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A MULTIVARIATE PARALLELOGRAM AND ITS APPLICATION
TO MULTIVARIATE TRIMMED MEANS

Jyh-Jen Horng Shiau1∗ and Lin-An Chen1

National Chiao Tung University

Summary

This paper introduces a multivariate parallelogram that can play the role of the univariate
quantile in the location model, and uses it to define a multivariate trimmed mean. It assesses
the asymptotic efficiency of the proposed multivariate trimmed mean by its asymptotic
variance and by Monte Carlo simulation.
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1. Introduction

Let y1, . . . , yn denote a random sample from a univariate population with distribution
function F, and let F̂ be the empirical distribution function obtained from this sample.
Let Q(α1, α2) = (F−1(α1), F

−1(α2)) denote the (α1, α2)-quantile interval of F and let
Q̂(α1, α2) = (F̂−1(α1), F̂

−1(α2)) denote the corresponding sample quantile interval, where
F−1 and F̂−1 are the inverse functions of F and F̂ , respectively. The sample quantile
interval plays a very important role in statistical inference. For example, as a region with a
particular coverage probability, the interval is a natural estimator for scale parameters such
as the range and interquartile range. With this property, the quantile interval can be used in
industrial applications to define a process capability index for process capability assessment,
especially for non-normal processes. Also, this interval is routinely used in classifying the
observations of a sample into good or bad observations in robust mean estimation, such as for
the trimmed mean and Winsorized mean.

Analogues have been proposed for quantiles or order statistics in high dimensions. It is
well known that the univariate quantile can be obtained by solving a minimization problem.
Breckling & Chambers (1988) and Koltchinskii (1997) generalized the minimization prob-
lem for the multivariate case and then defined a multivariate quantile as the minimizer of the
problem. Chaudhuri (1996) considered a geometric quantile that uses the geometry of mul-
tivariate data clouds. Chakraborty (2001) used a transformation-retransformation technique
to introduce a multivariate quantile. However, these approaches do not have obvious settings
for defining multivariate regions suitable for constructing descriptive statistics because they
lack a natural ordering in multi-dimensional data.
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In contrast to the above approaches, Chen & Welsh (2002) proposed for the bivariate
random vector y a bivariate quantile that partitions R

2 into two-dimensional intervals of
specified probabilities. In this sense, their approach is a natural extension of the univariate
quantile. They first applied an appropriate transformation to y, attempting to make the two co-
ordinate components of the transformed random vector x uncorrelated. Denote x = (x1, x2).

Then the partition takes the following two steps. (i) Find q1 such that Pr(x1 ≤ q1) = α1 .
More specifically, the line x1 = q1 divides R

2 into two sets, of which one set has cover-
age probability α1 and the other has coverage probability 1 − α1 . (ii) Find q2 such that
Pr(x1 ≤ q1, x2 ≤ q2) = α2 . Thus, the line x2 = q2 divides the set with coverage probability
α1 into two subsets such that one has coverage probability α2 and the other has coverage
probability α1 − α2 . Then (q1, q2) is called the (α1, α2)-th bivariate quantile of x in the
transformed space. Finally, the bivariate quantile of y is obtained by back-transforming the
bivariate quantile of x. Let (q̂1, q̂2) denote the corresponding sample quantile obtained from
the data. Note that the distribution of q̂2 depends on the distribution of q̂1 , which makes the
asymptotic properties of (q̂1, q̂2) quite complicated. This approach can be extended to higher
dimensional data. However, it would be too complicated to study the asymptotic distribution
of the sample multivariate quantile defined in this way, and difficult to use it to make statistical
inference from data.

There is some work in the literature on multivariate median estimation. Oja (1983) de-
fined the multivariate simplex median by minimizing the sum of volumes of simplices with
vertices on the observations; Liu (1988, 1990) introduced the simplicial depth median by
maximizing an empirical simplicial depth function. Small (1990) gives an excellent review
of these papers.

Chaudhuri (1996) noted that most authors introduced descriptive statistics by merely gen-
eralizing the univariate statistics to the multivariate setup, with no clear population analogues
for these multivariate descriptive statistics. In other words, descriptive statistics were being
defined without the target population parameters to be estimated. Although the approach of
Chen & Welsh (2002) defines both the multivariate population parameters and their corre-
sponding estimators, it is worth developing alternatives that are easier to use in theoretical
study and practical applications. The major purposes of this paper are to define a multivariate
parallelogram region as a counterpart of the univariate quantile interval, and to propose a
statistic to estimate it. The approach used here considers the same variable transformation
as that in Chen & Welsh (2002), but it defines the multivariate quantile through the univari-
ate quantile of each coordinate of the transformed variable. This avoids the difficulty that
we encountered in studying the complicated asymptotic distribution of the Chen & Welsh
multivariate quantile.

Inspired by an idea that Huber (1973, 1981) used when constructing a location-scale
equivariant studentized M-estimator for location, we introduce multivariate quantile points
and use them to construct a multivariate parallelogram. With sample multivariate parallelo-
grams, many multivariate descriptive statistics, such as multivariate versions of scale estima-
tors, process capability indices, and trimmed means, are easy to construct. In this paper, we
study the large-sample properties of the sample multivariate quantile points and the trimmed
means constructed by this parallelogram. We compute asymptotic generalized variances of
the proposed multivariate trimmed mean and the Cramér–Rao lower bounds for various multi-
variate contaminated normal distributions. The study reveals that the proposed trimmed mean
is quite efficient.
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Section 2 introduces the multivariate parallelogram and the multivariate quantile
points, and gives a large sample representation of the multivariate quantile points. Section 3
presents a multivariate trimmed mean and its large sample representation. Section 4 gives a
comparative study of multivariate trimmed means for two different coordinate transformations
and the sample mean based on the asymptotic efficiency and Monte Carlo simulations.
Proofs of the theorems in this paper are given in Shiau & Chen (2002), which is available at
http://www.stat.nctu.edu.tw/TechnicalReports/jyhjen/MultiTrimMean.ps

2. Multivariate parallelograms

Consider the multivariate location model

y = µ + v ,

where y,µ, and v are p × 1 vectors with E(v) = 0 and V(y) = V(v) = �. We want to
find a subset of the sample space of y with a fixed (either exact or approximate) coverage
probability. Apparently, there can be many choices for the shape of this subset. Popular ones
include the cube, ellipsoid, parallelogram, trapezoid, etc. If we further require this subset to
have the smallest volume, then we can expect different shapes for different distributions. For
example, our investigation shows that the ellipsoid is better than the parallelogram when the
distribution is bivariate normal while the result is opposite when the distribution is bivariate
exponential or chi-squared.

Since � is symmetric positive definite, there exists a non-singular matrix D = �1/2,

such that � = DDT. The transformed random vector x = D−1y has the model

x = D−1µ + ε

with ε = D−1v. Denote x = (x1, . . . , xp). Since V(x) = I , x1, . . . , xp are uncorrelated. It
is then natural to consider a region formed by the Cartesian product of the p marginal quantile
intervals. The multivariate parallelogram is thus obtained by transforming this region back to
the y-space. An advantage of choosing the parallelogram as the shape of the region is that
asymptotic study of the proposed statistics based on the sample parallelogram is relatively
simple compared to other shapes.

Definition 1. For j = 1, . . . , p and 0 < αj < 1, let ξj = F−1
j (αj ) denote the univariate

αj -th quantile of the random variable xj .

(a) Define the (α1, . . . , αp)-th multivariate quantile point by q(α) = Dξ , where α =
(α1, . . . , αp) and ξ = (ξ1, . . . , ξp). Denote q(α1) by q(α) when α1 = · · · = αp = α,

where 1 = (1, . . . , 1).
(b) Let α1 = (α11, . . . , αp1) and α2 = (α12, . . . , αp2) where αj1 < αj2 . Define the

multivariate quantile set by

Q(α1,α2) = {q(α1a1
, . . . , αpap ): aj = 1, 2, j = 1, . . . , p} ,

which contains 2p quantile points. Define ξjk = F−1
j (αjk). The region

R(α1,α2) = {y = Dx: ξj1 ≤ xj ≤ ξj2, j = 1, 2, . . . , p}
is called the parallel multivariate quantile region.
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Suppose that we have a random sample y1, . . . , yn obeying the following multivariate
location model:

yi = µ + vi (i = 1, . . . , n) ,

where v1, . . . , vn are independent and identically distributed error vectors with mean zero
and covariance matrix �. Let �̂ denote an estimator of the variance–covariance matrix �.

Then D̂ = �̂1/2. Let xi = D̂−1yi , i = 1, . . . , n, denote the transformed random vectors.
Denote xi = (x1i , . . . , xpi). Let ξ̂j1 and ξ̂j2 denote the αj1-th and αj2-th sample quantiles,
respectively, based on the transformed observations xj1, . . . , xjn .

Definition 2. Define an estimator of the multivariate quantile point q(α) by

q̂(α) = D̂ξ̂ ,

where ξ̂ = (ξ̂1, . . . , ξ̂p). Consequently, an estimator of the multivariate quantile set is

Q̂(α1,α2) = {q̂(α1a1
, . . . , αpap ): aj = 1, 2, j = 1, . . . , p} .

The parallel multivariate quantile region is estimated by

R̂(α1,α2) = {y = D̂x: ξ̂j1 ≤ xj ≤ ξ̂j2, j = 1, . . . , p} . (1)

Theorem 1 states that the estimators of the quantile points and the parallelogram defined
above are of desired equivariance properties. First, to simplify the notation, we fix the quantile
levels α1 = α = (α1, α2, . . . , αp) and α2 = 1 − α1 = (1 − α1, 1 − α2, . . . , 1 − αp), and
then suppress them from the notation of the statistics under study. Re-denote the estimated
multivariate quantile points obtained from the samples y1, . . . , yn and Ay1 + c, . . . ,Ayn + c

by q̂α1
(y) and q̂α1

(Ay +c), respectively. We also re-denote D by D(y) and ξ̂j by ξ̂j (αj , y)

to indicate which dataset the statistics are based on. For the moment, we let �̂ be more general
than the sample covariance matrix. Let �̂(y) denote a p × p matrix representing a statistic
obtained from the random sample y1, . . . , yn .

Theorem 1. Let A denote a p×p non-singular matrix and c a p×1 vector. Suppose that the
statistic D̂ satisfies D̂(Ay + c) = AD̂(y) and we denote the estimated parallel multivariate
quantile region of (1) by R̂(α, y). Then

(a) q̂α1
(Ay + c) = Aq̂α1

(y) + c and

(b) R̂(α1,Ay + c) = AR̂(α1, y) + c.

On the other hand, suppose that the statistic D̂ satisfies D̂(Ay + c) = −AD̂(y). Then

(c) q̂α1
(Ay + c) = Aq̂α2

(y) + c and

(d) R̂(α1,Ay + c) = AR̂(α2, y) + c.

For the large sample study, the following conditions are assumed for random vector v

and sample covariance matrix �̂. For j = 1, . . . p, let gj and Gj denote the probability
density function (pdf) and the cumulative distribution function (cdf) of the transformed error
vector D−1v, respectively. Let σ T

j denote the j th row of D−1. Let u, δ ∈ R
p.

(i) The pdf gj and its derivative are both bounded and bounded away from 0 in a neigh-

bourhood of G−1
j (αj ) for αj ∈ (0, 1), j = 1, 2, . . . , p.
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(ii) n1/2(�̂ − �) = Op(1).
(iii) There exists θ > 0 such that the pdf of vT(σj + δ) is uniformly bounded in a neigh-

bourhood of G−1
j (α) for ‖δ‖ ≤ θ, and the pdf of vT(σj + δ)(vTu)(vTσj ) is uniformly

bounded away from 0 for ‖u‖ = 1 and ‖δ‖ ≤ θ.

(iv) E
(
(vTσj )

2‖v‖) < ∞.

A representation of the multivariate quantile point is stated in Theorem 2.

Theorem 2. Under conditions (i)–(iv),

n1/2(q̂α − qα) = n−1/2D

n∑
i=1

ui + n1/2(D̂ − D)ξ + Dn1/2((D̂−1 − D−1)µ + v
) + op(1) ,

where ui = (ui1, . . . , uip) with uij = f−1
j (ξj )(αj − I (xji ≤ ξj )); v = (v1, . . . , vp) with

vj = (sj − σj )
TE(v | xj = ξj ); fj is the pdf of xj ; sT

j and σ T
j are the j th row of D̂−1 and

D−1, respectively; and I denotes the indicator function.

The asymptotic distribution of the multivariate quantile point completely relies on the
asymptotic property of the estimator of the scale matrix D.

Having defined the multivariate quantile point and parallel multivariate quantile region,
we now introduce a simple multivariate median.

Definition 3. Define a multivariate median by q(0.5) and let q̂(0.5) denote its estimator.

Corollary 3. Under conditions (i)–(iv), q̂(0.5) has the following representation:

n1/2(q̂(0.5) − q(0.5)
)

= n−1/2 1
2D

n∑
i=1

ũi + Dn1/2(D̂−1 − D−1)µ + n1/2(D̂ − D)ξ̃ + Dn1/2ṽ + op(1) ,

where ũi = (ũi1, . . . , ũip), ũij = f−1
j (ξ̃j ) sgn(xji ≤ ξ̃j ), ξ̃ = (ξ̃1, . . . , ξ̃p), ξ̃j = F−1

j (0.5),

and ṽ = (ṽ1, . . . , ṽp), ṽj = (sj − σj )
TE(v | xj = ξ̃j ). Here sgn(A) = 1, if condition A

holds, and −1 otherwise.

Compared to the multivariate medians defined by Liu (1988) and Oja (1983), this defi-
nition is much simpler, and the estimate is easier to compute.

3. Multivariate trimmed means by parallelogram

The simplest way to construct a robust multivariate estimator is to take a robust esti-
mator for each coordinate. The multivariate trimmed mean of this type has been studied
by Gnanadesikan & Kettenring (1972). Unfortunately, this approach does not consider all
variables simultaneously so that the estimators thus constructed do not have the equivariance
property. We propose a multivariate trimmed mean based on the studentized observations
xi = D̂−1yi , i = 1, . . . , n . Recall that sT

j is the j th row of D̂−1, j = 1, . . . , p.

Definition 4. The multivariate trimmed mean is µ̂t = D̂m̂ with m̂ = (m̂1, . . . , m̂p), where

m̂j =
∑n

i=1 xji I (ξ̂j1 ≤ xji ≤ ξ̂j2)∑n
i=1 I (ξ̂j1 ≤ xji ≤ ξ̂j2)

.

Denote the multivariate trimmed mean by µ̂t (α) for simplicity if α = α11 = · · · = αp1 =
1 − α12 = · · · = 1 − αp2 .
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Theorem 4. Suppose that the sample scale matrix D̂ is such that D̂(Ay + c) = AD̂(y).

Here we denote µ̂t by µ̂t (y). Then µ̂t (Ay + c) = Aµ̂t (y) + c.

Let σ T
j denote the j th row of D−1. Let Gj and gj denote the cdf and pdf of εj = σ T

j v,

respectively. Denote ηj = G−1
j (αj ) and ηjk = G−1

j (αjk). It is seen that ξj = σ T
j µ + ηj .

Denote δ = (δ1, δ2, . . . , δp) with δj = ∫ ηj2
ηj1

εjgj (εj )dεj , φ(εj ) = εj I (ηj1 ≤ εj ≤ ηj2) −
δj +ηj1( I (εj < ηj1)−αj1)+ηj2( I (εj > ηj2)−(1−αj2)), Evj = E(vT I (ηj1 ≤ εj ≤ ηj2)),

and H = diag(h1, . . . , hp), where hj = 1/(αj2 − αj1).

Theorem 5. Under conditions (i)–(iv),

n1/2(µ̂t − (µ + D̂Hδ)
) = DHn−1/2

n∑
i=1

(φi + ω) + op(1) ,

where φi = (φ(ε1i ), . . . , φ(εpi)) and ω = (Ev1(s1 − σ1), . . . ,Evp(sp − σp)).

Corollary 6. Suppose that Evj = 0 and Gj are all symmetric about zeros. Denote η̃j1 =
G−1
j (α) and η̃j2 = G−1

j (1 − α). Then

n1/2(µ̂t (α) − µ
) = (1 − 2α)−1Dn−1/2

n∑
i=1

φ0i + op(1) ,

where φ0i = (φ0(ε1i ), . . . , φ0(εpi)) with

φ0(εj ) =



η̃j1 εj < η̃j1 ,

εj η̃j1 ≤ εj ≤ η̃j2 ,

η̃j2 εj > η̃j2 ,

for j = 1, . . . , p, and n1/2(µ̂t (α) − µ)
d→ Np(0,K), where K = (1 − 2α)−2DTDT,

T = [τjk], with

τjj =
∫ η̃j2

η̃j1

ε2gj (ε)dε + 2α(η̃j2)
2 , for j = 1, . . . , p ,

and

τjk = η̃j1η̃k1Pr(εj < η̃j1, εk < η̃k1) + η̃j1

∫ η̃k2

η̃k1

∫ η̃j1

−∞
εkgjk(εj , εk) dεj dεk

+ η̃j1η̃k2Pr(εj < η̃j1, εk > η̃k2) + η̃k1

∫ η̃k1

−∞

∫ η̃j2

η̃j1

εjgjk(εj , εk) dεj dεk

+
∫ η̃k2

η̃k1

∫ η̃j2

η̃j1

εj εkgjk(εj , εk) dεj dεk + η̃k2

∫ ∞

η̃k2

∫ η̃j2

η̃j1

εjgjk(εj , εk) dεj dεk

+ η̃j2η̃k1Pr(εj > η̃j2, εk < η̃k1) + η̃j2

∫ η̃k2

η̃k1

∫ ∞

η̃j2

εkgjk(εj , εk) dεj dεk

+ η̃j2η̃k2Pr(εj > η̃j2, εk > η̃k2) ,

for j �= k, τjk = τkj , j, k = 1, . . . , p, where gjk denotes the joint pdf of εj and εk .
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Table 1

Asymptotic generalized variances of estimators and Cramér–Rao lower bounds (δ = 0.1)

Estimate
ρ = 0.2 ρ = 0.5

σ = 2 σ = 5 σ = 10 σ = 2 σ = 5 σ = 10

ȳ 1.287 3.394 10.89 1.219 3.368 10.89

µ̂t

α = 0.1 1.202 1.364 1.438 1.138 1.314 1.364
α = 0.2 1.282 1.387 1.432 1.199 1.318 1.356
α = 0.3 1.359 1.495 1.531 1.299 1.437 1.453

µ̂t t

α = 0.1 1.203 1.367 1.441 1.153 1.302 1.365
α = 0.2 1.270 1.398 1.437 1.226 1.332 1.377
α = 0.3 1.388 1.483 1.519 1.332 1.414 1.453

C–R 1.152 1.152 1.115 1.017 1.013 0.983

4. Asymptotic efficiency and Monte Carlo study for the trimmed means

From Theorem 5, the asymptotic efficiency of the multivariate trimmed mean relies on
the performance of the estimator �̂ since the covariance matrix � affects D and φ. It is
well known that the sample covariance matrix is efficient as an estimator of the covariance
matrix for normal distributions, but becomes less efficient when the error vector ε departs
from normal distributions. It is then quite natural to suspect that using D̂ may reduce the
efficiency of the multivariate trimmed mean when ε departs from normal distributions. We
thus consider a ‘robustified’ version of the multivariate trimmed mean.

Denote the multivariate trimmed mean based on the ordinary sample covariance matrix
�̂ by µ̂t . Let zα denote the truncated variable obtained by restricting the random variable
z on the interval [F−1

z (α), F−1
z (1 − α)], where F−1

z is the population quantile function of
z. For simplicity, consider the bivariate case. Denote the pdf of v = (v1, v2) by h and the
marginal pdfs of v1 and v2 by h1 and h2 , respectively. Similar to the trimmed mean for the
location parameter, a robust scale matrix can be defined based on the truncated variables v1α
and v2α . Define the trimmed covariance matrix by �α = V(v) = [ϕij ] with

ϕii = 1

1 − 2α

∫
Ci

v2
i hi(vi) dvi, ϕ12 = 1

a(α)

∫
C2

∫
C1

v1v2h(v1, v2) dv1 dv2 ,

where a(α) = Pr(v1 ∈ C1, v2 ∈ C2), Cj = [H−1
j (α),H−1

j (1 − α)], j = 1, 2, and H−1
j is

the population quantile function of the variable vj . Let �̂α be an estimator of �α satisfying

assumption (ii). Denote the robustified bivariate trimmed mean based on �̂α by µ̂t t .
To compare the sample mean ȳ, the trimmed mean µ̂t , and the robustified trimmed

mean µ̂t t , we consider the error vector

v
d=

{
N2(0,R) with probability 1 − δ ,

N2(0, σ
2I ) with probability δ ,

where R =
[

1 ρ

ρ 1

]
, (2)

for 0 ≤ δ ≤ 1. When δ = 0, v has a bivariate normal distribution. Define the generalized
variance as the determinant of the covariance matrix. Consider δ = 0.1, ρ = 0.2, 0.5, and
σ = 3, 5, 10. Table 1 gives the square-root of the asymptotic generalized variances of ȳ,

µ̂t , and µ̂t t for the cases α = 0.1, 0.2, 0.3. The Cramér–Rao lower bounds (C-R) for the
distributions under study are also included.
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Table 2

Asymptotic generalized variances of the two trimmed means (δ = 0.3, ρ = 0.5, σ = 10)

µ̂t µ̂t t

α = 0.1 α = 0.2 α = 0.3 α = 0.1 α = 0.2 α = 0.3

ρ = 0.5
σ = 10 1.263 1.299 1.421 1.328 1.311 1.432

The following are some observations from Table 1.

(a) Relatively, the sample mean ȳ has larger asymptotic generalized variances than the two
trimmed means. This confirms that ȳ is quite sensitive to the outliers. It also shows that
the two trimmed means are fairly robust, as expected.

(b) The two trimmed means have nearly the same efficiency.
(c) When the correlation coefficient ρ gets larger, the asymptotic generalized variances of

the two trimmed means get smaller.
(d) With δ = 0.1, which means that approximately 10% of observations are drawn from a

distribution with larger variance, a 10% trimming percentage seems to be reasonable for
both of the trimmed means under study. A similar observation has been made for the
univariate trimmed means under the location and linear regression models (Ruppert &
Carroll, 1980; Chen & Chiang, 1996).

The two trimmed means are quite competitive in the above study. Would the trimmed
mean based on the sample covariance matrix �̂ be relatively less efficient than the one based
on the trimmed covariance matrix �̂α , if the error distribution had more outliers? We compute
the asymptotic generalized variances of these two trimmed means for the error distribution of
(2) with δ = 0.3 and σ = 10. Table 2 lists the results.

Surprisingly, the generalized variances are all smaller for µ̂t than for µ̂t t , which indicates
that the sample covariance matrix �̂ is a better choice.

To study the trimmed means under the multivariate model with asymmetric error distri-
butions, we perform a Monte Carlo simulation for the multivariate location model y = µ+v.

Let z = (z1, z2) denote a vector of two independent exponential random variables with mean
1. Assume that the error vector v = (v1, v2) has the following mixed distribution:

v
d=

{
Gz with probability 1 − δ ,

σz with probability δ ,
where G =

[ √
1 − ρ2 ρ

0 1

]
.

This design ensures that v has a zero-mean asymmetric distribution, and has either a covari-
ance matrix R with probability (1 − δ) or a covariance matrix σ 2I with probability δ. Note
that large values of σ may produce outliers.

In this study, we let µ = (1, 1) and consider the cases δ = 0.1, 0.2, ρ = 0.2, 0.5, 0.8,
and σ = 2, 5, 10. The sample size is n = 30. For each case, we simulate 1000 sets of data
from the above mixture model. For i = 1, . . . , 1000, let µ̂i stand for the estimate of the i th
replicate for the mean estimator µ̂, where µ̂ can be any of the three mean estimators under
study. With 1000 replicates, we compute the averaged mean squared error (AMSE) of the
mean estimators defined by

AMSE(µ̂) = 1

1000

1000∑
i=1

(µ̂i − µ)T(µ̂i − µ) ,

for µ̂ being ȳ, µ̂t , and µ̂t t , respectively. Tables 3, 4, and 5 give the results.
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Table 3

AMSE of the three mean estimators (ρ = 0.2)

Estimate
δ = 0.1 δ = 0.2

σ = 2 σ = 5 σ = 10 σ = 2 σ = 5 σ = 10

ȳ 86.50 237.2 697.7 111.8 376.1 1370

µ̂t

α = 0.1 0.059 0.074 0.111 0.069 0.116 0.311
α = 0.2 0.088 0.098 0.108 0.099 0.112 0.144
α = 0.3 0.120 0.132 0.144 0.132 0.146 0.161

µ̂t t

α = 0.1 0.105 0.128 0.191 0.121 0.228 0.586
α = 0.2 0.165 0.173 0.184 0.180 0.201 0.251
α = 0.3 0.220 0.232 0.247 0.239 0.253 0.265

Table 4

AMSE of the three mean estimators (ρ = 0.5)

Estimate
δ = 0.1 δ = 0.2

σ = 2 σ = 5 σ = 10 σ = 2 σ = 5 σ = 10

ȳ 86.89 211.2 765.6 118.9 381.3 1422

µ̂t

α = 0.1 0.073 0.083 0.119 0.085 0.132 0.302
α = 0.2 0.112 0.117 0.124 0.124 0.139 0.163
α = 0.3 0.151 0.160 0.164 0.163 0.182 0.196

µ̂t t

α = 0.1 0.102 0.123 0.189 0.128 0.231 0.563
α = 0.2 0.160 0.162 0.170 0.184 0.204 0.249
α = 0.3 0.214 0.214 0.223 0.236 0.252 0.263

Table 5

AMSE of the three mean estimators (ρ = 0.8)

Estimate
δ = 0.1 δ = 0.2

σ = 2 σ = 5 σ = 10 σ = 2 σ = 5 σ = 10

ȳ 85.43 218.3 723.9 101.3 377.7 1320

µ̂t

α = 0.1 0.083 0.100 0.125 0.092 0.150 0.317
α = 0.2 0.130 0.142 0.139 0.142 0.169 0.188
α = 0.3 0.176 0.194 0.193 0.191 0.218 0.226

µ̂t t

α = 0.1 0.097 0.121 0.186 0.118 0.226 0.530
α = 0.2 0.144 0.156 0.157 0.174 0.208 0.241
α = 0.3 0.187 0.203 0.201 0.227 0.250 0.251

We observe the following for the asymmetric distribution from Tables 3, 4, and 5.

(a) Both the trimmed means perform better than the sample mean.
(b) Again, µ̂t performs better than µ̂t t . It seems that the robustified trimmed mean does not

benefit from trimming the covariance matrix. This is somewhat surprising. The trimmed
mean using the ordinary sample covariance matrix attains good efficiency.
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