the two ranges:

are different. Theorem 3.8 shows that the intersections
of WIDS are in decreasing

sequence:

Theorems 3.7 and 3.8, provide the relationship between
as shown in Fig. 3.

In the region , by Theorem 3.7,
. By Theorem 3.8,

Thus in this region, . Similarly, the
(if it exists) is smaller than ;

thus , and so on. Therefore, when ,
it is clear that in this
region. If the information expansion ratio problem is not con-
sidered, then is optimal in this region. If WIDS
do not satisfy the information expansion ratio, then choose

respectively, until the selected
WIDS satisfies the information expansion ratio.

Corollary 2: If , then the op-
timal value of is 1. If WIDS do not satisfy the informa-
tion expansion ratio, then choose
respectively, until the selected WIDS satisfies the infor-
mation expansion ratio.

If , then
and from Theorem

3.7. By Theorem 3.8, ;
thus ; and so forth. Thus, the
optimal communication reliability is in this region. If
the information expansion ratio is not tolerable, then choose

instead of previous choice, until
the information expansion ratio is satisfied.

Corollary 3: If ,
then the optimal value of is 2. If WIDS does
not satisfy the information expansion ratio, then choose

respectively, until the selected
WIDS satisfies the information expansion ratio.

Similarly, when
, then the optimal WIDS is . If
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TABLE I
THE INTERSECTIONS: P [i; j] � P [(i; j); (i + 1; j)] FOR j = 4 � 84

the information expansion ratio is not satisfied, then choose the
second consideration ,
respectively, until the information expansion ratio is satisfied.

Corollary 4: In the region
, the optimal value of is . If

WIDS do not satisfy the information expansion ratio, then
choose respectively, until

the selected WIDS satisfies the information expansion
ratio.

By Theorem 3.6, the smallest intersection of WIDS
for fixed is . When is in the region

, the optimal is .
When giving sub-channels, and success probabilityfor

transmitting the original message using WIDS, choose the
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TABLE I (Continued)
THE INTERSECTIONS: P [i; j] � P [(i; j); (i + 1; j)] FOR j = 4 � 84

optimal by finding the region to which belongs. Algorithm
4.1 shows how to find the optimal .

Algorithm 4.1: Finding Optimalm for (m;n) WIDS
Input:n: the number of sub-channels
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Fig. 4. The optimal(m;n) WIDS for n = 8.

Fig. 5. The optimal(m;n) WIDS for n = 9.

Output:m: the optimal value ofm, such that(m;n) WIDS
can achieve the optimal communication reliability

1. EstimatePs when transmitting the message using (1, 1)
WIDS. (That is, the traditional way to transmit the data.)

2a. After estimating thePs, look in Table I forj = n to
determine the region to whichPs belongs.

2b. Search for the optimalm value as follows.
� case 1: IfPs > P �

s
[(1; n); (2; n)], then the optimalm is 1.

� case 2: IfPs is in the region:
[P �

s
((m0

� 1; n); (m0; n)); P �

s
((m0; n); (m0 + 1; n))], then the

optimalm is m0.
� case 3 IfPs is smaller than the smallest intersection:
(0; P �

s
[(�2; n); �2 + 1; n)]), then the optimalm is �2.

3. If the optimalm cannot satisfy the information expansion
ratio requirement, then choose(m+ 1; n) WIDS, (m+ 2; n)

WIDS, . . . ; (n; n) WIDS instead of(m;n) WIDS respectively,
until the information expansion ratio is satisfied.

4. Outputm.

B. Determining Optimal With an Upper-Bound of

Section IV-A considers the cases of the Information Dispersal
Scheme used to support fault-tolerant parallel communication
with available sub-channels. This section considers the
WIDS performance when a different number of sub-channels

and are used. Some principles are provided to help users
determine the optimal WIDS with highest communication reli-
ability. The problem of the information expansion ratio is not
considered in this section.

Appendix I lists the intersections for . This is
the range of where WIDS is used. Observing these intersec-
tions, shows that is always smaller than

if
exists. This phenomenon is described in the followingAssump-
tion: ,
if both of them exist.

As mentioned in Section IV-A, every region of has its
optimal WIDS. Divide an axis line into many regions by
the intersections, , and indicate the optimal

WIDS in every divided region. For example, indicate the
optimal WIDS for as shown in Figs. 4 and 5.

Now, compare the performance of WIDS and
WIDS with a fixed and a variant , and find which one has

the better reliability. Fig. 4 indicates optimal WIDS for
, and Fig. 5 indicates optimal WIDS for . It is

hard to decide which is better from these figures. Now, compare
the performance of WIDS and WIDS, using
3 cases.

Fig. 6. Indication of optimal (m;n) WIDS when P is in
(P [(1; n); (2; n)]; 1).

Fig. 7. The indication of(m;n) WIDS, whenP is between 2 intersections.

• Case 1: is in the region ,
• Case 2: is between 2 intersections,
• Case 3: belongs to the region

.
The indication is shown in Fig. 6.

Case 1.
Divide this case 1 into 2 cases, A and B
Case 1A: ; the optimal
values chosen in Section IV-A are both 1 because the

sub-channel number is or . As discussed in Theorem
3.2, has better performance than . Thus
the optimal value is WIDS.

Case 1B: ;
the optimal value chosen is 1 when the sub-channel number is

, and is 2 when the sub-channel number is . By using
Theorem 3.7, when

, and ; thus
the optimal is WIDS.

Case 2.
is between 2 intersections.

By observing the divided regions of and in Figs.
4 and 5, the region

overlaid with the region

By the assumption in Section IV-B,

Thus, the indication of optimal WIDS of this case is
shown Fig. 7.

Consider the region
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Fig. 8. The indication of optimal(m;n) WIDS when P belongs to
(0; P [(� ; n); (� + 1; n)]).

divide it into 2 cases, A and B.
Case 2A.
The optimal values chosen in Section I are bothfor the

sub-channel whether the number isor . As mentioned in
Theorem 3.2, has better performance than .
Thus, the optimal value in this case is WIDS.

Case 2B.

The optimal value chosen iswhen the sub-channel number
is , and is when the sub-channel number is . Using
Theorem 3.7,

thus the optimal value is WIDS.
Case 3.

belongs to the region .
When , the optimal chosen

in Section II is when the sub-channel number isor .
As discussed in Theorem 3.2, performs better than

. Thus the optimal value in this case is
WIDS.
If is an odd number, there is 1 more intersection of

when the sub-channel number
is . When belongs to the region

then is better than . And
is better than . Thus the optimal in this case is

WIDS.
According to this explanation, the performance of

WIDS is better than WIDS. Thus, when using total avail-
able sub-channels, one gets the highest communication relia-
bility. Algorithm 4.1 shows how to choose to get the optimal
communication reliability; this optimal depends on what re-
gion belongs to.

For example, let ; then all combinations of are:

...

The optimal WIDS is in the set
.

That is, using total available sub-channels results
in the optimal reliability. From Theorem 3.6,

; thus
are not optimal. The method

to find the optimal value of is described in Section IV-A.
This section ignores the problem of information expansion
ratio.

C. Optimal WIDS With an Upper Bound on Information
Expansion Ratio

This section considers the problem of information expansion
ratio. A method is proposed to determine the candidate set of
the optimal WIDS when an upper-bound of information
expansion ratio and the number of available sub-channels

are given. This method can reduce the element number of
the candidate WIDS set from to .

Section II defines the information expansion ratio to be
for WIDS. When given an upper-bound ofand the
number of available sub-channels, the candidate WIDS set
is defined as:

Definition (Candidate Information Dispersal Scheme
Set): A candidate WIDS set, , with and , is

.
The candidate WIDS set can be reduced so that all optimal

WIDS are still included in the reduced candidate WIDS set. The
reduced candidate WIDS set is a subset of the candidate WIDS
set. For any , the optimal WIDS is an element of the reduced

.
The candidate WIDS set can be described as the union

of partitions. Each partition consists of all WIDS for
which is a constant:

...

...

By Theorem 3.2, for each partition
WIDS has the highest communication reliability

among them. Similarly, for each partition

the has the highest communication reliability among
them. Thus, can be reduced to

By Theorems 3.6 and 3.7, for the WIDS set
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it can be reduced to

when . Or it can be reduced to

Therefore, can be reduced to

when , or
when .

The number of the elements in reduced candidate WIDS set
is smaller than . Therefore, the number of the elements in
candidate WIDS set can be reduced from to . For
example, let and . should be smaller than
3. The candidate WIDS set is:

...

can be reduced to be
, and

. Thus the number of the candidate WIDS
sets is reduced from 51 to 5.

There is another example when the case expansion ratio is
less than 2.

...

...

Thus, the number of the candidates in the WIDS set is reduced
from 31 to 8.

This paper does not discuss the relations between the 2 ele-
ments of the partition . It is diffi-
cult to prove the relationship between and ,
because the function ap-
proaches 0 when approaches 1, and both and
are 0 when . It is difficult to claim which one is better.
But by the simulation result, is better than

. When , the difference between 1 and
or is smaller than . We

suggest using instead of . The
partition of candidate WIDS

Fig. 9. All curves of communication reliability(m; 20) WIDS, for1 � m �

n.

set can be reduced to . For example:
let and ; then can be reduced to be

.

V. DISCUSSIONS ANDFUTURE WORK

As in Section III, the transmission reliability is greatly im-
proved when is very small. The WIDS performances ap-
proach 1 when is greater than some value, such as 0.1 in
Fig. 9.

Now, define TR as the acceptable maximum probability of
transmitting a message with the WIDS: a WIDS
is acceptable if

Also define as the point that the reliability of
WIDS approaches 1, and . The list of

when and is:

This phenomenon shows that, if the TR smaller than
can be tolerated, then there is no difference in choosing

when
. If TR is larger, the becomes smaller;

i.e., if larger TR can be tolerated, then smallerwill achieve
tolerable performance of WIDS.

Define as the point that all reliability of
WIDS where and the difference between 1 and

where . Now, some are:

The greater is the smaller is; this satisfies
Theorem 3.3. When , then even
though is only 0.245. This means that the WIDS
improves parallel transmission when . The more
sub-channels that are used, the better the reliability. As
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stated before, if there is no difference between
choosing when

. If the user can tolerate the information
expansion ratio 2, it will be good enough to choose the
WIDS because the information expansion ratio of
WIDS is the smallest.

For given , there exists one greatest
(the smallest ) which satisfies .

can be chosen to get the optimal communica-
tion reliability. As mentioned in the previous paragraphs, if

, it will make no difference to choose any of

when . If the user can tolerate the infor-
mation expansion ratio 2, it will be good enough to choose the

WIDS because the information expansion ratio of
WIDS is smallest. Table II (in Appendix I) lists

some .

For example, when and , it is obvious
that . It seems that (35, 70) WIDS can be
the optimal solution because it approaches 1. But
is also larger than when

. One can choose the (10, 20) WIDS instead of (35, 70)
WIDS—because the computation complexity of (10, 20) WIDS
is simpler than that of (35, 70) WIDS.

It is reasonable to use fewer sub-channels to achieve the same
performance as using the total sub-channels, if some small
error can be tolerated, such as . Although a method is not
proposed to choose the optimal WIDS when some small
error can be tolerated, this phenomenon is still described and a
method is given to choose the WIDS which satisfies the
performance requirement. The phenomenon can help choose the
optimal WIDS when some small error can be tolerated.

This paper proposes the WIDS to support the fault-tol-
erant parallel wireless communication. On the basis that every
adjacent sub-channel is in the same environment, the bit error
rate of each sub-channel is assumed to be the same. After ana-
lyzing the WIDS performance, and deriving 8 useful the-
orems, 3 methods are proposed to determine the optimal
WIDS with highest reliability in different cases.

1) When given the , Algorithm 4.1 can determine
the optimal which WIDS will achieve the op-
timal communication reliability. The optimal value of
depends on what region belongs to. This algorithm re-
duces the computation complexity from to .

2) When the information expansion ratio does not have an
upper bound, the optimal WIDS uses allsub-channels.

3) When are given, a method is proposed to reduce
the candidate WIDS set for the optimal WIDS.
This method can reduce the number of elements in the
candidate WIDS set from to .

It is reasonable to use fewer sub-channels, instead of all
sub-channels, if the designated performance can be achieved.
This phenomenon is described and a method is given to choose
the WIDS which satisfies the performance requirement.
The phenomenon can help choose the optimal WIDS for
fault tolerance.

APPENDIX

A. Proof of Theorem 3.1

For any , the first order derivation of on is

B. Proof of Theorem 3.2

This theorem is proved by mathematical induction.

1) For

Thus, .
2) Assume this theorem holds for . Now—Let

then
. Therefore, ;

the theorem also holds for . By mathematical
induction, .

C. Proof of Theorem 3.3

Let .

It is known that:

And because

then

Hence , i.e., when .

D. Proof of Theorem 3.4

Let , then
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It is known that

Thus,

If , then .
Thus,

and is the optimal of when , where
.

E. Proof of Lemma 3.5

1)

2)

Thus, increases when , and decreases when
.

3) Prove that there is only 1 which satisfies .
Thus, solve .

Because

Thus:

Because and , then

Thus, is an increasing function from to 0 when
; and when . Thus

when when .
Now, look at ; it is a decreasing function from to

. Because , then has only one
solution: has only one solution when .

4) Thus, increases when , and then de-
creases when .

F. Proof of Theorem 3.6

1) Let .
2)

because .
3) Now, prove that there is only 1 point which satisfies

.

Let and .
By Lemma 3.5, when , there is only 1 solution

for

Thus, there is at most 1 point which satisfies .
Points 1, 2, and 3, show that the graph of can

be plotted. It increases from 0 to 1 local maximum, and
then decreases from the local maximum to 0. Thus
is positive when . And finally,

when .

G. Proof of Theorem 3.7

1) Let . It is known that
and .
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Fig. 10.

2) From Theorem 3.3: and
, when ; thus

.
3) From Theorem 3.4:

4) Proof that there are at most 2 points which satisfy

First, show that

Then, show that

Let

it is known that

Lemma 3.5 shows that there exists a such that
increases in and decreases in . Also

Thus, there are 2 solutions for

and 2 solutions for

Then, conclude that there are two solutions for ,
as shown in Fig. 10.

Finally, conclude that there is 1 point: ( and
) which satisfies

H. Proof of Theorem 3.8

Let:

By Theorem 3.7, if

otherwise (excluding the critical probability)
.

Similarly, if

otherwise (excluding the critical probability)
.

Consider , which is the probability
when . At the point

Let

Because satisfies

the following results are: if , then ,
else, if , then .

Thus, should be between
and .

Now, observe and

...

...

.. .

has a positive term
but has 2 positive terms

and .
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TABLE II
Q10 FORn = 10� 84

To make , then should move toward the
advantageous direction: the smaller side. Thus,

it follows that

I. Tables I and II

The results in Tables I and II are derived using Mathematica
(a useful mathematics tool). Mathematica has its limitation in

number precision. Because the precision bound of Mathematica
is , the intersection, is not listed
here when (because the estimation can
not be obtained using this simulation). In [5], the sub-channels’
number used in parallel communication is 84. (Note: There is
no intersection when .)

REFERENCES

[1] W. A. Burkhard, K. C. Claffy, and T. J. E. Schwarz, “Performance of
balanced disk array schemes,” inEleventh IEEE Symp. Mass Storage
Systems, 1991, pp. 45–50.

[2] L. Gargono, A. A. Rescigno, and U. Vaccaro, “Fault-tolerant hypercube
broadcasting via information dispersal,”Networks, vol. 23, pp. 271–282,
1993.

[3] R. W. Hamming,Coding and Information Theory: Prentice-Hall, 1986.
[4] Y. D. Lyuu, “Fast fault-tolerant parallel communication for de Bruijn and

digit-exchange networks using information dispersal,”Networks, vol.
23, pp. 365–378, 1993.

[5] M. J. de Ridder-de Groote and R. Parsad, “Analysis of new methods
for broadcasting digital data to mobile terminals over an FM-channel,”
IEEE Trans. Broadcast., vol. 40, pp. 29–37, 1994.

[6] M. O. Rabin, “Efficient dispersal of information for security, load bal-
ancing, and fault tolerance,”J. ACM, vol. 36, pp. 335–348, 1989.

[7] T. Sato, M. Kawabe, T. Kato, and A. Fukasawa, “Throughput analysis
method for hybrid ARQ schemes over burst error channels,”IEEE Trans.
Vehicular Technol., vol. 42, pp. 110–118, 1993.

[8] P. Sweeney,Error Control Coding: An Introduction: Prentice-Hall,
1991.

[9] H. M. Sun and S. P. Shieh, “Optimal information dispersal for in-
creasing reliability of a distributed service,”IEEE Trans. Rel., vol. 46,
pp. 462–472, 1998.

[10] L. P. Wilbur, G. C. Henri, and R. A. Nelson,Satellite Communication
Systems Engineering: Prentice-Hall, 1993.

Shiuh-Pyng Shiehreceived the M.S. in 1986 and the Ph.D. in 1991 in Electrical
and Computer Engineering from the University of Maryland, College Park. He
is a Professor and the Chair’n of the Department of Computer Science and In-
formation Engineering, National Chiao Tung University; the Vice Chair’n of the
board of Chinese Cryptology and Information Security Association; and director
of Cisco Internetworking Technology Lab. From 1988 to 1991, he participated
in the design and implementation of the B2 Secure XENIX for IBM, Federal
Sector Division, Gaithersburg USA. He is also the designer of SNP (Secure
Network Protocols), a very popular security shareware on the Internet. He has
consulted in network security and distributed operating systems for many insti-
tutes, such as Industrial Technology Research Institute, and National Security
Bureau, Taiwan. Dr. Shieh was on the organizing committees of numerous con-
ferences, and is an editor of theJ. Computer Security, andJ. Information Science
and Engineering. He has received two outstanding research awards, honored by
National Chiao Tung University and Executive Yuan of Taiwan. His research
interests include internetworking, distributed systems, and network security.

Yea-Ching Tsaireceived the M.S. in 1996 in Computer Science and Informa-
tion Engineering from National Chiao Tung University, Taiwan. Her research in-
terests include distributed systems and fault-tolerant schemes. She is a member
of the Phi Tau Phi Society.

Yu-Lun Huang received the B.S. in 1995 and the Ph.D. in 2001 in Computer
Science and Information Engineering from National Chiao Tung University,
Taiwan. She is the Senior Engineer of Ambit Microsystems Corp. Her research
interests include electronic commerce, distributed systems, quality of services,
and network security. She is a member of the Phi Tau Phi Society.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


