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Iteration is an operation that traverses the objects of a collection object. Iterators
are operators/methods widely used for iteration on a collection of objects. However, it-
erators were considered to be ad hoc and to be a sign of weakness in object-oriented
programming languages. There is a need to formalize iterators and to study their strength
and weaknesses. In this paper we first propose a taxonomy of iterators based on the
number of data states and the number of control points. The taxonomy identifies four
categories of iterators. The simplest one can be implemented straightforwardly in an ob-
ject-oriented language. Iterators of other categories need transformations and are more
difficult to design and implement. Finally, we compare the efficiency of iterators with
other implementations of iteration. The results show that all iteration techniques tested,
including iterators, have been well optimized and are almost as fast as directly coded
loops using recent C++ compilers.

Keywords: collection objects, object-oriented programming, control points, efficiency,
the C++ language

1. INTRODUCTION

A collection object is an object that contains a number of elements. Typical exam-
ples of collection objects are sets, bags, arrays, strings, etc. A collection object has its
own operations, e.g., the union of two sets, and the concatenation on two strings. Besides
these operations, a common operation on collection objects is iteration. Iteration on a
collection object is an operation that traverses the elements of the collection object. Itera-
tion partly opens the encapsulated interface of a collection object to support a series of
operations on each element. For example, iteration can be used to compute the sum of
elements in an array of numbers.

There are four major issues in the development of iteration:

1. Simplicity: Iteration should be easy to develop. Writing iteration for a collec-
tion object should be similar to writing a for-loop for elements of the collection
object.
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2. Usability: Iteration should be easy to use. The syntax of iteration should be simi-
lar to that of for-loops in a programming language.

3. Concurrency: It should be possible to have several iterations working on the same
object simultaneously.

4. Efficiency: For a collection object such as an array or a set, the iteration code is
usually executed several times. Iteration on these fundamental data structures
should be very efficient.

Iterators (e.g., cf. [1]) are technique widely used for collection objects of ob-
ject-oriented programming languages such as C++ [2], Eiffel [3], and Java [4]. The Eiffel
base library includes a generic deferred class called Iterator, which provides the follow-
ing iteration features: do_all(action), do_if(action, test), do_until(action, test),
do_while(action, test), for_all(test), there_exists(test), until_do(action, test), and
while_do(action, test). The action is a procedure that takes an item of the collection; the
test is a function that takes an item of the collection and returns a Boolean value. The
Java utility library includes an interface called Iterator, which provides the following
functions: (1) hasNext: whether the iteration has more elements; (2) next: the next ele-
ment in the iteration; and (3) remove: removes from the underlying collection the last
element returned by the iterator.

In the C++ language, an iterator is usually implemented by a friend class of a col-
lection class or more elegantly by a nested class of the collection class. However, itera-
tors were considered to be ad hoc and to be the sign of weakness in object-oriented pro-
gramming languages (especially C++) [5]. The major disadvantage of iterators addressed
is the lack of flexible composition of codes such as higher-order functions [5]. Although
iterators are not an elegant technique for the development of all kinds of iteration, they
are a practical and effective technique in current object-oriented languages.

There is a need to formalize iterators and to study their strengths and weaknesses. In
this paper we examine the iterator technique from the four major issues of iteration. First,
we review the iterator idiom by giving two simple examples: string and linked list. The
use of iterators is quite elegant in both examples. Second, we propose a taxonomy of
iterators based on the number of data states and the number of control points. The tax-
onomy identifies four categories of iterators. The simplest one can be implemented
straightforwardly in an object-oriented language. Iterators of other categories need trans-
formations and are more difficult to design and implement. These iterators explicitly re-
cord the control point currently entered and the infinite states in storage such as stacks.
Third, we compare the efficiency of iterators on linked lists of integers with other itera-
tion techniques. There are three other implementation techniques for iteration in C++:
formal procedure parameter, inheritance, and macro expansion. Our results show that all
techniques tested have been well optimized and are almost as fast as directly coded loops
in recent C++ compilers.

2. STRENGTH OF SIMPLE ITERATORS

An iterator records the state of an iteration on a collection object. It can be used as a
control variable in a loop. A simple iterator achieves both simplicity and usability. In this
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section, we introduce two simple iterators for string and linked list: StringIter and ListIter.
Both examples show the elegance of iterators in handling iteration on simple collection
objects.

An iterator creates a temporary record for the state of an iteration when traversing
the elements of a collection object. An iterator accesses both the state record and the in-
ternal representation of a collection object. Occasionally, an iterator does not have to be a
friend class of a collection class if the interface of the collection already provides neces-
sary operations to access its internal structure during iteration. For example, StringIter is
not a friend class of any class, but it can traverse each character in a string of char*.

There are many kinds of iterator class interfaces [1, Ch 7.4]. Here we use the fol-
lowing interface: 1) operation operator! (or last) for querying when the iterator runs out
of elements, 2) postfix operation operator++ (or next) for stepping into the next element,
and 3) operation operator() (or current) for getting the current element.

Fig. 1 shows the code of class StringIter, an iterator for string. It is a simple class
containing only ten lines of code. Since a string of char* in C++ ends with a null charac-
ter ('\0'), the content of variable current (*current) is set to null when the iteration reaches
the end of the string.

class StringIter
{
public:

StringIter(char* s) : current(s) { }
char operator++ (int) { return *current++; }
bool operator! () const { return *current; }
char operator() () const { return *current; }

private:
char* current;

};

Fig. 1. Iterator StringIter.

�

Fig. 2 shows three loops using StringIter and char* in control variables. Using
StringIter is in the same way as using char*. The first loop uses an iterator to print out
each character in a string. The second compares string p with string q using one iterator
for each string. The third computes the sum of characters in a string using an iterator and
a local variable sum.�

Fig. 3 shows a template class for linked list and the corresponding iterator class Lis-
tIter. The template class list provides the insert operation to insert an element in front of
the list. The template class ListItem defines a structure that stores an element of a list and
a link to the next ListItem in the list. Class ListIter uses the same protocol as StringIter. Fig.
4 shows an example using ListIter<char> to print out a list of characters.�

Iterators StringIter and ListIter belong to the simplest category of iteration (see our
taxonomy in section 3). The strength of these simple iterators is as follows:�
�

�
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char *p, *q;
// Loop by StringIter

for(StringIter itp(p); !itp; itp++)
putchar(itp());

for(StringIter itp(p), itq(q) ;
!itp && !itq; itp++, itq++)

if (itp() != itq())
break;

int sum = 0;
for(StringIter itp(p); !itp; itp++)

sum += itp();

char *p, *q;
// Loop by char*

for(char* ip = p; *ip; ip++)
putchar(*ip);

for(char* ip = p, *iq = q;
*ip && *iq; ip++, iq++)

if (*ip != *iq)
break;

int sum = 0;
for(char* ip = p; *ip; ip++)

sum += *ip;

Fig. 2. Using StringIter and char* in three loops.

template<class T> struct ListItem
{

ListItem(T dat� ListItem<T>* nxt) : data(dat), next(nxt) { }
ListItem(ListItem<T>* nxt) : next(nxt) { }
T data;
ListItem<T>* next;

};
template<class T> class ListIter;
template<class T> class List
{

friend class ListIter<T>;
public:

List() : front(0) { }
insert(T dat) { ListItem<T>* nxt = front� front = new ListItem<T>(dat, nxt); }

private:
ListItem<T> *front;

};
template<class T>
class ListIter
{
public:

ListIter(List<T>& list) : current(list.front) { }
void operator++ (int) { current = current->next; }
bool operator!() const{ return (int)current; }
T operator() () const { return current->data; }

private:
ListItem<T>* current;

};�

Fig. 3. Class List and class ListIter.
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List<char> list;
list.insert('3'); list.insert('2'); list.insert('1');

for(ListIter<char> itl(list); !itl; itl++)
printf("%c ", itl());

Fig. 4. An example of using ListIter<char>.

Simplicity
• Both StringIter and ListIter are elegantly developed. Each member function of an itera-

tor corresponds to a statement or an expression in a for-loop statement of C++. All
these member functions are written in one statement.

Usability
• The coding style is similar to using control variables in a for-loop. The constructor

corresponds to the declaration of the control variable in a for-loop. The operator! is
used in the condition expression; operator++ is used in the stepping expression.

Concurrency
•� Provides multiple iterators on a collection object.
• Supports accesses to lexical closures. Iteration sometimes involves data in its context

(lexical closures). For example, the third loop in StringIter accesses the local variable
sum.

• Supports “interleave” operations on two or more collection objects. Iteration on a col-
lection object may be dependent on an iteration of another collection object. Both it-
erations should be “interleaved.” The caller can decide when to step either iteration.

Efficiency
• Support function inlining on iterator calls: calls to operator++ can be inlined with bod-

ies of for-loops.
• Support short-circuit computation in a loop. An iterator is stepped by its caller. The

caller can decide when to stop an iteration. For example, when searching an element in
a list, the searching process is terminated once an element is found.

3. A TAXONOMY ON ITERATORS

The weakness of the iterator idiom is that iterators in some collection objects are not
as simple as those in section 2. This section introduces a taxonomy of iterators. The tax-
onomy gives a basis for understanding the difficulties when applying the iterator idiom.
Section 3.1 introduces the taxonomy. Section 3.2 gives examples.

3.1 The Taxonomy

In this section we classify iterators based on the number of data states and the num-
ber of control points. The data state of an iterator provides the information needed to
generate the sequence of elements in a collection object. There are two categories:
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1. Finite-state: The number of states is fixed and the storage for storing the state is
constant for any input size. The StringIter is an example that only a pointer is
needed to store the state of the iteration.

2. Infinite-state: The number of states is dependent on the size of a collection object.
For example, an iteration on a tree structure needs O(h) space to traverse all the
tree nodes, where h indicates the depth of the tree. The depth of a skewed tree, for
example, is the number of nodes in the tree. �

�

A control point of an iteration is a control state in the iteration. There are two cate-
gories:

1. Single control point: Control is transferred to one unique program location for
the iteration of each element. For example, there is only one control point in
StringIter.

2. Multiple control points: There is more than one program location to which the
control is transferred. For example, coroutines can be used to implement multi-
ple control points. Each operator++ returns an element and the next call starts to
execute in a different program location, which follows the previous return.

A control state can also be maintained as a data state of an iteration. The difference
between them is that using a branch instruction according to a stored control state is less
efficient and more difficult to implement. A transformation is needed to encode control
states in a form of data states.

Iteration may involve infinite states or multiple control points. Writing an iterator
for such iteration is not straightforward. The iterator should explicitly record the control
point currently entered and the infinite states in storage such as stacks. Since an iterator
has only one control point (i.e., function operator++), a transformation is needed in writ-
ing an iterator for the iteration with multiple control points.

Table 1 summarizes the classification of iteration. The taxonomy identifies four
categories of iteration. Only the simplest one, with finite states and single control point,
can be implemented straightforwardly by iterators. The StringIter and ListIter are exam-
ples of the simplest iteration. Applying the iterator idiom as an iteration for other catego-
ries requires additional transformations. TreeNodeIter_pre, TreeNodeIter_in, and
TreeNodeIter_post are the three traversal orders for iteration on tree nodes in a binary
tree. TreeLeafIter is an iteration on leave nodes of a tree. PoolIter is an iteration on a data
structure for an unbounded array [6].

Table 1. Classification of iteration based on data states and control points.

single control point multiple control points

finite-state
StringIter,

ListIter
PoolIter

infinite-state
TreeLeafIter,

TreeNodeIter_pre
TreeNodeIter_in,

TreeNodeIter_post
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3.2 Examples

This section gives two examples of iterations in trees. For comparison we present
two versions, for-loop and iterator. Iteration in a Pool [6] can be found in the Appendix.

Iteration on tree-leaves
The same-fringe problem [5, 7] is an example that involves infinite states and a sin-

gle control point. It checks whether the leaves of two (binary) trees are the same. Fig. 5
shows an iterator TreeLeafIter used for generating the sequence of the leaves of a tree.
TreeLeafIter can be easily implemented using a stack to store the path from the current
node to the tree root. TreeLeafIter does not maintain any control information. The iterator
solution seems acceptable compared with a coroutine implementation [7].

template<class T> class Node
{
public:

Node(Node* l, Node* r, T d) : left(l), right(r), data(d) { }
T data; Node* left; Node* right;

};
template<class T> class BinaryTree
{

typedef void (*FUN)(Node<T>*, void* args);
public:

BinaryTree() : root(0), size(0) { }
Node<T>* node(Node<T>* l, Node<T>* r, T d)

{ size++; return new Node<T>(l, r, d); }
void forEachLeaf(FUN f, void* args = 0) { forEachLeaf(root, f, args); }
void forEachLeaf(Node<T>* node, FUN f, void* args = 0) {

if (node->left==0 && node->right==0) { f(node, args); return; }
if (node->left) forEachLeaf(node->left, f, args);
if (node->right) forEachLeaf(node->right, f, args);

} ...
Node<T>* root;
int size;

};
template<class T>
class TreeLeafIter
{
public:

TreeLeafIter(BinaryTree<T>& t) : tree(&t), stack(), current(0) {
stack.push(t.root); operator++(0);

}
void operator++ (int) {

Fig. 5. Iterator TreeLeafIter.
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if (stack.empty()) { current = 0; return; }
for(;;) {

Node<T>* node = stack.pop();
if (node->left==0 && node->right==0) { current = node; return; }
if (node->right) stack.push(node->right);
if (node->left) stack.push(node->left);

}
}
bool operator!() { return (int) current; }
Node<T>& operator() () { return *current; }

private:
Stack<Node<T>*> stack;
BinaryTree<T>* tree;
Node<T>* current;

};

Fig. 5. (Cont’d) Iterator TreeLeafIter.

Traversal orders on a binary tree
There are three traversal orders on a binary tree: preorder, inorder, and postorder.

Fig. 6 shows a recursive version of the inorder tree traversal. The other two differ only in
the placement of the code that works on the current node. The iteration on the nodes of a
tree in preorder is the simplest of the three. It is similar to the code in TreeLeafIter but it
does not check whether a node is a leaf node.

template<class T> class BinaryTree
{
public:

...
void forEachNode_in(FUN f, void* args = 0) { forEachNode_in(root, f, args); }
void forEachNode_in(Node<T>* node, FUN f, void* args = 0) {

if (node->left) forEachNode_in(node->left, f, args); // control point 1
f(node, args); // inorder. // control point 2
if (node->right) forEachNode_in(node->right, f, args); // control point 3

}
void forEachNode_pre(FUN f, void* args = 0);
void forEachNode_post(FUN f, void* args = 0); ...

};

Fig. 6. A recursive version of the inorder tree traversal.

Iteration in inorder and postorder are more complicated. There are three control
points in the recursive version of an inorder traversal. These control points can be trans-
formed into three kinds of control information: INITIAL, LEFT and RIGHT. The data
member stack stores the path from the current node to the tree root and the control in-
formation that denotes the control point to which the traversal should return. Iterators
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TreeNodeIter_in (Fig. 7) and TreeNodeIter_post are similar. They can also be fine-tuned
by removing some push and pop operations on the stack by more complicated loops [1, p.
301].

template<class T1, class T2> struct tuple
{

tuple(T1 t1, T2 t2) : _1(t1), _2(t2) { }
T1 _1; T2 _2;

};
enum Flag {INITIAL, LEFT, RIGHT};
template<class T> class TreeNodeIter_in
{

typedef tuple< Node<T>*, Flag > Info;
public:
TreeNodeIter_in(BinaryTree<T>& t) : tree(&t), stack(), current(0) {

stack.push( Info(t.root, INITIAL) ); operator++(0);
}
void operator++ (int) {

Node<T>* node;
enum Flag flag;
if (stack.empty()) { current = 0; return; }
for(;;) {

Info info = stack.pop(); node = info._1; flag = info._2;
switch(flag) {

case INITIAL:
stack.push( Info(node, LEFT) );
if (node->left) stack.push( Info(node->left, INITIAL) ); break;

case LEFT:
stack.push( Info(node, RIGHT) );
if (node->right) stack.push( Info(node->right, INITIAL) );
current = node; return;

case RIGHT:
if (stack.empty()) { current = 0; return; }

} /* end switch */
} /* end for */

}
bool operator!() { return (int) current; }
Node<T>& operator() () { return *current; }

private:
Stack<Info> stack;
BinaryTree<T>* tree;
Node<T>* current;

};

Fig. 7. Iterator TreeNodeIter_in.



PEI-CHI WU AND FENG-JIAN WANG848

4. EFFICIENCY OF ITERATORS

This section reviews other techniques available to implement iteration and compares
some of them with iterators using the linked list example.

4.1 Implementations

In imperative languages there are four primary iteration techniques besides iterators;
they are:

Coroutines: Implementation with coroutines is flexible in handling multiple control
points but less efficient. Some techniques have been developed for the implementation of
coroutines (e.g., see Mateu [7]).

Formal procedure parameters: Iteration is implemented as a loop that applies a passed
procedure parameter on each element of a collection object. This is suitable for iteration
that involves only one collection object. There are three variations:

1) with lexical closures: The formal procedure parameters in Ada [8] and Pascal [9]
contain information on lexical scopes, called lexical closures. A procedure can
access the data in its lexical scope even if it is passed as a parameter and can be
invoked indirectly. Breuel [10] proposes an extension of lexical closures for
C++.

2) without lexical closures: A function pointer in C/C++ [2] contains no lexical in-
formation. Instead, passing data in lexical scopes to an invocation of a function
pointer needs to be done explicitly. Thus, it is efficient when there is no data to
pass.

3) block-closure: Block-closures (“embedded” anonymous functions) in Smalltalk
[11] and Objective-C [12] are highly readable since functions for iteration are
usually short and are used only once. There is no need to explicitly define a name
for a block closure.

Type composition: Type composition creates a new type for iteration using generic
functions (Ada [8]), template/generic classes (C++ [2] and Eiffel [3]), or inheritance
(C++, Eiffel, and Java [4]). This is a little difficult to use compared with the previous
approaches, since such a type is used just once. On the other hand, type composition
makes function inline possible, since compilers can easily track which function is called.
For example, templates in C++ are usually implemented by macro expansion and with
member functions that can be inlined.

Macro expansion: Iteration can also be implemented as a macro that expands into a
for-loop. Accessing lexical closures is easy since the macro does not generate function
calls. The LEDA library [13], for example, uses the C preprocessor for expanding a
for-loop. There is a problem in using macro expansion, as the preprocessor has no
knowledge about the language's types and scope rules. The macro names are global to the
file scope. Therefore, the macro names for iteration should be carefully selected to avoid
name collision. In addition, it is not easy to write iteration code in a single for-loop.
Some macros in LEDA [13] just call the corresponding iterators, and their underlying
implementations are iterators.



ITERATORS: TAXONOMY, STRENGTH, WEAKNESS, AND EFFICIENCY 849

Table 2 summarizes methods of implementation for iteration and their variations.
The languages that provide the construct(s) are annotated at the end. Note that for the
latter three, formal procedure parameters, type composition, and macro expansion are
difficult to handle iterations that involve more than one collection object. One solution to
this is to define an iterative loop for each combination of collection objects. As the num-
ber of combinations is almost unlimited, the number of resulting iterations may be huge.

Table 2. Summary of implementation techniques for iteration.

Technique Variations
Coroutine --

Iterator
friend class (C++), nested class (C++)
abstract class/interface (C++, Eiffel, Java)
package (Ada)

Formal procedure
parameter

lexical closures (Pascal, Ada)
without lexical closures (C/C++)
block context (Smalltalk, Objective-C)

Type composition
generic function parameters (Ada)
template/generic class (C++, Eiffel)
inheritance (C++, Eiffel, Java)

Macro expansion preprocessor command (C/C++)

4.2 Performance Comparison for Implementations in C++

This section measures the efficiency of implementations for iteration in C++. The
benchmark program performs an iteration on a linked list (section 2). The iteration is
used to compute the sum of a linked list of integers. We implement the iteration by using
the four techniques available in C++: iterator, formal procedure parameter, inheritance,
and macro expansion (the four labeled with C++ in Table 2). A version of a directly
coded loop, which breaks encapsulation of a linked list, is also developed for comparison.
The following is the code for each version.

Formal procedure parameter

template<class T>
class List
{ ...

typedef void (*FUN)(T*, void*);
public:

void forEachItem(FUN f, void* args = 0) {
ListItem<T> *ip;
for(ip = front; ip; ip = ip->next)

f(&ip->data, args);
} ...

};



PEI-CHI WU AND FENG-JIAN WANG850

// use
void summation(int* p, void* args) {

struct Frame {
int sum;

} *frame;
frame = (Frame*) args;
frame->sum += *p;

} ...
list.forEachItem(&summation, &sum);

Inheritance

template<class T>
class Summation {

T sum;
public:

Summation() : sum(0) {}
T result() { return sum; }
void operator() (T n) { sum += n; }

};
template<class T, class functorT>
class ForEachItem_List : private functorT
{
public:

ForEachItem_List(List<T>& list) {
ListItem<T> *ip;
for(ip = list.front; ip; ip = ip->next)

operator() (ip->data);
}

};
// example of summation

register ForEachItem_List< int, Summation<int> > it(list);
printf(“sum = %d\n”, it.result());

Macro expansion

#define FOR_EACH_ITEM_OF_LIST(T, var, list) \
register T var; \
for(register ListItem<T> *_ip = list.front; \

_ip && (var = _ip->data), _ip; _ip = _ip->next)
// use macro

register int sum = 0;
FOR_EACH_ITEM_OF_LIST(int, n, list)

sum += n;
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Directly coded loop

register int sum = 0;
for(ListItem<int>* ip = list.front; ip; ip = ip->next)

sum += ip->data;

Table 3 shows the timing results. The input is a list of 5,000,000 integers. The test
program processes the list 10 times. The host machine is a PC with Pentium III 733 MHz
with 256 MB of memory. The compilers used are Borland C++ Builder 6.0 (BCB 6) on
Windows XP Professional and GNU C++ 3.0 (G++ 3) on Red Hat Linux 7.2. The code is
compiled to the “Release” setting in BCB and with flag -O in G++. All the computing
times are measured by using the clock function. Each version runs five times and the
average is taken. Excepting that the iterator version in BCB runs 16% slower than the
other versions, all of the other versions run at roughly the same speed in both compilers
and operating systems. This shows that all these iteration techniques have been well op-
timized and are almost as fast as directly coded loops when using recent C++ compilers.
It is advised that application and library developers choose an iteration technique based
on simplicity, usability, and concurrency concerns, and leave the efficiency issue mostly
to compiler designers.

Table 3. Execution times for five implementations of iteration on a linked list using BCB
6 and G++ 3 compilers.

Implementations of iteration BCB 6 G++ 3
Formal procedure parameter 4.07 s. 3.82 s.

Iterator 4.67 s. 3.82 s.
Inheritance 4.03 s. 3.82 s.

Macro expansion 4.06 s. 3.82 s.
Directly coded loop 4.03 s. 3.82 s.

5. RELATED WORK

Kim and Kim [14] classify iterators as primitive and recursive depending on
whether the number of data states is finite or infinite. Recursive types need additional
data structures such as stacks to iterate all elements of a collection object. This category
is equivalent to our definition of infinite-state category. Their classification does not ad-
dress the issue of multiple control points. Our classification of control points is a step in
further understanding C++ iterators.

Becker [15] addresses two designs of C++ iterators: one using a pointer of a call-
back function (formal procedure parameter), and one using an inherited virtual function
(inheritance). Becker concludes that the inherited one is much safer to use than the call-
back one. Our examples in section 4 also show that inheritance is safer than formal pro-
cedure parameter in implementing iteration. Since C++ does not support procedure pa-
rameter with lexical scopes, the example using procedure parameter needs to access data
in lexical scopes via a pointer to arguments (void* args).
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Plauger [16] proposes wrapper classes for C++ iterators used during debugging.
These classes can be used to validate constraints imposed on various iterators in the C++
Standard Template Library (STL). For example, algorithms using STL input and output
iterators should be single pass. They should not pass through the same iterator twice. A
wrapper class can be used to validate such a constraint. This is a useful debugging tool
for iterators with special constraints.

A CLU iterator is an operation that yields results incrementally [17]. CLU iterators
are implemented by coroutines. The iterator and the body of the for-loop pass control
back and forth. Sather iterators [18] are derived from CLU iterators but are more flexible
and better suited to object-oriented programming. Sather iterators are special member
functions (also called methods) of a class and are thought of as structured coroutines.
Katrib and Martinez [19] propose a new iterator feature for Eiffel. The proposal is also
based on CLU iterators. They also offer an associated control structure called forall loop.
Kim [20] proposes a mechanism for writing iterators in C++. His implementation is
based on semicoroutines, which are implemented by threads.

Messerschmidt [21] addresses the problem of iterator integrity. Does an iterator
work reasonably when the element it points to is deleted? He/she gives an example of a
list iterator where this problem has been solved. This issue can also be left to dynamic
memory management, such as garbage collection, which C++ does not directly support.
In practice, the semantics of most iterators are usually undefined when their collection
objects are modified [18, p. 13].

6. CONCLUSIONS

We have analyzed iterators by proposing a taxonomy based on the number of data
states and the number of control points. This taxonomy has provided a systematic view
of the complexity of iterators. The strengths and weaknesses in iterators can be analyzed
based on this taxonomy. Example iterators, including the leaf node iterator for the
same-fringe problem have been presented to validate the usage of the taxonomy. We
have also measured the efficiency of various implementations for iteration on a linked
list. Our results have shown that all of the tested iteration techniques, including iterators,
are well optimized and are almost as fast as directly coded loops when using recent C++
compilers. Iterators with finite states and a single control point are simple, efficient, and
easy to use. Iterators of other categories require additional transformations and are best
replaced with other iteration techniques such as inheritance.
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APPENDIX: ITERATION IN A POOL

Pool [6] is a collection object that provides an unbounded space. A pool consists of
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several segments of contiguous memory space. The following code is an iteration on the
elements of a pool. The iteration contains two control points as marked in the code. The
number of data states needed is finite; the memory space used contains only the local
variables in the code. Since the number of elements in the last segment may not be in a
power of 2, iteration on the items of the last segment is treated separately.

// Version 1. the code given in [6]
template<class objT>
void Pool<objT>::forEachItem(void (*f)(objT&, void*), void* arg = 0)
{

int segment_len = 1<<log2_segment_size;
for(int i = 0; i<nsegments-1; i++, segment_len = segment_len<<1)

for(int j = 0; j<segment_len; j++)
f(*(index[i]+j), arg); // 1st control point

for(objT *obj = index[i]; obj<item; obj++) // last segment
f(*obj, arg); // 2nd control point

}

This iteration can be transformed into an equivalent nested loop by adding addi-
tional data states. Version 2, shown below, uses an array of indexing items (the variable
last) to unify the terminating conditions in each segment. The resulting code contains
only one control point.

// Version 2. transform control points into data state objT* last[], ...
void Pool<objT>::forEachItem(void (*f)(objT&, void*), void* arg = 0)
{

objT* last[32]; // maximal number of segments for 32-bit machines
// initiate last[0..nsegments-1];
int seg_len = 1<<log2_segment_size;
for(int I = 0; i<nsegments-1; i++, seg_len = seg_len<<1)

last[i] = index[i] + seg_len;
last[nsegments-1] = item;

for(I = 0; i<nsegments; i++)
for(objT *obj = index[i]; obj<last[i]; obj++)

f(*obj, arg);
}

The iterator PoolIter can be derived from Version 2. The constructor of PoolIter ini-
tializes the data state such as i, obj, and last, as in the for-loop of Version 2. The execu-
tion of operator++ is guaranteed to be constant in time.
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template<class objT>
class PoolIter
{
private:

Pool<objT>& pool;
objT* last[32]; // the address beyond last item
objT* limit; // limit of current segment
objT* obj; // next item
int nsegments;
int i; // current segment No.

public:
PoolIter(Pool<objT>& p) : pool(p), nsegments(p.nsegments) {

// initiate last[0..nsegments-1]
int seg_len = 1<<pool.log2_segment_size;
for(int I = 0; i<nsegments-1; i++, seg_len = seg_len<<1)

last[i] = pool.index[i] + seg_len;
last[nsegments-1] = pool.item;
obj = pool.index[0]; limit = last[0]; i = 0;

}
void operator++ () {

if (++obj<limit) return;
if (++i<nsegments) {

obj = pool.index[i]; limit = last[i];
} else

{ obj = 0; return; }
}
bool operator!() { return (int) obj; }
objT& operator() () { return *obj; }

};
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