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Abstract

Consider the simple random walk on the n-cycle Z,,. For this example, Diaconis and Saloff-Coste
(Ann. Appl. Probab. 6 (1996) 695) have shown that the log-Sobolev constant  is of the same order
as the spectral gap 4. However the exact value of o is not known for n>4. (For n = 2, it is a well
known result of Gross (Amer. J. Math. 97 (1975) 1061) that « is % For n = 3, Diaconis and Saloft-
Coste (Ann. Appl. Probab. 6 (1996) 695) showed that o = 5755 <5 = 0.75. For n = 4, the fact that

o= % follows from n = 2 by tensorization.) Based on an idea that goes back to Rothaus (J. Funct.

Anal. 39 (1980) 42; 42 (1981) 110), we prove that if n>>4 is even, then the log-Sobolev constant and

the spectral gap satisfy o = % This implies that o = %(1 — cos 2’7“) when 7 is even and n>=4.
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1. Introduction

Consider a finite state space . equipped with an irreducible Markov kernel
K(x,y), which is reversible with respect to a probability measure = on % (i.e.,
n(x)K(x,y) = n(y)K(y,x) for all x,ye.¥). Define an inner product on complex-
valued functions on & by <{f,g> = ..o f(s)g(s)n(s). The Dirichlet form
associated with (K, 7) is then given by the formula

*Corresponding author.
E-mail address: sheu@math.nctu.edu.tw (Y.-C. Sheu).

0022-1236/03/$ - see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0022-1236(03)00048-X



474 G.-Y. Chen, Y.-C. Sheu | Journal of Functional Analysis 202 (2003) 473485

where [ is the identity matrix, f and g are two complex-valued functions, and %z is
the real part of a complex number z. Set

Ef =3 fls)als)

sed
and
Var.(f) = ||f — Exf|l5.

Here || - ||, is the usual 2-norm with respect to the measure n. The spectral gap 4 of
(K,m) is defined by

_ [ S).
)V_mm{Varn(f)’

Since (K, 7) is reversible, it is easy to show that the spectral gap 2 is the smallest non-
zero eigenvalue of I — K.
For every function f on &, consider the entropy-like quantity

2
=S )P <1og /6] >n<s>. (1.2)
/B

ses

Vrn(f);éo}. (1.1)

(Clearly we have Z(f)>0 and Z(f) =0 only if f is a constant function.) A log-
Sobolev inequality is an inequality of the type

L(N)<CE(S ]) (1.3)

holding for all functions /. We say that « is the log-Sobolev constant of K if i is the
smallest constant C such that inequality (1.3) holds. In other words,

. f)
*=i f{ Z0R

(cf. (1.1)). Notice that Z(f) = Z(|f]) and

ECf. 1) =111I5 — R(LKS, )

(f);éO} (1.4)

=2 3" (P 22 0) + 1 W)PK (. )e()

X,y

Zlf VIPK(x, y)n(x)

>3 S W] = IR )e)
= 5(/11/).
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Hence in the definition of the log-Sobolev constant « one can restrict f* to be real
non-negative function. The following well-known result compares the log-Sobolev
constant to the spectral gap. It is a special case of a result proved first by Simon and
later independently by Rothaus by a different argument (see a survey paper of Gross
[4] or [2]).

Theorem 1. For any K the log-Sobolev constant o and the spectral gap A satisfy 2o< 2.

The following theorem is a translation of a previous result of Rothaus [6,7]. For a
simple proof in our setting, see [§, Theorem 2.2.3].

Theorem 2. Let K be irreducible and © be its stationary distribution. Then either
200 = A or there exists a positive non-constant function f which is a solution of

2 logf ~ 2f log]|lls ~ - (1 - Kif =0, (139
and such that o = &(f, )/ L (f).

Inequalities of Poincaré, Cheeger, Sobolev, Nash and log-Sobolev, are advanced
techniques for bounded mixing times of finite irreducible reversible Markov chains.
However, computing the log-Sobolev constant o exactly is difficult and it has been
done only for a handful of examples. Diaconis and Saloff-Coste [2] gave the exact
value of the log-Sobolev constant of the chain on a finite space with all rows of K
equal to . (This includes all chains on a two-point space.) We refer to [1,2] for more
examples.

In this paper we compute the exact value of the log-Sobolev constant for the
simple random walk on the n-cycle. (The exact value of the log-Sobolev constant is
well-known for n<4 (see [2,3])). In Section 3 we prove that if n is even and n>4, then
the log-Sobolev constant o and the spectral gap A satisfy 2o = 4 (see Theorem 3
below). This implies that o = %(1 — cos 27”) Our main result (Theorem 3) follows

from Theorems 1 and 2 by showing that if 2a <4, then there is no positive non-

constant function f satisfying (1.5) and such that ¢ = ‘2(!,{/;) (this approach was also

used earlier in a different context by Mueller and Weissler [5]).

2. The log-Sobolev constant for n-cycle

Consider a simple random walk on the n-cycle Z, and write Z, = {1,2, ...,n}.
Clearly the corresponding Markov kernel K is given by K(x,x+1) :% and the
uniform distribution on Z,, is its unique stationary distribution. (For n = 2, we have
K(1,2) = K(1,1) = K(2,1) = K(2,2) = 1. It is easy to check that the spectral gap of
K is 1. Also it follows from a result of Gross [3] that o = % Therefore we obtain that

o= % = % in the case n = 2.) Throughout this paper we assume that n>3.
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Forevery/=1,2,...,n—1, let

_27tl
o

0

and

sin 0,

sin 20,
u = .
sin n,;

Then u;#0 and direct computations imply that Ku; = (cos6;)u; for /1 =1,2, ...,
n — 1. Therefore the spectrum of I — K is given by the set

2nl
ol —K)= {1 —0057“’1: 1,2, ...,n}.

Since K is reversible, we observe that the spectral gap A of K is 1 — cos 2,1—“
Denote by o the log-Sobolev constant for the simple random walk on the n-cycle.
Note that the log-Sobolev constant for the simple random walk on Z3 is @

(see, e.g., [2]). Thus in this case we have o = @<§ =1(1 —cosZ) =0.75. For
n =4, we obtain o = % from n = 2 by tensorization. For n>4, Diaconis and Saloff-
Coste [2] showed that o is of the same order as 4. In particular they proved that

8 n? < <2n2

——=<a<—.

25 n? n?

By refining their arguments, we obtain

The main result of this paper is as follows.

Theorem 3. Assume that n is even. Then the log-Sobolev constant for the simple
random walk on the n-cycle is just one half of its spectral gap: o :§ (we will prove
Theorem 3 in Section 3).

To compute the exact value of «, we write functions f on Z, as vectors
(f(1),f(2),....f(n) in R". For every function ' = (x1, X, ..., X,), we have

n 2

1 X;
2(f)=-3 xPlog
n ; 17113

(2.1)
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and
. 2 2 2 2
S/, 1) =5 (xt =l +lx = x4+ ="+ o =l (22)

Clearly function . is invariant if we permute the components of /', while function &
is not. For a fixed function f, we investigate the extreme value of & over all
permutations on the components of 1.

Consider the function

F(x) = |x1 —x2* + [v2 = 23 + oo 4 X1 — Xl + |30 — 3], (2.3)

where x = (x1,x2,...,x,)€R". Moreover to every x=(x1,X2,...,X,) with
0<x; <xp< -+ <Xy, there corresponds an element Xe R" given by the formula

~ {(X1,X3,X5,...,X2k+1,X2k,...,X4,X2) lfl’l:2k+1, (24)

(Xl,X3,X5, cees X2 =145 X2k ...,X4,X2) if n=2k.

Denote by S, the set of all permutations on {l,2,...,n} and write Ox =
(Xo(1), X0(2)5 ---» Xo(m)) for 0€ S, and xe R".

Proposition 1. For every x = (x1,Xx2,...,X,) with 0<x;<x,< - <X, we have
F(0x)=F(X) for all 0€S,,.

Proof. We prove this by induction on n. Clearly there is nothing to prove in the case
n = 2. Assume that it is also true for n = k. We consider the case n = k + 1 and fix
x = (x1,X2, ..., Xp1) Where 0<x; <xo < - < Xpp g
Step 1: Set y = (x1, x2, ...,xx) and consider the corresponding y given by (2.4).
Foreveryi=1,2,....k — 2, set
Firen = { (X1, X3, eovy Xiy Xt 15 Xit2, --., X4, X2)  if 7 is odd, (2.5)

(X1, X3y oevy Xig2y Xkt 15 Xiy -, X4y, X2)  if 1S even.

Thus yi;i» is obtained by inserting xpy; in j between x; and x;». Also set
V12 = (X1,X3, ..., X4, X2, Xp41) and

. (X1, X3,y oevy Xk, Xbt 15 Xk—1, -+, X4, X2)  if k is odd,
V14 = e (2.6)
(X1, X3, eevy Xk, Xkt 15 Xk, --, X4, X2)  if k is even.
We claim that
F(512) 2 F (Pk-1) (2.7)

and

F(Jiip2)=2F (k1) foralli=1,2,....k—2. (2.8)



478 G.-Y. Chen, Y.-C. Sheu | Journal of Functional Analysis 202 (2003) 473485
Note that for every 1<i<k — 2, we have
F(Pii2) = F(P) + (xi = xi1)” + (X1 — Xi2)” — (i = xi42)”. (2.9)
Therefore for 1<i<k — 4, we have
F(Jiiy2) = F(Pigrira) = [(xi — Xee1)” 4 (ka1 — xi2)? — (x5 — xi42)7)]
— [(vig2 = xt1)* + (ot — Xiga)” — (Xiv2 — Xi1a)’]
=2(Xk41 — Xir2) (Xiva — x;) 20. (2.10)
Also we have
F(Pr-24) = Fr-14) = [(Xk41 — x2) A+ (o — ) — (o — x)]
— [kt = x%-1)” + (Kt — x6)7 = (5% — x4-1)7]
=2(xXk1 — Xk) (Xk—1 — Xp—2) =0 (2.11)
and
F(Pk34-1) = FPr—14) = 2(Xp1 — xp—1) (3 — xp-3) =0. (2.12)

Combining (2.10)—(2.12) gives (2.8). To prove (2.7), it suffices to show that
F(¥12)=F(73). This follows easily from the fact that

F(512) — F53) = [(x1 — x01)” + (X1 — x2)> — (31 — x2)7]
— (%1 = Xpe1)” + (st — x3)7 = (31 — x3)7]

:2(Xk+1 - xl)(X3 - XQ)ZO.

Step 2: We prove that for every 0€ S, 1, we have
F(0x)=F(Jr_1x) = F(X). (2.13)

Fix 0e€S,+1 and set ¢ = 0x. Write ¢ = (..., X;, Xk41,Xj, ...) for some i<j and let
z= (..., X, xj, ...) €R" be obtained by removing the component x; from the vector
c. If 1<j<k — 2, we have

F(c) = F(§jjs2) = [F(2) + (x; — 1) + (5 — xp01)” — (37 — x7)7]
- [F();) + (Xj — Xk+l)2 + (Xk+1 — Xj+2)2 — (Xj — xj+2)2]

— F(2) = F(5) + 20101 — x7) (72 — 1) 0. (2.14)
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(In the last inequality, we use the assumption that F(z) > F(y).) If j = k — 1, we have

F(e) = F(ro1x) = [F(2) + (xi — xp1)” 4+ (o1 — Xp1)” — (x5 — x5-1)]
— [F) + (3 — Xxs1)” + (1 — xa1)” — (0 — xx1)7]

ZF(Z) —F(ﬂ) +2(xk —x,—)(xkﬂ —xk,1)>0. (2.15)
If j = k, we have

F(¢) = FGi1x) = [F(2) + (k — xi01)* + (i — xx1)” = (xi — x2)]
— [FO) + (v — X5s1)” + (gt — x01)” — (5% — xi-1)°]

=F(z) = F() + 2(xk—1 — x;) (Xk+1 — x,) 20. (2.16)
Therefore (2.13) follows (2.14), (2.15), (2.16) and (2.8). O

Remark 1. Assume that the minimum o in (1.4) is attained at some positive non-
constant function /. By the definition of the log-Sobolev constant and Proposition 1,
there exists a minimizer of the form f" = (x1, x3, ..., X4, X2) while 0<x; <xp < -+ <

4(9.9)

7(y Must satisfy the non-

Moreover it is not hard to show that any minimizer of

linear equation (1.5).

3. Proof of the main result

Throughout this section we assume that » is even and n>4. We will argue by
contradiction to verify that if oc<§, there is no positive non-constant function f'

satisfying the non-linear equation (1.5) and such that o = i(V/Eff)) Then our main

result (Theorem 3) follows from Theorems 1 and 2. Before proving the main result,
we derive a series of lemmas by some combinatorial arguments.
Define the shift operator ¢ by

O-(-x17-x27 ---7xn> = (xn;x17x27 "-7xn71)a

where x = (x1, X2, ..., x,) € R". Set ¢/ (x) = o(¢/~!(x)) for j>2 and write ¢~/ for the
inverse of ¢’.

Lemma 1. Consider a vector of the form

u—= (X],X3, ey X2h—145 X2k ...,X4,XZ)
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where x) <x2< -+ <xy and write o (u) = ((¢(u)),, (¢ (u))y, ..., (' (u))5). Then for
every 1<j<k — 1, we have
(07 (), < (¢ W)gyipn Jori=1,....k (3.1)
and
(07 ()= (67 () y_ipy for i=1,... k. (3.2)

Proof. Assume 1<j<k — 1. Then we have

X2(j—i+1) if 1< l</a
(' (u); = { X201 if j+1<i<j+k,
Xok—2fi—(+k+1) i J+k+1<i<2k.

(Case 1<i<ja(k—j).) Since i<(k—j) we get 2k—i+1=2k+j+1 and
(¢/(4))y_i1 = X2(i+j)- Therefore we observe

(0 (u); = X2(j—i+1) < X)) = (0 (1) )y -

(Case jv(k—j)<i<k.) Note that (k—j)<i<k implies k+1<2k—i+ 1)<
(k+j). We have

(0! ()); = Xa(1-5)1
and
(07 () ki1 = X2(2h—ije1-
Since 2(2k — i —j) + 1=22(i —j) — 1, we get (¢/ (u)); < (0/ (1)) 1-
(Case ja(k—j)<i<jv(k—j).) It is obvious that we only need to consider the

situation that j#k —j. We first consider the case that j<k —j. Then we have
j<i<(k—j)and 2k —i+ 1=2j—k +2k+ 1 =k+j+ 1. Therefore

(O“j(“)),- = X(i—j)—1 SX2(i4j) = (Gj(”))zk—i+1~
On the other hand, if k — j<j, then we have k — j<i<. This implies that
(07(”)),' = Xo(jit]) SX2(2k—ij)rl = (Gj(u))zk—i+1-

This completes the proof of (3.1). The proof of (3.2) can be done by similar
arguments. Here we omit it. [J

Lemma 2. Let u= (uj,un,...,ux—1,ux) be a vector with u;>0 for all
1<i<2k. Assume further that there exist two positive constants, ¢ and d,
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such that
2u; — (w1 + uiy1) = cu;log du? (3.3)
foralli =1, ..., 2k (here we write uy = uy, and uy11 = uy).
(@) If ui<upp_;iv1 for all 1 <i<k, then we have

wp — w1y — g =l + ) = (g, + o g

®) If uizupp—iv1 for all 1<i<k, then we have

wy — 1y + gy — =y, + e Fuy) — (0 + e+ )],

Proof. (a) Assume that u;<up;_;y; for all 1<i<k. For every 1<i<k, rewrite
Eq. (3.3) as

o Ml Ui clog did.

Uj
Then we observe that

pge—i + Wa—i2 Uit + Ui Ui(Uak—i + Unk—iv2) — Uok—iv1 (Uim1 + Uis1)

Uok—i+1 25 Uillfe—j+1

c(2log i >>c< i _M) (3.4)
Unk—it1 Uk—i+1 uj

(In the last inequality we use the fact that 2log¢>¢ — % for every 0 <¢<1.) Inequality
(3.4) implies that

(ithog—iv2 — UiUn—is1) + (Uitho—i — Uppitoe—iv1) S (Ul — 13 )
foralli =1, ..., k. Our result follows by summing up the above k inequalities.

(b) Assume that u; >uy,_;1; for all 1<i<k. For every i, set v; = up;_;+1. Then our
result follows by applying (a) to the vector v = (v, v2, ..., v0¢). O

Lemma 3. Consider the following k x k matrices:

) ' :

0 :

A= |, :
2 0

1 1

0 0 2|
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and
2 1 0 0]
1 2 1
0 1 "
B=| :
2 1 0
: . 2
0 - - 0 1 1

(@) If t<2(1 — cos ), then P4(t) = det(A4 — t1)>0.
(b) If t<2(1 — cos 5%y), then Pp(t) = det(B —tI)>0.

Proof. (a) For every 1</<k, let 0, = (2/2_,(1)” and
sin 0,
sin 20,
v = .
sin k0,

Routine calculation shows that Av; = 2(1 4 cos 0;)v; for 1 </<k. Therefore {2(1 +
cos 0)|1 <I<k} is the set of all real roots of the characteristic polynomial P,(t).
Note that (—7) is the highest order term of P4(¢). This implies that lim,_, _ ., P(¢) =
0. Since 2(1 — cos 57) is the smallest real root of P4(t), we observe that P,(¢)>0 for
all 1<2(1 — cos 57).

(b) The proof of (b) is the same as that of (a) where value of 6; is replaced

2ln
by 7. U

Lemma 4. (a) Consider the following system of inequalities:

Ai— A1 =z4t(A1+ - +A4), j=1,...,k—1,
{ J j+1 (4, _/) J (3.5)

A =2t(A1 + - + Axk).

Ift<%(l — €08 57), then system (3.5) has no solution (Ay, Ay, ..., Ax) with A1 <0.
(b) Consider the following system of inequalities:

Ai— A1 =z4t(A1+ - +A4), j=1,...k—1,
{ J j+1 (4 _/) J (3.6)

Ak>4l(A1 + .- —|—Ak).

If t<3(1 — cos 5), then the system (3.6) has no solution (A1, A, ..., A) with A; <0.
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Proof. (a) Let f1(t) =2 — 4¢ and ¢,(¢) = 4t. For every 1</<k — 1, put
Jina(t) = (1 = 40)fi(1) — gu(1) (3.7)
and
gi+1(2) = 41fi(t) + 9i(2). (3.8)
Clearly (3.7)—(3.8) imply
g1 () — gi(t) = 41/i(2)
=/i(t) — g:(t) = fr1(0).

Hence we have f;(¢) = g;1(¢) + f1.1(¢) for 1<I<k — 1. Moreover for 2</<k — 1,
we obtain

Jina(t) = (2 = 40) fi(1) = (fi(1) + 9:(1))
=2 =4 /i(t) = fi1(0).

Note that f;(¢) = 2 — 41, f>(1) = (1 —42)fi (1) — g1 () = (2 — 41)* — 2. Therefore we
observe

fi(t) = det(M; — 41I)),  1<i<k, (3.9)

where [ is the [ x [ identity matrix and M, is the / x / matrix of the same form as that
in Lemma 3(a).

Assume that t<4(1 —cos %) and (A4, Aa, ..., Ax) satisfies the system of inequal-
ities (3.5). Since 1 <4(1 — cos 3;) for 1 </<k, Lemma 3(a) and (3.9) imply that f;(¢) >0
forall [ =1,2,... k.

For every 1<i<k — 1, we have, by (3.5),

Aj—i — Ap—ip124t(A1 + -+ + Ak—i).
For 1<j<k, we claim that
Ji(@) Ak—jr = g; () (A1 + -+ + Aiy). (3.10)

Clearly (3.10) holds for j = 1. Assume it also holds for some i with 1<i<k — 1.
Since fi(¢) >0, we get

Si(t) Ap—i = fi(t)(Ak—i — Ak—iz1) + fi(t) Ap—i1 = (d2fi(t) + 9i(2)) (A1 + - + Aik—i)

=gi1(t) (A1 + - + Ag—i1) + (42£i(1) + 9i(2)) Ak
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The above inequality implies that (3.10) also holds for j = i + 1. Hence (3.10) is true
for 1<j<k. Plugging j = k into (3.10) gives fi(¢)4;>0. Since fi(¢) >0, we observe
that 4;>0. This completes the proof of (a).

(b) The proof of (b) follows word by word that of (a) while replacing fi(¢) by
1-4: O
Proof of Theorem 3. By Theorems 1 and 2, it suffices to show that if o <4, then there
is no positive non-constant function f satisfying the non-linear equation (1.5) and

such that o = éﬁ;{/)) We argue by contradiction. Suppose that o <4 = 1(1 — cos Z)

and there exists a positive non-constant unit function f satisfying the non-linear

equation (1.5) and such that o = ‘i(/(ff)) By Remark 1, we can assume further that

S = (X1,X3, <oy Xp—1, Xpy .-, Xa, X2), Where 0 <x; <x, < -+ <X, and x| <Xx,. Moreover
the function f satisfies the equations:

2x; — (x4 Xy = 20, log nx?,  1<i<n,

where xE” and xl@ are the two nearest neighbors of x;.

Recall that ¢ is the shift operator and ¢/ = o(¢/~!) for j=2. Write n = 4k or
n=4k+2. Forj=1,...,k, we have

Gj(f) = ()ng, ey X2, X7, ...,xnfzjfl,xnfzjjq, ey Xn—1y Xn, ...,X2j+2)
and
07 (f) = (%2415 oevy Xnm1s Xy «evs X225 Xn—2jy «vvs X2, X1y ey X2j—1).
By Lemmas 1 and 2(a), we get
2 2 2 2
(X2 = X540 + Xp0jm1 — Xp0j41)
2 2 2 2 2 2
220((xy +xg 4 Xy F XX X )
2 2 2 2 2 2
= (g1 FXgies o H X X Xy X))
Similarly Lemmas 1 and 2(b) imply that

2 P 2 2
(X1 = X501 + X 0) — X, 0j40)

>20[(x3 + 3 + - +x§,_1 X5+ +xi_2/)

2 2 2 2 2 2
— (g F Xyt X X g T X o X))
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Note thatn —2j — 122+ 1 and n — 2j=2j + 2 for 1 <j<k. Summing up the above
two inequalities gives

2 2 2 2 2 2 2 2
(X1 X5 = Xy — X5140) + (X_gjo1 + Xio) — Xigjp1 — Xy—ajs2)
2, .2 2 2 2 2
Zdof(x) + x5+ o+ x5) — (X, 000 T X050+ T X))
_ 2 2 2 2 . _
Let A; = x3;_| + X3; — X _s;yy — Xiy_oin for 1<i<k. If n = 4k, then we have

Aj— Ajp1 Z=40(A1 + Ay + - +Aj), j=1,... k-1,
A =20(A, + Ay + -+ + Ayg).

If n = 4k 4 2, then we observe that

A_/'—Aj+1>4OC(A1+A2+"-JrAj), j=1,..., k-1,
Ak>4OC(A1 + Ay + - +Ak).

Note that o<i(l—cos2) and Ay =x}+x}3—x) | —xi<x]—x2<0. By

Lemma 4, we get a contradiction. This completes the proof. [
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