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Abstract-Incident-induced traffic congestion is a critical issue in formulating urban traffic con- 
gestion problems, and also a major cause that contributes to the invalidity of trafIic signal control. 
This paper presents a prototype of real-time local signal control method, and explores its applicability 
in alleviating incident-induced traflic congestion on the roadway between two adjacent intersections 
for incident management. The architecture includes two major parts: 

(1) formulating time-varying lane trafIic state variables and control variables under conditions of 
lane-blocking incidents with a discrete-time non-linear stochastic model, and 

(2) developing a real-time control algorithm for predicting dynamically control variables. 

To generate efficiently traflic data used in model tests, we employed the Paramics microscopic traffic 
simulator, which is developed to model and analyze ITS traffic flow conditions. According to the 
measures of two proposed spacebased incident-impact indexes, the preliminary test results indicate 
the superiority of the proposed real-time signal control method in comparison with fixed-time signal 
control modes which are currently used at the study site. We do expect that this study can stimulate 
research on incident management, and extend to network-wide incident-responsive traffic control for 
the development of advanced traffic management systems (ATMS). @ 2003 Elsevier Ltd. All rights 
reserved. 

Ke~Ords--Incident-induced traffic congestion, Incident-responsive, Incident management, Kal- 
man filtering techniques. 

1. INTRODUCTION 

Incident-induced traffic congestion remains a critical issue in the development of advanced in- 
cident management systems. The abnormal impact of incidents on trafhc congestion not only 
undermines terribly the mobility, but can also be a major cause of the malfunction of traffic signal 
control on surface streets. In reality, we have pointed out that such anomalous traffic congestion 
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during incidents may affect significantly the stability of intralane as well as interlane traffic flows, 
and contribute to unexpected errors in the predictions of traffic states which are used exten- 
sively in early developed signal control modes as the basis for traffic control and management [I]. 
Similar viewpoints can also be found in Scemama’s study which summarized the limits of the 
existing traffic control systems facing congestion phenomena [2]. Consequently, such problems of 
prediction divergence and disability of signal control may precipitate other types of traffic flow 
phenomena including bottlenecks, queue overflows, and gridlocks. 

To date, there exists a limited number of traffic control technologies that can be used to ad- 
dress, efficiently and effectively, incident-induced traffic congestion on surface streets. Scemama 
proposed an artificial intelligence based traffic supervisory module termed CLAIRE, which was 
developed to continue the SAGE traflic control system in operation in Paris for congestion man- 
agement [2]. Through six built-in functions, including congestion monitoring, control, and recog- 
nition, CLAIRE initializes the congestion management mechanism using three-min. occupancy 
rates. One distinctive feature of CLAIRE is that its architecture provides an interface to inte- 
grate with other specific traffic control and management systems such as SCOOT and PRODYN 
to enhance the system performance with respect to on-line congestion management. Despite the 
aforementioned features of CLAIRE in terms of congestion management, its applicability and 
testing in incident-induced congestion cases warrant further research. The updated version of 
the British SCOOT system is claimed to possess the functionality of incident management [3]. 
Through the integration with the INGRID automatic incident detection system and the system 
of VAMPIRE, which is a computer program for operating variable message signs, the objective 
of incident management appeared to be achievable via utilizing SCOOT, Version 3.0. Neverthe- 
less, critical issues relevant to the operational efficiency of such a sophisticated SCOOT package 
remain. For instance, the performance of the SCOOT package members must rely to a great 
extent on that of each other. In addition, system calibration and data communication remain a 
critical issue in the SCOOT system package. 

In addition, much effort has been devoted to investigating various sophisticated methodolo- 
gies for improving system performance of demand-responsive signal control for oversaturated 
cases [4-B]. However, there is a lack of capability, among the contemporary signal control algo- 
rithms, in responding to diverse incident-induced trafhc congestion conditions in real time. Two 
striking examples are raised to emphasize our concerns in the applicability of the published signal 
control technologies for incident cases. One is the validation of these published control modes 
in preventing queue overflows at an isolated intersection, and the other one is their capability in 
terms of dealing with gridlock events to accomplish the objective of system optimization. De- 
tails in the advanced traffic signal control approaches as well as their limitations can be found 
elsewhere [l], and thus, are not presented in this paper. 

In addition to the aforementioned control-based technologies, there is a growing trend of com- 
bining elaborately several management-based systems to serve the purpose of incident manage- 
ment. One notable example is the British MOLA system [9], which integrates an on-line simula- 
tion program MCONTRM conducted for traffic assignment with variable message signs (VMS). 
In the process of incident handling, a number of feasible route diversion strategies in cooperation 
with VMS are simulated. The performance of two of the simulated suitable strategies together 
with the “do nothing” strategy (i.e., without VMS assistance) is then evaluated, and the relative 
best strategy is implemented. Nevertheless, more research is needed regarding the integration 
of MOLA with the traffic control operator as well as the acquisition of real-time traffic data to 
ensure on-line implementation of incident management. Other strategies such as the utilization 
of distributed video networks, and the combination of expert systems and geographic information 
systems can also be found in related literature [lO,ll]. 

In view of the importance of developing advanced traffic control systems for real-time incident 
management in urban areas, this study attempts to explore a real-time local signal control ap- 
proach in response to lane-blocking incidents on the roadway between two adjacent intersections. 
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Given incident-related information including incident location and the onset of incident duration, 
this study serves two main purposes including: 

(1) reducing incident impact to the greatest extent, and 
(2) preventing queue overflows that affect traffic flows at upstream intersections. 

In order to accomplish these goals, we propose a stochastic optimal control based method which 
includes formulating incident effects on interlane and intralane traffic states with a discrete-time, 
nonlinear stochastic model, and developing a recursive estimation algorithm used for updating 
lane traffic states such as lane-changing fractions and queue lengths as well as signal control 
variables of the intersection downstream to the incident site. Note that the mechanism of the 
proposed method is tentatively limited to local signal control to prevent over-congestion at the 
downstream intersection in the presence of a lane-blocking incident on the upstream roadway. 
Issues with respect to network-wide incident-induced congestion events such as queue overflow 
and gridlock cases are not addressed in the current research scenario, and warrant further research 
in which more sophisticated technologies based on system-optimization control principles may be 
needed. The following section details the specification of these state variables as well as the 
proposed methodology. 

2. MODEL FORMULATION 

This study focuses on investigating arterial lane-blocking incidents occurring on t,he road- 
way between two adjoining intersections. In contrast with arterial incidents, incidents occurring 
within an intersection, namely, intersection incidents, may face different operational problems 
associated with different geometric as well as traffic characteristics, and thus, they are addressed 
elsewhere [l]. Figure 1 illustrates graphically the basic requirement of the detector layout imple- 
mented for the use of the proposed incident-responsive local signal control method. As depicted 
in Figure 1, a given pair of point detector stations are installed on the roadway associated with 
each link connecting the targeted intersection and a given adjacent intersection. In the presence 
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Figure 1. The basic requirement of detector layout. 
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of a lane-blocking incident occurring on a given link which is regarded as a detection zone, the raw 
traffic data collected from the pairs of detector stations are utilized to estimate zone-wide incident 
effects on interlane and intralane traffic states in the detection zone as well as to control signal 
timing plans implemented at the targeted intersection in response to diverse incident-induced 
traffic congestion problems at the targeted intersection. 

Three groups of state variables including 

(1) basic lane traffic states, 
(2) decision variables, and 
(3) incident impact are specified for model formulation in the study. 

Herein, basic traffic variables characterize incident-induced interlane and intralane traffic maneu- 
vers under real-time incident-responsive signal control; decision variables determine the lengths 
of green time associated with specific phases of signal control. In addition, spaced-based incident 
impact monitors the effects of incidents on intralane traffic flows in real time. Table 1 summarizes 
the notations of the aforementioned state variables. 

Table 1. Notations of state variables. 

Type of Variable 

Basic Lane Traffic State T’(k) 

Decision Variable 

Incident Impact 

Notation 

PC(k) 

+‘W 

r,?(k) 

Rx(k) 

G”(k) 

qj’W 

G’W 

ay(k) 

T’(k) 

Definition 

the mandatory lane-changing fraction from blocked lane i to 
adjacent lane j in link m at time step k, which corresponds 
to the proportion of vehicles in blocked lane i that conduct 
lane-changing maneuvers from blocked lane i to adjacent 
lane j in link m at time step k 

the proportion of vehicles present in adjacent lane j of 
link m which can pass the detector station downstream to 
the detection zone at time step k 

the proportion of vehicles present in independent lane 1 of 
link m which can pass the detector station downstream to 
the detection zone at time step k (note that an independent 
lane is defined es a lane that excludes blocked lanes and the 
lanes right adjacent to blocked lanes.) 

the proportion of vehicles conducting mandatory lane 
changes from blocked lane i to adjacent lane j which pass 
the downstream detector in adjacent lane j of link m at time 
step k 

the proportion of the length of green time associated with 
phase X at time step k to the length of a unit time step 

the number of vehicles queuing in blocked lane i of link m at 
time step k 

the number of vehicles queuing in adjacent lane j of link m 
at time step k during red intervals 

the number of vehicles queuing in independent lane 1 of 
link m at time step k during red intervals 

the number of vehicles present in adjacent lane j of link m 
at time step k (i.e., the lane traffic load in adjacent lane j of 
link m at time step k) 

the lane traffic load in independent lane 1 of link m at time 
step k 

In order to facilitate model formulation and algorithm development, five assumptions are pos- 
tulated below: 

(1) all the basic lane trafhc states follow Gaussian-Markov processes; 
(2) green splits are the only sets of timing variables being considered as decision variables; 
(3) the incident duration is known beforehand; 
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(4) route rediversion due to incident-induced congestion is not considered; and 
(5) drivers fully comply with mandatory lane-changing maneuvers. 

Utilizing the fundamentals of stochastic optimal control theories [12,13], a discrete-time nonlin- 
ear stochastic model is proposed for the real-time estimation of the aforementioned time-varying 
state variables. Systematically, the proposed stochastic model comprises three groups of dynamic 
equations, including 

(1) recursive equations, 
(2) measurement equations, and 
(3) boundary constraints. 

These equations are presented, respectively, as follows. 

Recursive Equations 

The recursive equations denote the relationships between the next-time-step and current-time- 
step basic lane traffic states in the stochastic system. The fundamental relationships among 
state variables in these equations were built on the basis of the first assumption. The derived 
rationales seem acceptable. For instance, the driver’s lane-changing behavior conducted at the 
next time step may depend mainly on the lane traffic states at the current time step, but not rely 
on the earlier states. The assumption with respect to properties of time-varying lane traffic states 
is therefore postulated to build the state transition equations. Accordingly, the state variables 
are supposed to possess the Markovian properties in the deterministic environment, mimicking 
incident-free traffic flow states. However, under lane-blocking incident conditions, these states 
may be affected incident-induced congestion represented by noise terms, which are assumed to 
follow Gaussian processes. Therefore, a stochastic system characterizing incident-induced lane 
traffic states is introduced’. Detailed discussions of corresponding rationales can also be found 
in our previous research [1,14,15]. The generalized form of the recursive equations is given by 

x (k + 1) = f [+), fix(k), kl + L [W, h(k), kl Wk). 0) 
In equation (l), X(k+l) is a [cz=, (3n,” + n?)] x 1 time-varying vector of basic lane traffic states 
at time step k+l, where ny and nr are defined as the number of lanes adjacent to blocked lane i 
and the number of independent lanes on link m, respectively; M represents the total number of 
links connecting to the targeted intersection; f[z(k), QA(k), k] represents a [cf=, (3nT + ny)] x 1 
time-varying vector of basic lane traffic states (z(k)) and d ecision variables (Qx (k)) at time step k; 
G$WW4~ kl is a [c,“=, (3n7 + nr)] x [Cz=i (3ny + n?)] diagonal noise matrix which is 
dependent on basic lane traffic states (z(k)) as well as time-varying decision variables (Rx (k)) ; 
and W(k) corresponds to a [x2=, (3n,” + nr)] x 1 state-independent Gaussian noise vector. 

In the recursive equations, X(k+l), f[x(k), Cl,(k). k], L[z(k), Rx(k), k], and W(k) can be fur- 
ther expressed as 

X(k+l) = Col(p$(k+l),r,“(k+l),r~(k+l),r~(k+l), m= 1,2,.,.,&f), (2) 

f[z(k),fi~(k),k] = Col(p~(k),52,,(k)rjm(k),Rxj(k)r~(k),Rxl(k)rlm(k), m = 1,2... ,A[), (3) 

W(k + 1) = Co1 (wpc(k + l), w,;l(k+l),w,~(k3-l),w,~(k+1), 

,M), 
(4) 

m = 1,2,. . . 

‘It is worth mentioning that the formulation of noise terms stem from our basic idea that incident-induced traffic 
disturbances are regarded as the major sources causing the instability of lane traFrc flows under conditions of 
lane-blocking incidents; meanwhile the magnitudes of these disturbances depend on three factors: 

(1) probability of vehicular queuing in the blocked lane, 
(2) the ease of traffic flowing through the adjacent lane, and 
(3) the variety of upstream new traffic arrivals. 

As such, these factors are incorporated in the model formulation, as presented in these noise terms 



538 

where 

J.-B. SHEU et al. 

pp + 1) = co1 ($(k + l), j = 1,2,. * . ) J”) , 

rjm(k + 1) = Co1 (~j”(k + l), j = 1,2,. . . , J”) , 

r$(k + 1) = Co1 (r;(k + l), j = 1,2,. . , , J”) , 

ry(k + 1) = Co1 (rp(Ic + l), 1 = 1,2,. . . , L”) , 

p?(k) = co1 (p;(k), j = 1,2,. . . ) J”) ) 

fh, (k)rjm(k) = co1 (Rx, (k)rj”(k), j = 1,2,. . . ) J”) , 

i22xj (k)?$(k) = co1 (S-& (I+;(k), j = 1,2,. . . , J”) ) 

Rx, (k)rl”(k) = co1 (Rx, (Q-F(k), 1 = 1,2,. . . ) L”) , 

(5) 
(6) 
(7) 
(8) 
(9) 

(10) 
(11) 
(12) 

w& + 1) = Co1 (wpB(k + l), j = 1,2,. . . , Jm) , (13) 

w,?(k + 1) = Co1 (w,,,(” + l), j = 1,2,. . . , Jm) , (14 

w,~(k+1)=Col(w,~(k+1),j=1,2,...,Jm), (15) 

w,l”(k + 1) = co1 (w&c + l), 1 = 1,2,. . . ) L”) , (16) 

and Jm and L” are, respectively, the number of lanes adjacent to blocked lane i and the number 
of independent lanes on link m. Note that Rxj and Sltx, shown in equation (3) represent the 
time-varying decision variables associated with phase X under which the traffic movements in 
adjacent lane j and independent lane 1 are permitted at time step k, respectively. Similarly, the 
LX,“=, (3nj”z + 4’71 x E,“=, (3nj” + $-?I d’ g la onal noise matrix L[z(k), flA(k), k] can be further 
expressed as 

L kdk), S-h(k), kl 
=Dia e~~(k),e~~(k),e~~(k),~~~(k), m=1,2 ,..., M; j=l,2 ,..., Jm; 1=1,2 ,..., em), ( 

(17) 

where the diagonal entries f$F (k), f$L (k), t>? (k), and l::(k) take, respectively, the following 
forms: 
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Measurement Equations 

The measurement equations are derived using the time-varying relationships between the spec- 
ified state variables and the traffic measurements. In the proposed process of real-time signal 
control, these equations are used to update the prior predictions of the basic lane trafhc states. 
The computational steps of the proposed control algorithm are detailed in the following section. 
The generalized form of the measurement equations is expressed as 

Z(k) = h b+), kl + v(k), (22) 

where Z(k) is a [cf=, (njm + nr)] x 1 time-varying measurement vector; h[s(k), k] is a 

rc,“=, bjm + V>l x 1 t ime-varying vector which expresses the relationships between the mea- 
sured lane traffic counts and the basic lane traffic states; and v(k) is a [cE=, (ny + nr)] x 1 
Gaussian vector which represents the error terms of the collected traffic counts at time step k. 
Z(k), %447 4, and u(/c) are given, respectively, by 

Z(k) = co1 @j”(k), zl”(k), m = 1,2,. . . ) M) ) (23) 

h [z(k), k] = Co1 (h?(k), h?(k), m = 1,2,. . . , M) , (24) 

w(k) = Co1 (v?(k), VP(~), m = 1,2,. . . , M) , (25) 

where 

zjm(k) = co1 (zjm(k), j = 1,2,. . . , J”) ) 

zl”(k) = co1 (z?(k), 1 = 1,2,. . *, L”) , 

hj”(k) = Co1 (by(k), j = 1,2,. . . , J”) , 

hi”(k) = Col(hZ”(lc), 1 = 1,2,. . . , L”) , 

VT(k) = co1 (VT(k), j = 1,2,. . . , J”) , 

vi”(k) = Col(vT(k), 1 = 1,2,. . . ) Lm) ) 

(26) 

(27) 

(28) 

(29) 

(30) 

Herein, z?(k) and zr (k) correspond to the lane traffic counts collected from the downstream 
detectors, respectively, in adjacent lane j and independent lane 1 on link m at time step k; w?(k) 
and VT(~) are the Gaussian error terms associated with z?(k) and z?(k), respectively; h?(k) 
and hr (k) denote the components of zy (k) and z?(k) , respectively, and can be further expressed 
as 

hj”(k) = {(UT(~) + 62”(k - 1)) x p;(k) x r;(k) + [(ajm(lc) + 6j”(k - 1)) x r,m(k)]} , (32) 

hi”(k) = [az”(k) + 6f”(k - l)] x r?(k), (33) 

where ay(lc), ajm(lc), and a?(k) represent the lane traffic counts collected from the upstream 
detectors in blocked lane i, adjacent lane j, and independent lane I, respectively, at time step k. 

Boundary Constraints 

In order to yield feasible solutions efficiently in the procedures of real-time estimation of system 
states, four boundary conditions are incorporated in the proposed model, and are denoted by four 
boundary constraints. The generalized forms of the boundary constraints are shown as follows: 

0 I X(k + 1) 5 1, (34) 

0 I %(k) 5 1, VA, (35) 

T g,min I 2 [fltx(k + E) X tl I Tgpnax, (36) 
E=O 
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where X(k + 1) represents, as indicated by equation (2), the vectors of basic lane traffic states; 
Rx(k), as defined previously, is a time-varying decision variable associated with a given phase A; 
72~ is the total number of the sequential time steps which belong to a given phase A; t is the 
length of a unit time step; T’,min and Ts,max represent the minimum and maximum intervals of 
green time preset in any given phase, respectively. 

3. REAL-TIME CONTROL ALGORITHM 
The proposed incident-responsive local signal control approach serves mainly to minimize in- 

cident impact on the stability of basic lane traffic states in a given detection zone where a 
lane-blocking incident occurs, and correspondingly, to minimize the differences between the ideal 
and the estimated values of the basic lane traffic states. Herein, the ideal value of a state variable 
corresponds to the target value associated with the given state variable that can reduce incident 
impacts to the greatest extent. Therefore, we formulate the objective function (<) as 

< = minE 2 [X(k) - X*(k)IT Qr(k) [X(k) - X*(k)] 
k=O 

+ h-V+- fl*(k>IT Qz(k) D-W - fl*(k)l , 

(37) 

where &l(k) and &2(k) P re resent the [c,“=, (3ny + n?)] x [c,“=, (37~7 + nr)] time-varying 
diagonal, positive-definite weighting matrix associated with the estimation vector of the basic 
lane trafhc states (X(k)), and that associated with the estimation vector of the decision variables 
(R(k)), respectively; N corresponds to the incident duration in the unit of time step, and is 
predetermined in the proposed method; theoretically, N can be estimated via other external 
technologies such as incident prediction models (i.e., methods used to characterize incidents), 
and practically, the condition that the estimate of N is greater and equal to its real value should 
hold in the optimization process; X*(k) and a*(k) are the time-varying target vectors associated 
with X(k) and n(k), respectively. 

To execute the mechanism of real-time incident-responsive local signal control, a stochastic 
optimal control based algorithm is developed. The primary computational steps involved in the 
proposed algorithm include: 

(1) the extended Kalman filtering process, 
(2) truncation and normalization, 
(3) incident impact prediction, and 
(4) calculation of time-varying decision variables. 

The following steps summarize the proposed recursive estimation logic. 

STEP 0. Initialize system states and input the raw trafFic data. Given k = 0, states including: 

(1) the basic lane traffic states X(0 ] 0), 
(2) the covariance matrix of the state estimation error cP(0 ] 0), the weighting matrices Qt” (0) 

and Q;*(O), and the incident-impact variables (i.e., q?(O), q?(O), q?(O), by(O), and 
Sl”(O)) are initialized. 

In addition, let the phase with green time (A’) be assigned to the lane group which involves 
blocked lane i by setting fix*(O) = t. Note that the total number of phasing (8) together with 
lane groups associated with the specific phases are herein predetermined as well. 

STEP 1. Compute prior estimates of basic lane traffic state variables (X(k + 1 1 k)) and the 
covariance matrix of the state estimation error (@(k + 1 ] k)), respectively, by 

X (k + 1 I k) = f k(k), f&t*(k), kl i (38) 

@ (k + 1 I k) = F(k)@@ I WT(k) + L [x(k), h(k), kl Q:‘(W [z(k), h*(k), JCIT , (39) 
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where matrix FT(k)is the transpose matrix of F(k); F(k) is given by 

STEP 2. Calculate the Kalman gain by 

K(k + 1) = @(k + 1 ) k)HT(k + 1) [H(k + l)+(k + 1 j k)HT(k + 1) + R(k + l)] -I > 

where R( k + 1) see footnote 2 is the covariance matrix of v(k+l); H(k+l) is denoted by 

H(k+l) = 
dh [x (k + 1 ( k) , k + 11 

aX(k+l] k) 

STEP 3. Update the prior estimates of the basic lane traffic states (X(k + 1 / k -+ 1)) by 

X(k+l ] k+l)=X(k+l ] k)+K(k+l)AZ(k+l / k), 

where AZ(k+l( k) is given by 

AZ(k+l) k)=Z(k+l)-h[z(k+l ] k),k+l]. 

541 

(41) 

(42j 

(43) 

(44) 

STEP 4. Truncate the estimates of basic lane traffic states variables by employing boundary 
constraints3. 

STEP 5. Normalize the updated estimates of mandatory lane-changing fractions of blocked lane i 

p;(k + 1) = 
p;(k+l / k+l) 

l&?$(k+1 I k+1) 
3 

such that 
c p;(k+l) 5 1. (46) 

(45) 

STEP 6. Update the covariance matrix of the state estimation error (@(k t 1 I k + I)) as 

i9 (k + 1 I k + 1) = [I - K (k + 1) H (k + l)] i9 (k + 1 I k) . (47) 

STEP 7. Update space-based incident impact using the estimates of basic lane traffic states at 
the end of time step k+l by 

qz”(k + 1) = [qy(k) + ay(k + l)] x 1 - 1 p;(k + 1) 
VjCJ- 1 , (48) 

qjm(k + 1) = qjm(k) + $‘(k + l), (49) 

ql”(k + 1) = qr(k) + aI”(k + l), (50) 

6jm(k + 1) = [by(k) + ay(k + l)] x p;(k + 1) x [l - .$(I, + l)] 

+ [by(k) + ay(k + l)] x [l - rjm(k + l)] , 
(51) 

6Y(k + 1) = [&l”(k) + al”(k + l)] x [l - rY(k + 1)] . (52) 

STEP 8. Determine the permitted phase X* (i.e., the phase is assigned with the calculated green 
time), and associate X* with the time-varying weighting matrix Ql(k + 1) (i.e., Qf*(k + 1)). In 
this step, the total queue length of each lane group associated with a given phase X (i.e., the sum 

2The measurement error covariance matrix (i.e., R(k + 1) shown in equation (41)) refers to the covariance matrix 
of v(k + 1). Correspondingly, elements of R(k + 1) represent the errors of traffic measurements, and thus, can be 
predetermined using the historical traffic data. 
3The state variables of a nonlinear stochastic system estimated using an extended Kalman filter may approximate 
to real values such that the mean square error of the estimation is minimized. However, the estimates of state 
variables are valid only when they are located within the range between their upper and lower bounds. Therefore, 
the truncation and normalization procedures are executed to address the boundary issue. 
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of qzTx (k + l), qzx (k + l), and qzx (k + 1)) is calculated. Qt* (k + 1) and X* are then determined 
by the following rule4: 

a:*(k+l) 
0 

Q:*(k + 1) = I. 0” 

0 0 0 . . . 
o:*(k+l) 0 0 . * . 

0 &k+1) 0 . . . ’ 0 0 a;‘(k+l) ... ’ . . *. L: 

where at’ (k -/- 1)is given by 

c c c Q~~‘(k+l)+q~~*(k+l)+q~~*(k+l) 
g;*(k + pmax v*x* tJj,* Vlx* 

X=1 Vnx vj,$ Vl,J c k1,2,...,8 

(53) 

1 . (54 
STEP 9. Calculate the decision-variable vector R(k+l). According to the principles of stochastic 
optimal control, the estimates of the basic lane traffic states (X(k + 1 1 k + 1)) produced by the 
extended Kalman filter are fed back through the optimal gain matrix E(k + 1) to minimize the 
prespecified cost function by 

R(k + 1) = -E(k + l)X(k + 1 ) k + 1) + <(k + 1). (55) 

In equation (55), E(k + 1) and [(k + 1) are denoted, respectively, by 

E(k + I) = [BT(k + l)S(k + 2)B(k + 1) + Q;*(k + l)]-1 BT(k + l)S(k + 2)Wk + l), (56) 

E(k + 1) = [B’(k + l)S(k + 2)B(k + 1) + Q;‘(k + I)] -I 

x [B(k + l)Q:*(k + l)X*(k + 1) + Q;*(k + l)s2*(k + l)] , 

where matrix S(k + 2) should satisfy the Riccati equation shown as follows: 

(57) 

S(k+1)=Q~*(k+1)+FT(k+1)S(k+2)F(k+1)-FT(k+1)S(k+2)B(k+1)E(k+1), (58) 

and matrix B(k + 1) can be further expressed as 

B(k + 1) = ‘f Ix(‘), Ri(k), ‘1 
aw> 

STEP 10. Check the current phase associated with green time X* using the boundaries of 
the minimum and maximum green time intervals (Z’g,min and Z’s,max) as follows: if the sum 
of the green time associated with phase X* is less than the minimum green time Tg,min (i.e., 

4The major purpose of equation (54) is used to determine which phase should be assigned with the calculated 
green time in the current time step. According to the properties of the objective function presented in the control 
algorithm, the tentative permitted phase should be sssigned to the phase which potentially causes the highest 
effect on the system performance. Herein, we think that such an effect may depend on the ratio of the number 
of queuing vehicles in the corresponding phase X’ to the sum of queuing vehicles potentially presented in all 
other lane groups at a given time step. Correspondingly, queuing vehicles are regarded as the major source of 
incident impacts on traffic congestion, Therefore, they are further employed to quantify the time-varying weights 
of the objective function and to determine the permit&l phase. Please also note that once the permitted phase is 
determined, the corresponding control variable (i.e., the corresponding green time) is calculated using stochastic 
optimal control theories. Then, the determined permitted phase and corresponding green time are employed in 
the following time step for the routine of the incident-responsive signal control. 
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[cfze Rx* (k - r)] x t < Tg,min), then let [Czo Rx* (Ic - r)] x t = Tg,min, and assign the rest of 
the green time at a given time step to the lane group with the second-worst traffic congestion by 
using equation (54); if [alto Rx* (k - T)] x t > Tg,maxr then let [C”;zo Rx* (k - r)] x t = Ts,max, 
and similarly assign the rest of the green time at the given time step to the lane group with the 
second-worst traffic congestion. Herein, kx. represents the time step that the phase X* starts 
with, and T is a time-lag index. 
STEP 11. Check incident status by conducting the following rules. 

If the incident is removed (i.e., Ic is equal to N), then stop the control algorithm5. Otherwise, 
input the next-time-step raw traffic data; let the time step index k = k + 1, and then go back to 
Step 1 to continue the control algorithm. 

Through the proposed stochastic optimal control based algorithm, the time-varying state vari- 
ables are updated in real time using prior predictions of state variables and real-time traffic 
measurements, both of which are characterized by equations (38) and (44), respectively, In real- 
ity, these equations are also based on the recursive equations and measurement equations of the 
proposed stochastic model, as described previously. Therefore, we can determine the real-time 
state vector X(k + 1 ] k + 1) (i.e., equation (43)) a each time step. According to the principles t 
of Kalman filtering techniques, the system states derived using Kalman filtering are minimum 
mean square estimates satisfying the requirements of the preset objective function shown in 
equation (37), and thus, are applicable for further use of incident-responsive signal control. 

4. NUMERICAL STUDY 

This numerical study investigates the potential advantages of the proposed signal control 
method with respect to responding, in real time, to diverse incident-induced traffic congestion 
problems. In addition to verifying the performance of the proposed incident-responsive control 
method, testing the capability of the proposed stochastic model in terms of estimating valid 
incident-induced traffic states is also important. Because related studies have been completed 
elsewhere [14,15], the following focuses primarily on presenting our preliminary evaluation of 
system performance in incident-responsive local signal control. 

In view of the difficulty in collecting enough real incident-related traffic data for diverse incident 
cases, we utilized simulation data generated from Paramics, Version 3.0 which is a microscopic 
traffic simulator increasingly used for modeling and analyzing traffic maneuvers under ITS con- 
ditions. Efforts spent in evaluating, qualitatively and quantitatively, the Paramics simulator can 
be found in our earlier related research [16]. Furthermore, the Paramics programmer which is 
an application programming interface (API) in aid of traffic modeling was used as an assistant 
tool for generating as well as collecting time-varying lane traffic data under conditions of diverse 
lane-blocking incident events. 

A simple trafhc network comprising five intersections was simulated via Paramics for simulation 
data generation. Figure 2 illustrates graphically the scheme of the study network, where each 
intersection represented conveniently by a specific node is coded with an integer value for its 
identification. Herein, Node 3 is referred to as the targeted intersection, where five lanes including 
three through lanes, one exclusive right-turn lane, and one exclusive left-turn lane are associated 
with each approach of the targeted intersection. Lane-blocking incidents were mainly simulated 

‘The proposed stochastic model aims to capture incident-induced mandatory lane-changing maneuvers (from the 
blocked lane to given adjacent lanes) upstream from the incident site. Then, the corresponding lane traffic state 
variablea and control variables are estimated using the proposed algorithm in response to diverse incident impacts. 
Once the incident is removed from the blocked lane, the aforementioned incident-induced mandatory lane changing 
maneuvers and corresponding lane traffic states may turn out to be insignificant. Accordingly, our model may no 
longer be applicable for the estimation of lane traffic states in case that incident-induced mandatory lane changes 
do not exist. In contrast, other existing signal control strategies can be resumed for such incident-free congestion 
cases. Therefore, the measure we really suggest is that once the incident is fully removed at the current time step, 
the proposed incident-responsive signal control mode can be switched to any other suitable modes from the next 
time step to continue incident-free signal control. 



544 J.-B. SHEU et al 

Figure 2. The scheme of the simulated network 

Figure 3. Illustration of simulated lane-blocking incidents in the detection. 

in a given detection zone which is located on the 3-lane roadway between Nodes 1 and 3, as can 
be seen in Figure 3. The primary parameters set for simulation are summarized in Table 2. The 
output data obtained from Paramics, including lane traffic counts, lane-changing fractions, and 
queue lengths were collected at each 10 sec. time step. 

A total of 27 lane-blocking incident cases associated with diverse incident position on the link, 
the lanes blocked, and traffic flow conditions were simulated in the study. Herein, the simulation 
time for each incident event was set to be 30 minutes, including the first 5 minutes for warming up, 
the next 20 minutes for incident duration, and the rest for incident removing. Table 3 summarizes 
the characteristics of the simulated incidents designed in the numerical study. 

To measure the system performance with r,espect to the improvements in reducing incident 
impact, three time-varying system-evaluation measures including AD(k), SQ(k), and SP(lc) are 
specified. Wherein, AD(k) refers to the average vehicular delay at a given time step Ic during a 
given incident; in contrast, SQ(k) and SP(k) are two space-based incident-impact indexes, and 
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Table 2. Summary of the primary parameters of simulation. 

1. Geometric Characteristics 

Parameter 

(1) Number of intersection in the simulation network 

(2) Type of intersection 

(3) Number of lanes on the approaches (targeted lane) 

Predetermined Value 

five (including one targeted intersection) 

four -leg intersections 

five lanes: one exclusive right-turn lane 

three through lanes 

one exclusive left-turlr lane 

(4) Number of lanes on the approaches (the other intersections) three lanes 

(5) Number of lanes on links three through lanes (for all links) 

2. Control Characteristics 
-___I 

(1) Type of control mode Fixed-time signal control 
(determined by HCM’s method) 

(2) Number of phase (targeted intersection) four phases 
-I___ 

(3) Number of phase (the other intersections) 

(4) Lost time 

3. Traffic Characteristics 

two phases 

5 sec. 
.____ 

(1) Scenarios of traffic flow conditions 

4. Others 

six cases: (1) 250 veh/hr/lane 

(2) 500veh/hr/lane 

(3) 750veh/hr/lane 

(4) lOOOveh/hr/lane 

(5) 1500veh/hr/lanr 

(6) 1800veh/hr/lane 

(1) Length of a detection zone (bounded by upstream 
and downstream detector stations) 

140 m 

(2) Length of a time step k IOsec. 

the corresponding notations are given, respectively, by 

SQ(k) = F 5 [bj”(” - 1) - r,“(k) x [“j”(k) + S,“(k - l)]] 
m=l j=l 

+E [cyyk - 1) - rl”(k) X [q(k) + Sl”(k - l)]] : 
I=1 3 

SP(k) = $$ x lOO%, 

where A(k) represents the sum of lane traffic counts collected at the upstream detector station 
at time step lc. 

In addition to using the above measures to assess the system performance under the proposed 
incident-responsive signal control, these measures were further compared with simulations under 
fixed-time signal control employing Paramics by the measure: (l?fiX - lT’inc)/F’cx x 100% to indicate 
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Table 3. Characteristics of simulated incidents. 

Spatial Characteristics of Incidents 

Traffic Characteristics 
of Incidents (veh/hr/ln) 

Inside Lane (I) Central Lane (C) Outside Lane (0) 

I-U-250 C-U-250 O-U-250 
250 I-M-250 C-M-250 0-M-250 

I-D-250 C-D-250 0-D-250 

I-U-500 c-u-500 o-u-500 
500 I-M-500 C-M-500 0-M-500 

I-D-500 C-D-500 0-D-500 

I-U-750 c-u-750 o-u-750 
750 I-M-750 C-M-750 0-M-750 

I-D-750 C-D-750 0-D-750 

1-u-1000 c-u-1000 0-u-1000 
1000 I-M-1000 C-M-1000 0-M-1000 

I-D-1000 C-D-1000 0-D-1000 

I-U-1500 c-u-1500 o-u-1500 
1500 I-M-1500 C-M-1500 0-M-1500 

I-D-1500 C-D-1500 0-D-1500 

I-U-1800 C-U-1800 O-U-1800 
1800 I-M-1800 C-M-1800 0-M-1800 

I-D-1800 C-D-1800 0-D-1800 

U: upstream; M: mid-stream; D: Downstream 

the relative improvements in reducing incident impacts, where Fax and frnc represent the average 
values of a given incident-impact index under fixed-time control and incident-responsive control, 
respectively. Note that the fixed-time control mode is implemented extensively in the urban areas 
of Taiwan, and thus, used in this scenario to evaluate the relative performance of the proposed 
method. The results of the comparisons are summarized in Table 4. 

Overall, the comparison results summarized in Table 4 revealed a certain level of improvement 
in alleviating incident-induced traffic congestion that can be achieved via the proposed incident- 
responsive local signal control method in comparison with the fixed-time control mode currently 
implemented at the study site. Such a potential advantage of the proposed control method 
has been reflected herein in terms of the space-based incident-impact indexes that denote the 
number of vehicles either queuing or moving interruptedly through the incident site. In reality, 
the generalization is not surprising because the proposed control method accommodates, in real 
time, signal timing to the time-varying estimates of section-wide interlane and intralane traffic 
states; by contrast, the preset optimal timing plans of the fixed-time control mode rely, to a 
great extent, on the historical traffic data which are definitely not able to reflect in real time the 
abnormal changes in traffic flow patterns in the presence of a lane-blocking incident. 

In addition, several findings observed in the aforementioned preliminary tests are provided for 
further discussion as follows. 

First, the proposed incident-responsive control method appears to perform relatively better 
under low-volume traffic conditions than under high-volume conditions. One major reason in- 
ferred from the generalization can be that under low-volume traffic conditions, vehicles queuing 
in blocked lanes may conduct lane changing more easily than that in high-volume cases during 
the phase with green time. As a consequence, the green time dynamically assigned from the 
proposed control strategy can benefit significantly these queuing vehicles with the gain of passing 
by the incident site efficiently by means of mandatory lane changing. In contrast, the strate- 
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Table 4. Comparisons of system performance (incident-responsive control vs. fixed- 
time control). 

Traffic Characteristics 
of Incidents 

(veh/hr/ln) 

250 

500 

750 

1000 

1500 

1800 

Control Technology 

Averaged Values of System- 
Evaluation Measures 

m(k) q(k) z(k) 

Fixed-time incident-responsive 
relative improvement (%) 

Fixed-time incident-responsive 
relative improvement (%) 

Fixed-time incident-responsive 
relative improvement (%) 

Fixed-time incident-responsive 
relative improvement (%) 

Fixed-time incident-responsive 
relative improvement (%) 

Fixed-time incident-responsive 
relative improvement (%) 

22.05 8.14 38.89 

16.65 5.32 29.07 

24.49 34.64 25.43 

24.14 16.07 39.39 

23.95 13.74 35.24 

7.87 14.50 10.54 

30.04 24.61 43.76 

25.13 23.35 41.99 

19.54 5.12 4.04 

26.45 28.32 48.35 

25.45 24.69 43.27 

3.78 12.82 10.51 

25.64 28.75 48.29 

25.89 23.91 41.91 

-1.32 16.83 13.21 

25.12 28.75 48.60 

25.89 24.32 42.24 

-3.06 15.41 13.09 
- 

gic increase in green time under high-volume conditions may not provide the effect on traffic 
alleviation similar to that under low-volume cases. 

Second, responding to incident-induced traffic congestion right after the occurrence of a lane- 
blocking incident remains to be a critical stage for the development of real-time incident manage- 
ment systems. It is worth mentioning that in the aforementioned numerical studies, the proposed 
methodology is evaluated under the condition that perfect incident-related information including 
the onset of incident occurrence is given. Nevertheless, incident response time remains to be a 
critical factor in determining the performance of the proposed control method. Therefore, it is 
important, from a practical point of view, to integrate the proposed incident-responsive control 
method with real-time incident detection algorithms to implement real-time incident manage- 
ment. Such elaborate integration appears to be particularly vital under high-volume incident 
conditions. 

Third, the improvements in terms of the averaged delays under high-volume incident conditions 
are quite limited, according to the corresponding results of AD(k) presented in Table 4. It is 
induced that isolated signal control may no longer be suitable for high-volume incident cases. 
Accordingly, coordination of upstream and downstream signal control modes for high-volume 
incident cases may warrant further research. 

Fourth, the potential advantage of the proposed control method in terms of real-time charac- 
terization of incident effects on lane traffic states as well as traffic congestion is worth mentioning 
in the evaluation of system performance. Compared to other published traffic control modes, 
the proposed control method has apparently exhibited its unique and independent capability in 
terms of monitoring in real time incident-induced trafhc congestion in the process of real-time 
signal control without needing another assistant technology such as image processing systems. 
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TO further explore the effect of incident duration on the system performance, a simple sen- 
sitivity analysis was carried out through testing the proposed method in four different incident 
duration scenarios, including 5-minute, 15-minute, 25-minute, and 35-minute cases. Wherein, 
AD(k) remains used as the evaluation measure in these tests. Given the prespecified input data 
and calibrated parameters, the corresponding measures of AD(lc) obtained in the four incident- 
duration cases were collected, and summarized in Table 5. 

Overall, the numerical results shown in Table 5 imply that the factor of incident duration 
does not seem to have a significant effect on the system performance. As can be seen in Table 5, 

- 
there is no significant change in terms of the evaluation measure (AD(k)) in these diverse incident- 
duration scenarios. According to our observations in these tests, overall the time-varying patterns 
of lane traffic states, e.g., mandatory lane changes, and queue lengths, can be readily captured 
using the proposed stochastic model in a very short-term time less than 1 minute (i.e., six time 
steps). Once the time-varying state patterns are captured appropriately, the induced incident 
impacts are under control following the goal, as specified in the objective function. Therefore, 
it is induced that the problem of control divergence in system performance may not exist in the 
proposed control algorithm. 

Table 5. Results of sensitivity analysis in terms of incident duration. 

Test Scenario (Incident-Duration) 

5. CONCLUSIONS AND RECOMMENDATIONS 

This paper has presented a stochastic optimal control-based method in response to lane- 
blocking incidents on arterials of surface streets. The proposed control approach performs 
incident-responsive traffic signal control by minimizing a time-varying function cost which is 
measured on the basis of the variations in the real-time estimates of interlane and intralane 
trafhc states in comparison with their ideal values. To accomplish the goal via the proposed 
control method, we specified three groups of time-varying system states, and then, constructed 
a discrete-time nonlinear stochastic model as well as a real-time signal control algorithm. 

Our preliminary test results have revealed the applicability of the proposed method to real- 
time local signal control for lane-blocking arterial incidents. Analysis results presented in the 
numerical study have also suggested the relative advantages of the proposed control method 
compared with the specified fixed-time optimal trafhc signal control. Moreover, the proposed 
approach has also indicated its unique capability in terms of characterizing incident-induced lane 
trafFic states together with incident impact in real time in the process of real-time signal control. 
In contrast, such a function is not found in other published advanced traffic control systems for 
incident management. 

Despite the potential advantages mentioned above, further tests as well as modifications may 
be needed to verify the robustness of the proposed incident-responsive control method, and 
its applicability to diverse incident cases on surface streets. Other scenarios such as multi- 
lane-blocking incidents, gridlock events, and incidents occurring within intersections apparently 
warrant more research. Further comparisons with other advanced signal control algorithms on 
the same basis of incident-induced traffic congestion can also help to demonstrate the potential 
advantages of the proposed method. Efforts on either integrating the proposed control method 
with automatic incident detection (AID) systems or extending it for network-wide system optimal 
control seem urgently needed for the development of advanced incident management systems. 
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