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Parallel Implementation of DSMC Using Unstructured Mesh

J.-S. WU*, K.-C. TSENG and T.-J. YANG

Department of Mechanical Engineering, National Chiao-Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan

(Received 7 March 2002; In final form 8 December 2002)

The parallel implementation of the Direct Simulation Monte Carlo (DSMC) method on memory-
distributed machines using unstructured mesh is reported. Physical domain decomposition is used to
distribute the workload among multiple processors. A high-speed driven cavity flow is used as the
benchmark problem for the validation of the parallel implementation. Three static partitioning
techniques including simple coordinate partitioning, two-step partitioning (JOSTLE) and multi-level
partitioning (METIS) are used for static domain decomposition, respectively. A cell renumbering
technique is used to improve the memory management efficiency. Results of parallel efficiency show
that two-step partitioning using JOSTLE performs the best, with 63% up to 25 processors, due to better
load balancing among the processors. The powerful computational capability of the parallel
implementation is demonstrated by computing a 2-D, near-continuum, hypersonic flow over a cylinder
as well as a 3-D hypersonic flow over a sphere, respectively, both using 25 processors. Results compare
reasonably well with previous simulated and experimental studies.

Keywords: Parallel computing; Direct simulation Monte Carlo; Unstructured mesh; Partitioning;
Driven cavity; Load balancing

INTRODUCTION

The highly developed Computational Fluid Dynamics

(CFD) using the Navier–Stokes equations has permitted

the prediction of complex thermal and fluid problems of

engineering and scientific interest. However, there are

limitations to the applicability based on these equations.

In some flow regimes, the Navier–Stokes equations fail to

represent the gas dynamics behavior and the particle nature

of the matter must be taken into account. One of these is

the rarefied gas flow, which the mean free path becomes

comparable with, or even larger than, the characteristic

length of flows. Such flows can be characterized by the

Knudsen number, Kn ¼ l=L; where l is the mean free

path, and L is the characteristic length. The Knudsen

number is usually used to indicate the degree of

rarefaction. Traditionally, flows are divided into four

regimes as follows (Schaff and Chambre, 1958): Kn ,

0:01 (continuum), 0:01 , Kn , 0:1 (slip flow), 0:1 ,

Kn , 3 (transitional flow) and Kn . 3 (free molecular

flow). As the Kn increases, the rarefaction becomes

important and even dominates the flow behavior. Hence,

the N–S-based CFD techniques are often inappropriate for

higher Kn flows, such as slip flow, transitional flow and

free molecular flow.

The understanding of rarefied gas dynamics (high

Knudsen number flows) has played or has begun to play an

important role in several research disciplines. The

examples include the spacecraft re-entry (Nance, 1995),

the plume impingement from control thrusters on satellite

(Boyd et al., 1996; Kannenberg, 1998), the pumping

characteristics of high vacuum pump (Lee and Lee,

1996a,b), the low-pressure plasma-etching and chemical

vapor deposition (LPCVD) (Plimpton and Bartel, 1993),

the computer hard disk slider air bearing (Alexander et al.,

1994) and the micro-electro-mechanical-system (MEMS)

(Piekos and Breuer, 1996; Nance et al., 1998; Wu and

Tseng, 2001), to name a few. Each of these distinct

applications of high Knudsen number flows is now

of practical scientific and engineering importance.
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While the Boltzmann equation may be more suitable for

approximating high Knudsen number flows, attempts to

solve it numerically have met with much less success than

the Navier–Stokes equations due to the higher dimen-

sionality (up to seven) of the Boltzmann equation and the

difficulties of modeling the integral collision term.

To circumvent the difficulty of a direct numerical solution

of the Boltzmann equation, an alternative method known

as Direct Simulation Monte Carlo (DSMC) was proposed

by Bird in 1963, and the associated monograph was

published in 1994 (Bird, 1994). In the past, DSMC was

attacked on the basis that its solution does not represent

the true solution of the Boltzmann equation although it

was argued by Bird that the same assumptions applied to

both methods. Not until about two decades ago was

Nanbu (1982) able to demonstrate mathematically that the

DSMC method is equivalent to solving the Boltzmann

equation, and more recently, Wagner (1992) proved that

the solution of the DSMC method converges to the

Boltzmann equation.

Most applications of DSMC applied structured grids

(Bird, 1994) in the physical space. It is much easier to

program the code using structured grids; however, it

requires tremendous problem specific modification.

To alleviate such restriction, an unstructured grid system

may be one of the best choices, although it may be

computationally more expensive. Considering the advan-

tages using unstructured grids, its use in DSMC is highly

justified. For example, Boyd’s group (Boyd et al., 1996;

Kannenberg, 1998) applied such a technique to compute

the thruster plume produced by a spacecraft and found that

the results were very satisfactory. In addition, Piekos and

Breuer (1996) and Wu and Tseng (2001) used the similar

gridding technology to compute several typical micro-

scale flows.

The DSMC method has become a widely used

computational tool for the simulation of gas flows in

which molecular effects become important. The advantage

of using a particle method under these circumstances is

that a molecular model can be applied directly to the

calculation of particle collisions, while the continuum

methods use macroscopic averages to account for such

effects. Therefore, particle methods can predict these

effects with much higher accuracy. Also, it is the only

viable tool for analyzing the gas flows in the transitional

regime. Nevertheless, the main drawback of such a direct

physical method is its high computational cost. That is

why the DSMC method was only used for analyzing high

Knudsen number flows (or transitional flows). For low

Knudsen number gas flows near the continuum regime, the

computational cost is prohibitively high, even with today’s

most advanced computer. Hence, it is important to

increase the computational speed to extend the application

range of the DSMC method.

Since the DSMC method is a particle-based numerical

method, the movement of each particle is inherently

independent of each other. The coupling between

particles is only made through collision in the cells.

Hence, as compared with other N – S equation-

based numerical schemes, the DSMC method is nearly

100% in parallelism. Therefore, the implementation of the

DSMC method on the parallel processors is highly

justified.

In the past, several studies on parallel implementation

of DSMC have been published (Furlani and Lordi, 1988;

Ota and Tanaka, 1991; Nance et al., 1994; Ota et al., 1995;

Matsumoto and Tokumasu, 1997) using static domain

decomposition and structured mesh. Message passing was

used to transfer molecules between processors and to

provide the synchronization necessary for the correct

physical simulation. Results showed reasonable speedup

and efficiency could be obtained if the problem is sized

properly to the number of processors.

Recently, Boyd’s group (Dietrich and Boyd, 1996;

Kannenberg, 1998) designed a parallel DSMC software

named MONACO. In this code, unstructured grids were

used to take advantage of the flexibility of handling

complex object geometry. In addition, a new data

structure was proposed to meet the specific requirement

related to workstation hardware while maintaining high

efficiency on supercomputers. Timing results showed the

performance improvement on workstations and the

necessity of load balancing for achieving high

performance on parallel computers. A coordinate

partitioning technique was used for domain decompo-

sition. The authors also suggested that only decompo-

sition along streamlines should be chosen to keep

communication at a minimum. However, it may not

always be possible for realistic flow problems.

Maximum 32 processors of IBM SP-1 were used

throughout the research.

Until very recently, a dynamic load balancing

technique, using Stop At Rise (SAR) based on a

degradation function, was used in conjunction with the

parallel implementation of the DSMC method (Robinson,

1998; LeBeau, 1999). Parallel efficiency up to 90% was

reported for 128 processors for flow over a sphere

(LeBeau, 1999), although it is not clearly reported how

they implemented the dynamic load balancing. However, a

data mapping between the local (in each sub-domain) and

the global (whole domain) cell numbers was required,

which became very costly for a large simulation otherwise

(Robinson, 1998).

In the current study, we will concentrate on static

domain decomposition, which is much easier to

implement, as compared with dynamic domain

decomposition. However, the design of the current

parallel implementation will take into account the future

implementation of dynamic domain decomposition.

Static decomposition methods fall into two categories

as pointed out by Robinson (1998). These are geometry-

based and graph-based. Geometry-based methods use

spatial (or coordinate) information of mesh to partition

the domain. These methods are usually simple and fast

but provide poor Ec (edge cut) and poor load balancing.

On the other hand, graph-based methods provide better
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Ec and load balancing if some careful measure is

imposed. Many physical problems can be expressed

within the framework of graph theory, such as discrete

optimization problems and matrix reordering. One of the

advantages in expressing the problem in terms of a

graph is that each of the edges and vertices can be

assigned a weight to account for the specific numerical

application. For example, in DSMC, the vertex (cell

centers) can be weighted with the particle numbers with

all edges having unitary weight. Thus, domain

decomposition in DSMC can become very efficient by

taking advantage of the success in graph partitioning.

Related descriptions and reviews of graph partitioning

can be found in Kernighan and Lin (1970), Barnard and

Simin (1994), Hendrickson and Leland (1994), Karypis

and Kumar (1995), Vanderstraeten and Keunings (1995),

Walshaw et al. (1995), Vanderstraeten et al. (1996) and

Robinson (1998), and are not repeated here. There are,

however, two graph partitioners available in the public

domain worthy of mentioning, and they are described in

the following.

METIS (Karypis and Kumar, 1995), developed at the

University of Minnesota, was a variant of the multi-level

scheme of graph partitioning. The idea of multi-level

schemes draws from the multi-grid techniques, which are

used to speed up the convergence in CFD problems. This

algorithm successively contracts the original graph into

several levels and computes the Fiedler vector on the

coarsest contracted graph. This vector is then interpolated

between the levels of the graph with some local

refinement at each level. Reported performance was

impressive in terms of cpu time. Another variant of

the multi-level scheme, JOSTLE (Vanderstraeten and

Keunings, 1995; Walshaw et al., 1995; Vanderstraeten

et al., 1996), uses an initial domain decomposition

(generated by greedy partitioning) and successively

adjusts the partition by moving vertices lying on partition

boundaries. In this method, vertex shedding is localized

since only the vertices along the partition boundaries are

allowed to move, not the vertices anywhere in the

domain. Hence, this method possesses a high degree of

concurrency and has the potential of being applied in the

dynamic domain decomposition in the event of load

imbalance across the processor array. In the current

study, both METIS and JOSTLE are used to produce

required domain decomposition for the DSMC

simulation.

Based on previous reviews, the development of the

parallel DSMC method did not take the advantage of the

great success in graph partitioning. Considering DSMC, a

truly dynamic load balancing technique is required

because the load (approximately proportional to the

particle numbers) in each sub-domain changes frequently,

especially during the transient period. However, such

implementation is definitely not an easy task to

accomplish. As a first step, we instead use the static

decomposition using METIS (Karypis and Kumar, 1995)

and JOSTLE (Walshaw et al., 1995), respectively,

considering the particle weight in each sub-domain

obtained from the simulation with very few simulated

particles (e.g. less than 10%).

The objectives of the current study are summarized as

follows.

1. To complete a two-dimensional parallel DSMC code

using quadrilateral unstructured mesh, using a high-

speed driven cavity flow as the benchmark problem,

using a mesh renumbering technique to relieve the

memory burden.

2. To utilize and compare the parallel performance of

different techniques of static domain decomposition,

including the simple coordinate partition without

considering the workload in each sub-domain,

the multi-level scheme (METIS) and the two-step

method (JOSTLE) by considering the estimated

particle weighing in each sub-domain.

3. To apply the parallel DSMC implementation to

compute a 2-D realistic, near-continuum hypersonic

flow over a cylinder as well as a 3-D hypersonic flow

over a sphere and compare with previous experimental

and DSMC data available in the literature.

The paper begins with descriptions of parallel DSMC

method. Results of parallel performance are then

considered using a high-speed cavity flow and applying

to a 2-D near-continuum hypersonic flow over a cylinder

and a 3-D hypersonic sphere flow in turn.

THE PARALLEL DSMC METHOD

The DSMC method is a particle method for the simulation

of gas flows. The gas is modeled at the microscopic level

using simulated particles, each of which represents a large

number of physical molecules or atoms. The physics of the

gas are modeled through uncoupling of the motion of

particles and collisions between them. Mass, momentum

and energy transport are considered at the particle level.

The method is statistical in nature. Physical events such as

collisions are handled probabilistically using largely

phenomenological models, which are designed to

reproduce real fluid behavior when examined at the

macroscopic level.

Conventional DSMC Method

Since Bird (1994) has documented in detail the

conventional DSMC method in his monograph, it is

only briefly described here. Important steps of the

DSMC method include setting up the initial conditions,

moving all the simulated particles, indexing (or sorting)

all the particles, colliding between particles, and

sampling the molecules within cells to determine the

macroscopic quantities. This method is essentially a

computer simulation of gas molecular dynamics and

depends heavily upon pseudo-random number sequences

PARALLEL DSMC ON UNSTRUCTURED GRIDS 407
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for simulating the statistical nature of the underlying

physical processes. The data variables are randomly

accessed from computer memory. Thus, it is very

difficult to vectorize the DSMC code. However, since

the movement of each particle and the collision in each

cell is treated independently, this makes DSMC

perfectly suitable for parallel computation, which is

introduced next.

FIGURE 1 Simplified flow chart of the parallel DSMC method for np processors.
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Parallel DSMC Method

The DSMC algorithm is readily parallelized through

the physical domain decomposition. The cells of the

computational grid are distributed among the processors.

Each processor executes the DSMC algorithm in serial for

all particles and cells in its own domain. Parallel

communication occurs when particles cross the domain

(processor) boundaries and are then transferred between

processors. Figure 1 shows a simplified flow chart of

the parallel DSMC method proposed in the current

study. Note that CPUs are numbered from 0 to np in the

figure.

In this method, a new approach of handling the cell-

related data is proposed. A fully-unstructured quad-

rilateral (or triangular) mesh is first constructed using the

advancing front method by a commercial code,

HyperMeshe (Liu, 2002). Then, a preprocessor (or

“converter”) is used to convert the fully-unstructured

mesh data into the globally sequential but locally

unstructured mesh data for each processor in confor-

mation with the partitioning information from graph

partitioners (e.g., METIS or JOSTLE), as schematically

presented in Fig. 2. For example, the partition

information from JOSTLE (based on the estimated

weights in each cell) provides the cell numbers (mn for

the nth subdomain, where n ¼ 1 to np) and mapping of

cells in each partitioned subdomain. After the conversion,

the cells in each subdomain are renumbered such that the

corresponding global starting and ending cell numbers

for the nth subdomain are
Pn21

i¼1 mi þ 1 and
Pn

i¼1mi,

respectively. In each processor, the cell numbering is

unordered (unstructured), but both the starting (smallest)

and ending (largest) cell numbers increase sequentially

with processor number. We term this as “globally

sequential but locally unstructured”. Thus, in each

processor the memory is only needed to record the

starting and ending cell numbers. The mapping between

global and local cell data, however, can be easily

obtained by a simple arithmetic operation due to this

special cell-numbering design. The required array size for

cell-related data is approximately the same as the cell

numbers in each subdomain, rather than the total cell

numbers in the simulation domain as in Robinson (1998).

For example, if there are one million cells totally in the

simulation with 100 processors, each processor will only

require to store the array on the size of 10,000. The

memory cost reduction will be at least 100 times in this

case. This simple conversion dramatically reduces the

memory cost otherwise required for storing the mapping

between the local cell number in each processor and the

global cell number in the computational domain if

unstructured cells are used (Dietrich and Boyd, 1996;

Kannenberg, 1998; Robinson, 1998). In addition, a

processor neighbor-identifying array is created for each

processor from the output of the converter, which is used

to identify the surrounding processors for those particles

crossing the inter-processor boundaries during simu-

lation. From our practical experience, the maximum

numbers of processor neighbor are less than 10;

FIGURE 2 Schematic diagram of the proposed cell numbering scheme. mn is the number of cells in the nth processor, where the starting and ending cell
number are

Pn21
i¼1 mi þ 1 and

Pn
i¼1mi, respectively. np is the total number of processors.
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therefore, the increase of memory cost due to this

processor neighbor-identifying array is negligible. The

resulting globally sequential but locally unstructured

mesh data is then imported into the parallel DSMC code.

After reading the mesh data on a master processor

(cpu 0), the mesh data are then distributed to all other

processors according to the designated domain decompo-

sition. All the particles in each processor then start to

move as in the sequential DSMC algorithm. The particle-

related data are sent to a buffer and are numbered

sequentially when hitting the inter-processor boundary

(IPB) during its journey within a simulation time step.

After all the particles in a processor are moved, the

destinating processor for each particle in the buffer is

identified via a simple arithmetic computation, owing to

the previously mentioned approach for the cell numbering,

and are then packed into arrays. Considering communi-

cation efficiency, the packed arrays are sent as a whole to

their surrounding processors in turn based on the tagged

numbers recorded earlier. Once a processor sends out all

the packed arrays, it waits to receive the packed arrays

from its surrounding processors in turn. This “send

and receive” operation serves practically as a synchroni-

zation step during each simulation time step. Received

particle data are then unpacked and each particle

continues to finish its journey for the remaining time

step. The above procedures are repeated twice since there

might be some particles that cross the IPB twice during a

simulation time step.

After all particles on each processor have come to their

final destinations at the end of a time step, the program

then carries out the indexing of all particles and the

collisions of particles in each computational cell in each

processor as usual in a sequential DSMC code. The

particles in each cell are then sampled at the appropriate

time.

High parallel efficiency can only be achieved if

communication is minimized and the computational load

is evenly distributed among processors. To minimize

the communication for static domain decomposition, the

boundaries between subdomains should lie along the

streamlines of the flow field (Dietrich and Boyd, 1996)

as mentioned previously; however, it is nearly impossible

to achieve this partition for most practical flows.

Fortunately, the advancement of networking speed has

reduced the communication time between processors to a

tolerable amount. For the DSMC algorithm, the workload

(or equivalently particle numbers) in each processor

changes frequently, especially during the transient period

of a simulation, while the workload attains a roughly

constant value during steady-state sampling. Thus, a truly

dynamic (or adaptive) domain decomposition technique

is required to perfectly balance the workload among the

processors. However, as a first step towards this objective,

we have instead adopted the static domain decomposition

method to provide the partitioned sub-domains.

In addition to the simple coordinate partition, we use

two state-of-the-art graph partitioning tools, JOSTLE

FIGURE 3 Normalized density contour of a high-speed driven cavity flow (Kn1 ¼ 0:04; 10,000 cells, 130,000 particles).
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(Walshaw et al., 1995) and METIS (Karypis and Kumar,

1995), by considering the estimated particle weight on

each vertex (cell center). This represents the first

application of the graph partition techniques in DSMC

to the best of the author’s knowledge. The weight on

each vertex is estimated by running the sequential DSMC

code with about 10% or fewer (for some cases only 3% is

used) of the total particle number, which is used for a real

parallel simulation. The variations of weight on vertices

obtained this way can be shown later to be roughly

equivalent to those obtained by running all particles

(100%).

The current parallel code, in the Single Program

Multiple Data (SPMD) paradigm, is implemented on the

IBM-SP2 machines (distributed memory system) using

message passing interface (MPI) to communicate

information between processors. Therefore no code

modification is essentially required to adapt to other

parallel machines (e.g. IBM-SP2, PC-clusters) with

similar distributed memory system once they use the

same MPI libraries for data communication.

Parallel Performance Evaluation

Two parameters often used to measure the performance

of the parallel implementation are speedup and

efficiency. The same applies to the parallel DSMC

method as well. These two parameters are defined as

follows.

Speedup is defined as the ratio of the required running

time for a particular application using one processor to

that using N processors, i.e.

Speedup ¼
t1

tN

: ð1Þ

Efficiency is then defined as

Efficiency ¼
Speedup

N
ð2Þ

and is just the ratio of the true speedup to the

ideal speedup, N, and hence its value lies between zero

and one.

Although the DSMC possesses nearly 100% parallelism

(except for initialization and final output), both the values

of speedup and efficiency are expected to be lower than the

ideal values due to the load imbalance and communication

as mentioned previously.

BENCHMARK TESTS

Benchmark Problem

In order to test the proposed parallel DSMC algorithm, we

use a 2-D, high-speed driven cavity flow as the benchmark

problem (Robinson, 1998). This benchmark problem is a

2-D variation of the familiar Rayleigh problem, consisting

of a square box whose wall temperatures are all set to 300 K

and diffusive (100% full thermal accommodation), and

lower wall velocity is eight times the most probable speed

based on wall temperature. Initial gas temperatures within

FIGURE 4 Estimated normalized density contour of a high-speed driven cavity flow (Kn1 ¼ 0:04; 10,000 cells, 10,000 particles).
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the enclosure are set to 300 K, which is the same as the wall

temperature. The corresponding Knudsen number is based

on the initial uniform mean free path and length of the

square box equal to 0.04.

Results of the Sequential Code

In total 10,000 uniform quadrilateral cells and 130,000

particles are used in the serial simulation of the high-speed

driven cavity flow. The time step is chosen as smaller

compared with mean collision time. Results of normalized

density plots are shown in Fig. 3. Note that the dimensions

in x and y directions are also normalized with the width of

the cavity. The results show that an ultra high-density

region, up to 26.2 times the initial density, appears at the

very right-hand bottom corner due to the high-speed

moving plate at the bottom of the cavity. Also the densities

at the two top corners are higher than the initial value.

In addition, most of the region above the moving plate

is rarefied as compared with the initial value since

the particles are “entrained” to collide with the

moving plate. The above sequential results are used in

the baseline solution for the parallel computation

discussed later.

Domain Decomposition

In the current study, three static domain decomposition

methods are used to partition the computational domain.

These include the simple coordinate partition without

considering the particle weights in each subdomain, the

two-step multi-level method (JOSTLE) and the multi-

level scheme (METIS), both considering the approximate

particle weights in each subdomain estimated by running

the sequential code with 10% of the total particles

or fewer. A typical normalized density contour

with averaged one particle per cell is shown in Fig. 4.

The general trend is similar to that obtained by 100%

particles; however, the finer structure exhibits large

differences. Thus, we would expect that the load

imbalance will be worsened for increasing processor

numbers due to this difference. The results exhibit large

statistical scatters as expected; however, by comparing

Figs. 3 and 4 the approximation seems justified. For

example, we can obtain the approximate particle weights

with about 105 particles or fewer, if the real simulation

particle number is on the order of 106, which is still

considered very time-consuming on modern workstations

or personal computers. The resulting domain decompo-

sitions are described as follows.

Typical results of domain decomposition for 25

processors using simple coordinate, JOSTLE and

METIS schemes are presented in Figs. 5a–c, respect-

ively. For simple coordinate partition (Fig. 5a), each

subdomain possesses the same number of cells. IPBs are

straight, which makes the handling of particle tracking

across the IPB more efficient. However, the load

imbalancing is expected to be the worst. Note that the

resulting numbering in each subdomain remains the same

for future discussion. A typical graph partition resulting

from JOSTLE is shown in Fig. 5b for 25 processors.

For example, the processor 9 on the right-hand bottom

corner possesses far fewer cells than its adjacent

FIGURE 5 Static domain decomposition using three different
partition schemes for 25 processors: (a) simple coordinate; (b) JOSTLE;
(c) METIS.
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processor 1 due to the ultra high density in the corner.

Another typical graph partition resulting from METIS for

25 processors is presented in Fig. 5c. Obviously, the

resulting partition looks very different as compared with

that of JOSTLE. In general, the number of resulting edge

cuts from the JOSTLE is smaller than that from METIS

due to the two-step method used to smooth the IPBs.

Comparing the results of three different partitioning

schemes, we would expect that the JOSTLE provides the

best partitioning quality for the DSMC computation

considering the communication cost required for parallel

computation.

Parallel Performance Evaluation

Cache Effects due to Different Particle Numbers

Before proceeding to the discussion of the parallel

performance results, the cache effects of the superscalar

workstation (IBM-SP2 in the current study) are magnified

by running the sequential code with a uniform flow over a

uniform mesh (20 £ 20 cells) with different particle

numbers. It is well recognized that the simulation time

is approximately proportional to the particle numbers if

the cell number remains the same and is relatively small as

compared with total particle numbers. Results of norma-

lized computational time per particle (to the time per

particle required by 1.3E þ 5 particles) are presented

in Fig. 6 for the particle numbers ranging from 1E þ 3 to

1E þ 6. Minimum normalized computational time per

particle occurs at a particle number of about 5000. Results

clearly demonstrated the phenomenon of cache misses as

particle number increases. The normalized computational

time per particle increases from 0.86 to 1.08 as the particle

number increases from 5E þ 3 to 1E þ 6. Interestingly,

the normalized value for 1E þ 3 particles increases

instead up to 0.95, which should be attributed to the

overhead required for loading the particle data from RAM

into the cache. Thus, the parallel performance is expected

to deteriorate as the particle number on a processor

decreases down to 1000 as compared with 5000. This will

somehow restrict the scalability of the parallel DSMC

method on superscalar machines. The concept of cache

misses is, however, important in explaining some parallel

performance results later.

Speedup and Efficiency

The results of speedup and efficiency of the parallel DSMC

computation for fewer than or equal to 25 processors, using

different partitioning techniques, are presented in Figs. 7

and 8, respectively. For the simple coordinate partition, the

speedup (efficiency) of 25 processors is 13.6 (54.5%),

while it increases to 15.6 (62.5%) for the two-step method

(JOSTLE) and 15.5 (62.2%) for the multi-level scheme

(METIS). Note that the percentage number appearing in

the parenthesis right after the speedup represents the

corresponding parallel efficiency. For processor numbers

FIGURE 6 Normalized computational time per particle at different particle numbers (T ref ¼ 5:671642E 2 6 s for 130,000 particles) (uniform flow,
20 £ 20 cells).

PARALLEL DSMC ON UNSTRUCTURED GRIDS 413

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

9:
29

 2
7 

A
pr

il 
20

14
 



fewer than or equal to 4, super-linear speedup occurs

clearly, as shown in both Figs. 7 and 8, using METIS and

JOSTLE. This is attributed to the cache effects discussed

earlier, which make the computational time per particle

less as the particle number in each CPU decreases. As the

processor number increases more than 4, this super-

linearity disappears due to the increasing ratio of

communication to computation, and load imbalance

among processors. It seems that the speedup, as

shown in Fig. 7, begins to level off for processor numbers

greater than 16, especially for the results using JOSTLE

and METIS. This means that the scalability

of currently proposed static partition using estimated

number density becomes worse for increasing processor

numbers due to the incorrect finer structure men-

tioned earlier. The reasons causing the deteriorating

parallel speedup and efficiency for higher processor

numbers can be demonstrated by the detailed analysis of

the workload variations among the processors, as

described in the following.

Workload and Communication Analysis

The workload and communication variation among

processors plays an important role in affecting the parallel

performance. Figure 9 presents the particle number (at

steady state), workload and communication for 25

processors using the simple coordinate partition. Note

that the communication time actually includes the idle

time. All quantities are normalized to the actual workload

of first processor in each partition. As stated previously,

the actual workload strongly correlates with the steady-

state particle number in each processor. The same trend

applies to other partitions. This proves that the

computational time is approximately proportional to the

particle number. Note that the communication time

FIGURE 7 Speedup of parallel DSMC computation for the high-speed driven cavity flow (# 25 processors) using different partitioning techniques.
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becomes large for the processors with fewer particles due

to the large idle time included.

Similar results are shown in Fig. 10 (25 processors) for

two-level partitioning using JOSTLE. The actual work-

load distributes quite uniformly (0.75–1.0) among the

processors and hence the communication (0.05–0.35 of

the workload with respect to processor one) is small and

relatively uniform as compared with the case of simple

coordinate partition. There is still one processor (cpu 1)

doing too much work, which causes the increase of

communication time (including idle time) for other

processors. This is not unexpected since the partition is

based on a very rough estimation of particle weighing by

running with #10% particles. Nevertheless, the overall

parallel performance using JOSTLE is superior to that

using the simple coordinate partition. Results for partition

using METIS are not shown here, but we found the similar

trend for the workload and communication analysis;

however, the overall parallel performance is a little worse

than that using JOSTLE due to the jig-jagged like IPB

produced using METIS.

APPLICATION TO A REALISTIC FLOW

The proposed parallel DSMC implementation has been

verified by the 2-D cavity flow stated previously with 25

processors or fewer. We have concluded that the JOSTLE

partition is the best considering the parallel performance.

Thus, to demonstrate the powerful capability of the current

parallel implementation, we have applied it using the

JOSTLE partition to compute a 2-D realistic, near-

continuum hypersonic flow over a cylinder (Bütefsch,

1969; Koura and Takahira, 1996) as well as a 3-D,

hypersonic rarefied gas flow past a sphere (Russell, 1968;

Liu, 2002), respectively. The results are then compared

with previous simulations (Koura and Takahira, 1996; Liu,

2002) and experimental studies (Russell, 1968; Bütefsch,

1969). Note that the discussion of physics of flow field is

brief since we are only interested in demonstrating the

powerful computational capability of the current DSMC

implementation in rarefied gas dynamics.

2-D Cylinder

Flow and Simulation Conditions

Flow conditions are the same as those of Koura

and Takahira (1996) and represent the experimental

conditions of Bütefsch (1969). For completeness, they are

briefly described here as follows: VHS nitrogen gas, free-

strem Mach number M1 ¼ 20; free-stream number

density n1 ¼ 5:1775 £ 1019 particles=m3; free-stream

temperature T1 ¼ 20 K; fully thermal accommodated

and diffusive cylinder wall with Tw=T0 ¼ 0:18; where Tw

and T0 are the wall and stagnation temperatures,

respectively. A temperature-dependent rotational energy

exchange model of Parker (Nanbu, 1982) is used to model

the diatomic nitrogen gas. The resulting Knudsen number

based on the free-stream condition is 0.025. A total of

FIGURE 8 Efficiency of parallel DSMC computation for the high-speed driven cavity flow (# 25 processors) using different partitioning techniques.
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32,319 quadrilateral cells and about 2 million particles are

used for the simulation. Computational mesh distribution

is shown in Fig. 11, which shows higher mesh density near

the stagnation region and lower mesh density in the wake

region. The domain decomposition using JOSTLE for 25

processors, estimated using approximately 32,000 par-

ticles (less than 1.6% of the final total particle number), is

shown in Fig. 12. It clearly shows that the relatively

smaller subdomains near the stagnation region and larger

subdomains in the wake region.

Properties Along the Stagnation Line

Results of normalized number density (n/n1), and

normalized translational and rotational temperatures

ððT 2 T1Þ=ðTo 2 T1ÞÞ along the stagnation line are

presented in Figs. 13 and 14, respectively. Note that the

subscripts “o” and “1” represent stagnation and free-

stream properties, respectively. Previous experimental

data of Bütefsch (1969) and the DSMC data of Koura and

Takahira (1996) are also included in these figures.

Note that the data of Koura and Takahira (1996) were

obtained using the conventional DSMC method. First, for

the density ratio, the present data agree well with both the

available experimental data and simulated data in front of

and behind the cylinder. The maximum density ratio

(21.965) of the present study is, however, larger than that

(,16) of Koura and Takahira (1996) due to the very

refined mesh in the stagnation region. Second, for the

translational temperatures along the stagnation line, the

current simulation data compare reasonably well with

those of Koura and Takahira (1996) (no experimental data

are available). In addition, the present simulated data are

in good agreement with those of Koura and Takahira

(1996) in the wake region. Finally, for the rotational

temperatures along the stagnation line, our data agree

reasonably well with both the experimental (Bütefsch,

1969) and the simulated DSMC (Koura and Takahira,

1996) data.

3-D Sphere

Flow and Simulation Conditions

Flow conditions past a 3-D sphere are the same as

those of Liu et al. (2002) and represent the experimental

FIGURE 9 Workload distribution for the high-speed driven cavity flow using simple coordinate partition (25 processors).
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conditions of Russell (1968). The flow conditions are

briefly described as follows: the sphere diameter

D ¼ 1:28 £ 1022 m; VHS nitrogen gas, free-stream

Mach number M1 ¼ 4:2; mean free path at free-stream

l1 ¼ 1:325 £ 1023 m3; fully thermal accommodated

and diffusive sphere wall with Tw=T0 ¼ 1; where Tw

and T0 are the wall and total temperatures and equal to

300 K, respectively. The resulting Knudsen

number based on the free-stream condition (l1/D) is

0.1035. A total of 132,634 tetrahedral cells and about

2 million particles are used for the simulation.

Computational mesh distribution and the surface

processor distribution are shown in Figs. 15 and 16,

respectively.

FIGURE 10 Workload distribution for the high-speed driven cavity flow using two-level partition (25 processors) (JOSTLE).

FIGURE 11 Computational mesh distribution of a nitrogen hypersonic flow over a cylinder (32319 cells, Kn1 ¼ l1=D ¼ 0:025; M1 ¼ 20;
T1 ¼ 20 K; n1 ¼ 5:1775 £ 1019 part=m3; D ¼ diameter of cylinder).
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FIGURE 12 Domain decomposition for a hypersonic flow over a cylinder using JOSTLE (25 processors; Kn1 ¼ 0:025).

FIGURE 13 Normalized density along the stagnation line of a hypersonic flow over a cylinder (25 processors; Kn1 ¼ 0:025).
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FIGURE 14 Normalized translational and rotational temperatures along the stagnation line of a hypersonic flow over a cylinder (25 processors;
Kn1 ¼ 0:025).

FIGURE 15 Mesh distribution for a hypersonic flow over a 3-D sphere (132,634 cells, Kn1 ¼ l1=D ¼ 0:1035; M1 ¼ 4:2; Tw ¼ T0 ¼ 300 K;
D ¼ 1:28 £ 1022 m; D ¼ diameter of sphere).
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FIGURE 16 Surface processor distribution for a hypersonic flow over a 3-D sphere (25 processors; Kn1 ¼ 0:1035).

FIGURE 17 Normalized centerline density distribution for a hypersonic flow over a sphere (25 processors; Kn1 ¼ 0:1035).
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Properties Along the Stagnation Line

Results of normalized centerline density (r/r1), and

normalized translational and rotational temperatures

(T/T1) distribution are presented in Figs. 17 and 18,

respectively. Previous experimental data of Russell

(1968) for the density ratio are also included in Fig. 17

for comparison. Note that there were no experimental

data available behind the sphere. First, for the density

ratio, the present simulation data agree very well within

experimental uncertainties with the available experimen-

tal data in front of the sphere. The maximum density ratio

of the present study is 4.8 and there are no experimental

data behind the sphere. Second, the normalized

temperatures along the stagnation line are shown in

Fig. 18, although no experimental data are available.

There exists strong thermal non-equilibrium in the bow-

shock region in front of the sphere and in the wake region

due to the strong rarefaction caused by the sphere. In

addition, parallel efficiency is about 60% using 25

processors for this 3-D test case.

CONCLUSIONS

In the current study, a parallel DSMC algorithm using

unstructured mesh, which can be implemented on memory

distributed parallel machines with MPI for the data

communication, is proposed and tested via a high-speed

driven cavity flow problem. Different static decomposition

methods are utilized to distribute the workload among

processors. These include the simple coordinate partition-

ing, the multilevel scheme and the two-step method, with

the latter two methods considering the estimated particle

weights. The results of parallel performance for

these methods are then compared. Finally, a 2-D realistic

flow and a 3-D hypersonic sphere flow are chosen to

demonstrate the computational power of the current

parallel implementation of the DSMC method.

In summary, the major findings of the current research

are listed as follows.

1. The use of a globally sequential but locally

unstructured approach reduces the memory cost

dramatically, which would be otherwise expensive

due to the mapping between the global and local cell

data.

2. The study has demonstrated that significant speedups

for multiprocessors (e.g. 14 for 16 processors using

JOSTLE) can be obtained over a single-processor

processing; however, the speedup begins to level off as

the processor number is larger than 16 (e.g. 16 for 25

processors using JOSTLE).

3. A cheap method of estimating the particle weights

on vertices, estimated by reduced total particle

numbers (less than 10%), has been proved to do the

job fairly well for the high-speed driven cavity

problem ( % 16 processors in current case) as

compared with the complicated dynamic load

balancing technique.

FIGURE 18 Normalized centerline temperature distribution for a hypersonic flow over a sphere (25 processors; Kn1 ¼ 0:1035).
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4. By considering the particle weight on each vertex

(cell center), the speedups of the two-step method

(JOSTLE, Walshaw et al. (1995)) are slightly better

than those of the multilevel scheme (METIS,

Karypis and Kumar (1995)) up to 25 processors

due to the smoother partitioning boundaries

provided by JOSTLE. As expected, the performance

of simple coordinate partitioning represents the

worst case.

5. For fewer processors ( % 4 in driven cavity flow

problem), super-linear appears due to cache effect

are demonstrated. It is overwhelmed by load

imbalancing and communication as the processor

number increases.

The parallel method presented in this study utilizes static

domain decomposition to distribute the workload among

processors. It is well known that the workload (particle

number) on each sub-domain changes very frequently in a

DSMC simulation, especially during the transient stage.

Thus, a truly adaptive domain decomposition method is

required to dynamically distribute the workload among the

processors and is currently in progress.
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