WWW.MATHEMATICSWEB.ORG

On the log-Sobolev constant for the simple random walk on the n-cycle: the even cases

Guan-Yu Chen and Yuan-Chung Sheu*
Department of Applied Mathematics, National Chiao-Tung University, Hsinchu, Taiwan

Received 27 June 2002; revised 25 November 2002; accepted 11 December 2002
Communicated by L. Gross

Abstract

Consider the simple random walk on the n-cycle \mathbb{Z}_{n}. For this example, Diaconis and Saloff-Coste (Ann. Appl. Probab. 6 (1996) 695) have shown that the log-Sobolev constant α is of the same order as the spectral gap λ. However the exact value of α is not known for $n>4$. (For $n=2$, it is a well known result of Gross (Amer. J. Math. 97 (1975) 1061) that α is $\frac{1}{2}$. For $n=3$, Diaconis and SaloffCoste (Ann. Appl. Probab. 6 (1996) 695) showed that $\alpha=\frac{1}{2 \log 2}<\frac{\lambda}{2}=0.75$. For $n=4$, the fact that $\alpha=\frac{1}{2}$ follows from $n=2$ by tensorization.) Based on an idea that goes back to Rothaus (J. Funct. Anal. 39 (1980) 42; $42(1981) 110$), we prove that if $n \geqslant 4$ is even, then the log-Sobolev constant and the spectral gap satisfy $\alpha=\frac{\lambda}{2}$. This implies that $\alpha=\frac{1}{2}\left(1-\cos \frac{2 \pi}{n}\right)$ when n is even and $n \geqslant 4$.

(C) 2003 Elsevier Inc. All rights reserved.

MSC: Primary 60J60; 60J27; 60F05
Keywords: Random walk; n-cycle; Spectral gap; log-Sobolev constant; Mixing time

1. Introduction

Consider a finite state space \mathscr{S} equipped with an irreducible Markov kernel $K(x, y)$, which is reversible with respect to a probability measure π on \mathscr{S} (i.e., $\pi(x) K(x, y)=\pi(y) K(y, x)$ for all $x, y \in \mathscr{S})$. Define an inner product on complexvalued functions on \mathscr{S} by $\langle f, g\rangle=\sum_{s \in \mathscr{S}} f(s) \overline{g(s)} \pi(s)$. The Dirichlet form associated with (K, π) is then given by the formula

$$
\mathscr{E}(f, g)=\mathscr{R}\langle(I-K) f, g\rangle,
$$

[^0]where I is the identity matrix, f and g are two complex-valued functions, and $\mathscr{R} z$ is the real part of a complex number z. Set
$$
E_{\pi} f=\sum_{s \in \mathscr{H}} f(s) \pi(s)
$$
and
$$
\operatorname{Var}_{\pi}(f)=\left\|f-E_{\pi} f\right\|_{2}^{2}
$$

Here $\|\cdot\|_{2}$ is the usual l^{2}-norm with respect to the measure π. The spectral gap λ of (K, π) is defined by

$$
\begin{equation*}
\lambda=\min \left\{\frac{\mathscr{E}(f, f)}{\operatorname{Var}_{\pi}(f)} ; \operatorname{Var}_{\pi}(f) \neq 0\right\} \tag{1.1}
\end{equation*}
$$

Since (K, π) is reversible, it is easy to show that the spectral gap λ is the smallest nonzero eigenvalue of $I-K$.

For every function f on \mathscr{S}, consider the entropy-like quantity

$$
\begin{equation*}
\mathscr{L}(f)=\sum_{s \in \mathscr{\mathscr { G }}}|f(s)|^{2}\left(\log \frac{|f(s)|^{2}}{\|f\|_{2}^{2}}\right) \pi(s) . \tag{1.2}
\end{equation*}
$$

(Clearly we have $\mathscr{L}(f) \geqslant 0$ and $\mathscr{L}(f)=0$ only if f is a constant function.) A logSobolev inequality is an inequality of the type

$$
\begin{equation*}
\mathscr{L}(f) \leqslant C \mathscr{E}(f, f) \tag{1.3}
\end{equation*}
$$

holding for all functions f. We say that α is the log-Sobolev constant of K if $\frac{1}{\alpha}$ is the smallest constant C such that inequality (1.3) holds. In other words,

$$
\begin{equation*}
\alpha=\inf \left\{\frac{\mathscr{E}(f, f)}{\mathscr{L}(f)} ; \mathscr{L}(f) \neq 0\right\} \tag{1.4}
\end{equation*}
$$

(cf. (1.1)). Notice that $\mathscr{L}(f)=\mathscr{L}(|f|)$ and

$$
\begin{aligned}
\mathscr{E}(f, f) & =\|f\|_{2}^{2}-\mathscr{R}(\langle K f, f\rangle) \\
& =\frac{1}{2} \sum_{x, y}\left(|f(x)|^{2}-2 \mathscr{R}(\overline{f(x)} f(y))+|f(y)|^{2}\right) K(x, y) \pi(x) \\
& =\frac{1}{2} \sum_{x, y}|f(x)-f(y)|^{2} K(x, y) \pi(x) \\
& \geqslant \frac{1}{2} \sum_{x, y}| | f(x)|-| f(y) \|^{2} K(x, y) \pi(x) \\
& =\mathscr{E}(|f|,|f|) .
\end{aligned}
$$

Hence in the definition of the log-Sobolev constant α one can restrict f to be real non-negative function. The following well-known result compares the log-Sobolev constant to the spectral gap. It is a special case of a result proved first by Simon and later independently by Rothaus by a different argument (see a survey paper of Gross [4] or [2]).

Theorem 1. For any K the log-Sobolev constant α and the spectral gap λ satisfy $2 \alpha \leqslant \lambda$.
The following theorem is a translation of a previous result of Rothaus [6,7]. For a simple proof in our setting, see [8, Theorem 2.2.3].

Theorem 2. Let K be irreducible and π be its stationary distribution. Then either $2 \alpha=\lambda$ or there exists a positive non-constant function f which is a solution of

$$
\begin{equation*}
2 f \log f-2 f \log \|f\|_{2}-\frac{1}{\alpha}(I-K) f=0 \tag{1.5}
\end{equation*}
$$

and such that $\alpha=\mathscr{E}(f, f) / \mathscr{L}(f)$.
Inequalities of Poincaré, Cheeger, Sobolev, Nash and log-Sobolev, are advanced techniques for bounded mixing times of finite irreducible reversible Markov chains. However, computing the log-Sobolev constant α exactly is difficult and it has been done only for a handful of examples. Diaconis and Saloff-Coste [2] gave the exact value of the log-Sobolev constant of the chain on a finite space with all rows of K equal to π. (This includes all chains on a two-point space.) We refer to [1,2] for more examples.

In this paper we compute the exact value of the log-Sobolev constant for the simple random walk on the n-cycle. (The exact value of the log-Sobolev constant is well-known for $n \leqslant 4$ (see [2,3]). In Section 3 we prove that if n is even and $n \geqslant 4$, then the \log-Sobolev constant α and the spectral gap λ satisfy $2 \alpha=\lambda$ (see Theorem 3 below). This implies that $\alpha=\frac{1}{2}\left(1-\cos \frac{2 \pi}{n}\right)$. Our main result (Theorem 3) follows from Theorems 1 and 2 by showing that if $2 \alpha<\lambda$, then there is no positive nonconstant function f satisfying (1.5) and such that $\alpha=\frac{\mathscr{E}(f, f)}{\mathscr{L}(f)}$ (this approach was also used earlier in a different context by Mueller and Weissler [5]).

2. The log-Sobolev constant for n-cycle

Consider a simple random walk on the n-cycle \mathbb{Z}_{n} and write $\mathbb{Z}_{n}=\{1,2, \ldots, n\}$. Clearly the corresponding Markov kernel K is given by $K(x, x \pm 1)=\frac{1}{2}$ and the uniform distribution on \mathbb{Z}_{n} is its unique stationary distribution. (For $n=2$, we have $K(1,2)=K(1,1)=K(2,1)=K(2,2)=\frac{1}{2}$. It is easy to check that the spectral gap of K is 1 . Also it follows from a result of Gross [3] that $\alpha=\frac{1}{2}$. Therefore we obtain that $\alpha=\frac{1}{2}=\frac{\lambda}{2}$ in the case $n=2$.) Throughout this paper we assume that $n \geqslant 3$.

For every $l=1,2, \ldots, n-1$, let

$$
\theta_{l}=\frac{2 \pi l}{n}
$$

and

$$
u_{l}=\left(\begin{array}{c}
\sin \theta_{l} \\
\sin 2 \theta_{l} \\
\vdots \\
\sin n \theta_{l}
\end{array}\right)
$$

Then $u_{l} \neq 0$ and direct computations imply that $K u_{l}=\left(\cos \theta_{l}\right) u_{l}$ for $l=1,2, \ldots$, $n-1$. Therefore the spectrum of $I-K$ is given by the set

$$
\sigma(I-K)=\left\{\left.1-\cos \frac{2 \pi l}{n} \right\rvert\, l=1,2, \ldots, n\right\}
$$

Since K is reversible, we observe that the spectral gap λ of K is $1-\cos \frac{2 \pi}{n}$.
Denote by α the log-Sobolev constant for the simple random walk on the n-cycle. Note that the log-Sobolev constant for the simple random walk on \mathbb{Z}_{3} is $\frac{1}{2 \log 2}$ (see, e.g., [2]). Thus in this case we have $\alpha=\frac{1}{2 \log 2}<\frac{\lambda}{2}=\frac{1}{2}\left(1-\cos \frac{2 \pi}{3}\right)=0.75$. For $n=4$, we obtain $\alpha=\frac{1}{2}$ from $n=2$ by tensorization. For $n \geqslant 4$, Diaconis and SaloffCoste [2] showed that α is of the same order as λ. In particular they proved that

$$
\frac{8}{25} \frac{\pi^{2}}{n^{2}} \leqslant \alpha \leqslant \frac{2 \pi^{2}}{n^{2}}
$$

By refining their arguments, we obtain

$$
\frac{2}{5} \frac{\pi^{2}}{n^{2}} \leqslant \alpha \leqslant \frac{\pi^{2}}{n^{2}}
$$

The main result of this paper is as follows.
Theorem 3. Assume that n is even. Then the log-Sobolev constant for the simple random walk on the n-cycle is just one half of its spectral gap: $\alpha=\frac{2}{2}$ (we will prove Theorem 3 in Section 3).

To compute the exact value of α, we write functions f on \mathbb{Z}_{n} as vectors $(f(1), f(2), \ldots, f(n))$ in R^{n}. For every function $f=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, we have

$$
\begin{equation*}
\mathscr{L}(f)=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} \log \frac{x_{i}^{2}}{\|f\|_{2}^{2}} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{E}(f, f)=\frac{1}{2 n}\left(\left|x_{1}-x_{2}\right|^{2}+\left|x_{2}-x_{3}\right|^{2}+\cdots+\left|x_{n-1}-x_{n}\right|^{2}+\left|x_{n}-x_{1}\right|^{2}\right) \tag{2.2}
\end{equation*}
$$

Clearly function \mathscr{L} is invariant if we permute the components of f, while function \mathscr{E} is not. For a fixed function f, we investigate the extreme value of \mathscr{E} over all permutations on the components of f.

Consider the function

$$
\begin{equation*}
F(x)=\left|x_{1}-x_{2}\right|^{2}+\left|x_{2}-x_{3}\right|^{2}+\cdots+\left|x_{n-1}-x_{n}\right|^{2}+\left|x_{n}-x_{1}\right|^{2} \tag{2.3}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n}$. Moreover to every $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $0 \leqslant x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{n}$, there corresponds an element $\tilde{x} \in R^{n}$ given by the formula

$$
\tilde{x}= \begin{cases}\left(x_{1}, x_{3}, x_{5}, \ldots, x_{2 k+1}, x_{2 k}, \ldots, x_{4}, x_{2}\right) & \text { if } n=2 k+1 \tag{2.4}\\ \left(x_{1}, x_{3}, x_{5}, \ldots, x_{2 k-1}, x_{2 k}, \ldots, x_{4}, x_{2}\right) & \text { if } n=2 k\end{cases}
$$

Denote by S_{n} the set of all permutations on $\{1,2, \ldots, n\}$ and write $\theta x=$ $\left(x_{\theta(1)}, x_{\theta(2)}, \ldots, x_{\theta(n)}\right)$ for $\theta \in S_{n}$ and $x \in R^{n}$.

Proposition 1. For every $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $0 \leqslant x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{n}$, we have $F(\theta x) \geqslant F(\tilde{x})$ for all $\theta \in S_{n}$.

Proof. We prove this by induction on n. Clearly there is nothing to prove in the case $n=2$. Assume that it is also true for $n=k$. We consider the case $n=k+1$ and fix $x=\left(x_{1}, x_{2}, \ldots, x_{k+1}\right)$ where $0 \leqslant x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{k+1}$.

Step 1: Set $y=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ and consider the corresponding \tilde{y} given by (2.4). For every $i=1,2, \ldots, k-2$, set

$$
\tilde{y}_{i, i+2}= \begin{cases}\left(x_{1}, x_{3}, \ldots, x_{i}, x_{k+1}, x_{i+2}, \ldots, x_{4}, x_{2}\right) & \text { if } i \text { is odd } \tag{2.5}\\ \left(x_{1}, x_{3}, \ldots, x_{i+2}, x_{k+1}, x_{i}, \ldots, x_{4}, x_{2}\right) & \text { if } i \text { is even }\end{cases}
$$

Thus $\tilde{y}_{i, i+2}$ is obtained by inserting x_{k+1} in \tilde{y} between x_{i} and x_{i+2}. Also set $\tilde{y}_{1,2}=\left(x_{1}, x_{3}, \ldots, x_{4}, x_{2}, x_{k+1}\right)$ and

$$
\tilde{y}_{k-1, k}= \begin{cases}\left(x_{1}, x_{3}, \ldots, x_{k}, x_{k+1}, x_{k-1}, \ldots, x_{4}, x_{2}\right) & \text { if } k \text { is odd } \tag{2.6}\\ \left(x_{1}, x_{3}, \ldots, x_{k-1}, x_{k+1}, x_{k}, \ldots, x_{4}, x_{2}\right) & \text { if } k \text { is even }\end{cases}
$$

We claim that

$$
\begin{equation*}
F\left(\tilde{y}_{1,2}\right) \geqslant F\left(\tilde{y}_{k-1, k}\right) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
F\left(\tilde{y}_{i, i+2}\right) \geqslant F\left(\tilde{y}_{k-1, k}\right) \quad \text { for all } i=1,2, \ldots, k-2 \tag{2.8}
\end{equation*}
$$

Note that for every $1 \leqslant i \leqslant k-2$, we have

$$
\begin{equation*}
F\left(\tilde{y}_{i, i+2}\right)=F(\tilde{y})+\left(x_{i}-x_{k+1}\right)^{2}+\left(x_{k+1}-x_{i+2}\right)^{2}-\left(x_{i}-x_{i+2}\right)^{2} . \tag{2.9}
\end{equation*}
$$

Therefore for $1 \leqslant i \leqslant k-4$, we have

$$
\begin{align*}
F\left(\tilde{y}_{i, i+2}\right)-F\left(\tilde{y}_{i+2, i+4}\right)= & {\left[\left(x_{i}-x_{k+1}\right)^{2}+\left(x_{k+1}-x_{i+2}\right)^{2}-\left(x_{i}-x_{i+2}\right)^{2}\right] } \\
& -\left[\left(x_{i+2}-x_{k+1}\right)^{2}+\left(x_{k+1}-x_{i+4}\right)^{2}-\left(x_{i+2}-x_{i+4}\right)^{2}\right] \\
= & 2\left(x_{k+1}-x_{i+2}\right)\left(x_{i+4}-x_{i}\right) \geqslant 0 . \tag{2.10}
\end{align*}
$$

Also we have

$$
\begin{align*}
F\left(\tilde{y}_{k-2, k}\right)-F\left(\tilde{y}_{k-1, k}\right)= & {\left[\left(x_{k+1}-x_{k-2}\right)^{2}+\left(x_{k+1}-x_{k}\right)^{2}-\left(x_{k-2}-x_{k}\right)^{2}\right] } \\
& -\left[\left(x_{k+1}-x_{k-1}\right)^{2}+\left(x_{k+1}-x_{k}\right)^{2}-\left(x_{k}-x_{k-1}\right)^{2}\right] \\
= & 2\left(x_{k+1}-x_{k}\right)\left(x_{k-1}-x_{k-2}\right) \geqslant 0 \tag{2.11}
\end{align*}
$$

and

$$
\begin{equation*}
F\left(\tilde{y}_{k-3, k-1}\right)-F\left(\tilde{y}_{k-1, k}\right)=2\left(x_{k+1}-x_{k-1}\right)\left(x_{k}-x_{k-3}\right) \geqslant 0 . \tag{2.12}
\end{equation*}
$$

Combining (2.10)-(2.12) gives (2.8). To prove (2.7), it suffices to show that $F\left(\tilde{y}_{1,2}\right) \geqslant F\left(\tilde{y}_{1,3}\right)$. This follows easily from the fact that

$$
\begin{aligned}
F\left(\tilde{y}_{1,2}\right)-F\left(\tilde{y}_{1,3}\right)= & {\left[\left(x_{1}-x_{k+1}\right)^{2}+\left(x_{k+1}-x_{2}\right)^{2}-\left(x_{1}-x_{2}\right)^{2}\right] } \\
& -\left[\left(x_{1}-x_{k+1}\right)^{2}+\left(x_{k+1}-x_{3}\right)^{2}-\left(x_{1}-x_{3}\right)^{2}\right] \\
= & 2\left(x_{k+1}-x_{1}\right)\left(x_{3}-x_{2}\right) \geqslant 0 .
\end{aligned}
$$

Step 2: We prove that for every $\theta \in S_{n+1}$, we have

$$
\begin{equation*}
F(\theta x) \geqslant F\left(\tilde{y}_{k-1, k}\right)=F(\tilde{x}) . \tag{2.13}
\end{equation*}
$$

Fix $\theta \in S_{n+1}$ and set $c=\theta x$. Write $c=\left(\ldots, x_{i}, x_{k+1}, x_{j}, \ldots\right)$ for some $i<j$ and let $z=\left(\ldots, x_{i}, x_{j}, \ldots\right) \in \mathbf{R}^{n}$ be obtained by removing the component x_{k+1} from the vector c. If $1 \leqslant j \leqslant k-2$, we have

$$
\begin{align*}
F(c)-F\left(\tilde{y}_{j, j+2}\right)= & {\left[F(z)+\left(x_{i}-x_{k+1}\right)^{2}+\left(x_{j}-x_{k+1}\right)^{2}-\left(x_{i}-x_{j}\right)^{2}\right] } \\
& -\left[F(\tilde{y})+\left(x_{j}-x_{k+1}\right)^{2}+\left(x_{k+1}-x_{j+2}\right)^{2}-\left(x_{j}-x_{j+2}\right)^{2}\right] \\
= & F(z)-F(\tilde{y})+2\left(x_{k+1}-x_{j}\right)\left(x_{j+2}-x_{i}\right) \geqslant 0 . \tag{2.14}
\end{align*}
$$

(In the last inequality, we use the assumption that $F(z) \geqslant F(\tilde{y})$.) If $j=k-1$, we have

$$
\begin{align*}
F(c)-F\left(\tilde{y}_{k-1, k}\right)= & {\left[F(z)+\left(x_{i}-x_{k+1}\right)^{2}+\left(x_{k-1}-x_{k+1}\right)^{2}-\left(x_{i}-x_{k-1}\right)^{2}\right] } \\
& -\left[F(\tilde{y})+\left(x_{k}-x_{k+1}\right)^{2}+\left(x_{k+1}-x_{k-1}\right)^{2}-\left(x_{k}-x_{k-1}\right)^{2}\right] \\
= & F(z)-F(\tilde{y})+2\left(x_{k}-x_{i}\right)\left(x_{k+1}-x_{k-1}\right) \geqslant 0 . \tag{2.15}
\end{align*}
$$

If $j=k$, we have

$$
\begin{align*}
F(c)-F\left(\tilde{y}_{k-1, k}\right)= & {\left[F(z)+\left(x_{k}-x_{k+1}\right)^{2}+\left(x_{i}-x_{k+1}\right)^{2}-\left(x_{i}-x_{k}\right)^{2}\right] } \\
& -\left[F(\tilde{y})+\left(x_{k}-x_{k+1}\right)^{2}+\left(x_{k+1}-x_{k-1}\right)^{2}-\left(x_{k}-x_{k-1}\right)^{2}\right] \\
= & F(z)-F(\tilde{y})+2\left(x_{k-1}-x_{i}\right)\left(x_{k+1}-x_{k}\right) \geqslant 0 . \tag{2.16}
\end{align*}
$$

Therefore (2.13) follows (2.14), (2.15), (2.16) and (2.8).
Remark 1. Assume that the minimum α in (1.4) is attained at some positive nonconstant function f. By the definition of the log-Sobolev constant and Proposition 1, there exists a minimizer of the form $f=\left(x_{1}, x_{3}, \ldots, x_{4}, x_{2}\right)$ while $0 \leqslant x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{n}$. Moreover it is not hard to show that any minimizer of $\frac{\mathscr{E}(g, g)}{\mathscr{L}(g)}$ must satisfy the nonlinear equation (1.5).

3. Proof of the main result

Throughout this section we assume that n is even and $n \geqslant 4$. We will argue by contradiction to verify that if $\alpha<\frac{\lambda}{2}$, there is no positive non-constant function f satisfying the non-linear equation (1.5) and such that $\alpha=\frac{\mathscr{E}(f, f)}{\mathscr{L}(f)}$. Then our main result (Theorem 3) follows from Theorems 1 and 2. Before proving the main result, we derive a series of lemmas by some combinatorial arguments.

Define the shift operator σ by

$$
\sigma\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{n}, x_{1}, x_{2}, \ldots, x_{n-1}\right)
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in R^{n}$. Set $\sigma^{j}(x)=\sigma\left(\sigma^{j-1}(x)\right)$ for $j \geqslant 2$ and write σ^{-j} for the inverse of σ^{j}.

Lemma 1. Consider a vector of the form

$$
u=\left(x_{1}, x_{3}, \ldots, x_{2 k-1}, x_{2 k}, \ldots, x_{4}, x_{2}\right)
$$

where $x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{2 k}$ and write $\sigma^{j}(u)=\left(\left(\sigma^{j}(u)\right)_{1},\left(\sigma^{j}(u)\right)_{2}, \ldots,\left(\sigma^{j}(u)\right)_{2 k}\right)$. Then for every $1 \leqslant j \leqslant k-1$, we have

$$
\begin{equation*}
\left(\sigma^{j}(u)\right)_{i} \leqslant\left(\sigma^{j}(u)\right)_{2 k-i+1} \quad \text { for } i=1, \ldots, k \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\sigma^{-j}(u)\right)_{i} \geqslant\left(\sigma^{-j}(u)\right)_{2 k-i+1} \quad \text { for } i=1, \ldots, k \tag{3.2}
\end{equation*}
$$

Proof. Assume $1 \leqslant j \leqslant k-1$. Then we have

$$
\left(\sigma^{j}(u)\right)_{i}= \begin{cases}x_{2(j-i+1)} & \text { if } 1 \leqslant i \leqslant j \\ x_{2(i-j)-1} & \text { if } j+1 \leqslant i \leqslant j+k \\ x_{2 k-2[i-(j+k+1)]} & \text { if } j+k+1 \leqslant i \leqslant 2 k\end{cases}
$$

(Case $1 \leqslant i \leqslant j \wedge(k-j)$.) Since $i \leqslant(k-j)$ we get $2 k-i+1 \geqslant k+j+1$ and $\left(\sigma^{j}(u)\right)_{2 k-i+1}=x_{2(i+j)}$. Therefore we observe

$$
\left(\sigma^{j}(u)\right)_{i}=x_{2(j-i+1)} \leqslant x_{2(i+j)}=\left(\sigma^{j}(u)\right)_{2 k-i+1}
$$

(Case $j \vee(k-j)<i \leqslant k$.) Note that $(k-j)<i \leqslant k$ implies $k+1 \leqslant(2 k-i+1) \leqslant$ $(k+j)$. We have

$$
\left(\sigma^{j}(u)\right)_{i}=x_{2(i-j)-1}
$$

and

$$
\left(\sigma^{j}(u)\right)_{2 k-i+1}=x_{2(2 k-i-j)+1} .
$$

Since $2(2 k-i-j)+1 \geqslant 2(i-j)-1$, we get $\left(\sigma^{j}(u)\right)_{i} \leqslant\left(\sigma^{j}(u)\right)_{2 k-i+1}$.
(Case $j \wedge(k-j)<i \leqslant j \vee(k-j)$.) It is obvious that we only need to consider the situation that $j \neq k-j$. We first consider the case that $j<k-j$. Then we have $j<i \leqslant(k-j)$ and $2 k-i+1 \geqslant j-k+2 k+1=k+j+1$. Therefore

$$
\left(\sigma^{j}(u)\right)_{i}=x_{2(i-j)-1} \leqslant x_{2(i+j)}=\left(\sigma^{j}(u)\right)_{2 k-i+1} .
$$

On the other hand, if $k-j<j$, then we have $k-j<i \leqslant j$. This implies that

$$
\left(\sigma^{j}(u)\right)_{i}=x_{2(j-i+1)} \leqslant x_{2(2 k-i-j)+1}=\left(\sigma^{j}(u)\right)_{2 k-i+1}
$$

This completes the proof of (3.1). The proof of (3.2) can be done by similar arguments. Here we omit it.

Lemma 2. Let $u=\left(u_{1}, u_{2}, \ldots, u_{2 k-1}, u_{2 k}\right)$ be a vector with $u_{i}>0$ for all $1 \leqslant i \leqslant 2 k$. Assume further that there exist two positive constants, c and d,
such that

$$
\begin{equation*}
2 u_{i}-\left(u_{i-1}+u_{i+1}\right)=c u_{i} \log d u_{i}^{2} \tag{3.3}
\end{equation*}
$$

for all $i=1, \ldots, 2 k$ (here we write $u_{0}=u_{2 k}$ and $u_{2 k+1}=u_{1}$).
(a) If $u_{i} \leqslant u_{2 k-i+1}$ for all $1 \leqslant i \leqslant k$, then we have

$$
u_{1}^{2}-u_{2 k}^{2}+u_{k}^{2}-u_{k+1}^{2} \geqslant c\left[\left(u_{1}^{2}+\cdots+u_{k}^{2}\right)-\left(u_{k+1}^{2}+\cdots+u_{2 k}^{2}\right)\right] .
$$

(b) If $u_{i} \geqslant u_{2 k-i+1}$ for all $1 \leqslant i \leqslant k$, then we have

$$
u_{2 k}^{2}-u_{1}^{2}+u_{k+1}^{2}-u_{k}^{2} \geqslant c\left[\left(u_{k+1}^{2}+\cdots+u_{2 k}^{2}\right)-\left(u_{1}^{2}+\cdots+u_{k}^{2}\right)\right] .
$$

Proof. (a) Assume that $u_{i} \leqslant u_{2 k-i+1}$ for all $1 \leqslant i \leqslant k$. For every $1 \leqslant i \leqslant k$, rewrite Eq. (3.3) as

$$
2-\frac{u_{i-1}+u_{i+1}}{u_{i}}=c \log d u_{i}^{2} .
$$

Then we observe that

$$
\begin{align*}
\frac{u_{2 k-i}+u_{2 k-i+2}}{u_{2 k-i+1}}-\frac{u_{i-1}+u_{i+1}}{u_{i}} & =\frac{u_{i}\left(u_{2 k-i}+u_{2 k-i+2}\right)-u_{2 k-i+1}\left(u_{i-1}+u_{i+1}\right)}{u_{i} u_{2 k-i+1}} \\
& =c\left(2 \log \frac{u_{i}}{u_{2 k-i+1}}\right) \geqslant c\left(\frac{u_{i}}{u_{2 k-i+1}}-\frac{u_{2 k-i+1}}{u_{i}}\right) . \tag{3.4}
\end{align*}
$$

(In the last inequality we use the fact that $2 \log t \geqslant t-\frac{1}{t}$ for every $0<t \leqslant 1$.) Inequality (3.4) implies that

$$
\left(u_{i} u_{2 k-i+2}-u_{i-1} u_{2 k-i+1}\right)+\left(u_{i} u_{2 k-i}-u_{i+1} u_{2 k-i+1}\right) \geqslant c\left(u_{i}^{2}-u_{2 k-i+1}^{2}\right)
$$

for all $i=1, \ldots, k$. Our result follows by summing up the above k inequalities.
(b) Assume that $u_{i} \geqslant u_{2 k-i+1}$ for all $1 \leqslant i \leqslant k$. For every i, set $v_{i}=u_{2 k-i+1}$. Then our result follows by applying (a) to the vector $v=\left(v_{1}, v_{2}, \ldots, v_{2 k}\right)$.

Lemma 3. Consider the following $k \times k$ matrices:

$$
A=\left[\begin{array}{cccccc}
2 & 1 & 0 & \cdots & \cdots & 0 \\
1 & 2 & 1 & \ddots & & \vdots \\
0 & 1 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 2 & 1 & 0 \\
\vdots & & \ddots & 1 & 2 & 1 \\
0 & \cdots & \cdots & 0 & 2 & 2
\end{array}\right]
$$

and

$$
B=\left[\begin{array}{cccccc}
2 & 1 & 0 & \cdots & \cdots & 0 \\
1 & 2 & 1 & \ddots & & \vdots \\
0 & 1 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 2 & 1 & 0 \\
\vdots & & \ddots & 1 & 2 & 1 \\
0 & \cdots & \cdots & 0 & 1 & 1
\end{array}\right]
$$

(a) If $t<2\left(1-\cos \frac{\pi}{2 k}\right)$, then $P_{A}(t)=\operatorname{det}(A-t I)>0$.
(b) If $t<2\left(1-\cos \frac{\pi}{2 k+1}\right)$, then $P_{B}(t)=\operatorname{det}(B-t I)>0$.

Proof. (a) For every $1 \leqslant l \leqslant k$, let $\theta_{l}=\frac{(2 l-1) \pi}{2 k}$ and

$$
v_{l}=\left[\begin{array}{c}
\sin \theta_{l} \\
\sin 2 \theta_{l} \\
\vdots \\
\sin k \theta_{l}
\end{array}\right]
$$

Routine calculation shows that $A v_{l}=2\left(1+\cos \theta_{l}\right) v_{l}$ for $1 \leqslant l \leqslant k$. Therefore $\{2(1+$ $\left.\left.\cos \theta_{l}\right) \mid 1 \leqslant l \leqslant k\right\}$ is the set of all real roots of the characteristic polynomial $P_{A}(t)$. Note that $(-t)^{k}$ is the highest order term of $P_{A}(t)$. This implies that $\lim _{t \rightarrow-\infty} P_{A}(t)=$ ∞. Since $2\left(1-\cos \frac{\pi}{2 k}\right)$ is the smallest real root of $P_{A}(t)$, we observe that $P_{A}(t)>0$ for all $t<2\left(1-\cos \frac{\pi}{2 k}\right)$.
(b) The proof of (b) is the same as that of (a) where value of θ_{l} is replaced by $\frac{2 l \pi}{2 k+1}$.

Lemma 4. (a) Consider the following system of inequalities:

$$
\left\{\begin{array}{l}
A_{j}-A_{j+1} \geqslant 4 t\left(A_{1}+\cdots+A_{j}\right), \quad j=1, \ldots, k-1 \tag{3.5}\\
A_{k} \geqslant 2 t\left(A_{1}+\cdots+A_{k}\right)
\end{array}\right.
$$

If $t<\frac{1}{2}\left(1-\cos \frac{\pi}{2 k}\right)$, then system (3.5) has no solution $\left(A_{1}, A_{2}, \ldots, A_{k}\right)$ with $A_{1}<0$.
(b) Consider the following system of inequalities:

$$
\left\{\begin{array}{l}
A_{j}-A_{j+1} \geqslant 4 t\left(A_{1}+\cdots+A_{j}\right), \quad j=1, \ldots, k-1 \tag{3.6}\\
A_{k} \geqslant 4 t\left(A_{1}+\cdots+A_{k}\right)
\end{array}\right.
$$

If $t<\frac{1}{2}\left(1-\cos \frac{\pi}{2 k+1}\right)$, then the system (3.6) has no solution $\left(A_{1}, A_{2}, \ldots, A_{k}\right)$ with $A_{1}<0$.

Proof. (a) Let $f_{1}(t)=2-4 t$ and $g_{1}(t)=4 t$. For every $1 \leqslant l \leqslant k-1$, put

$$
\begin{equation*}
f_{l+1}(t)=(1-4 t) f_{l}(t)-g_{l}(t) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{l+1}(t)=4 t f_{l}(t)+g_{l}(t) . \tag{3.8}
\end{equation*}
$$

Clearly (3.7)-(3.8) imply

$$
\begin{aligned}
g_{l+1}(t)-g_{l}(t) & =4 t f_{l}(t) \\
& =f_{l}(t)-g_{l}(t)-f_{l+1}(t) .
\end{aligned}
$$

Hence we have $f_{l}(t)=g_{l+1}(t)+f_{l+1}(t)$ for $1 \leqslant l \leqslant k-1$. Moreover for $2 \leqslant l \leqslant k-1$, we obtain

$$
\begin{aligned}
f_{l+1}(t) & =(2-4 t) f_{l}(t)-\left(f_{l}(t)+g_{l}(t)\right) \\
& =(2-4 t) f_{l}(t)-f_{l-1}(t)
\end{aligned}
$$

Note that $f_{1}(t)=2-4 t, f_{2}(t)=(1-4 t) f_{1}(t)-g_{1}(t)=(2-4 t)^{2}-2$. Therefore we observe

$$
\begin{equation*}
f_{l}(t)=\operatorname{det}\left(M_{l}-4 t I_{l}\right), \quad 1 \leqslant l \leqslant k, \tag{3.9}
\end{equation*}
$$

where I_{l} is the $l \times l$ identity matrix and M_{l} is the $l \times l$ matrix of the same form as that in Lemma 3(a).

Assume that $t<\frac{1}{2}\left(1-\cos \frac{\pi}{2 k}\right)$ and $\left(A_{1}, A_{2}, \ldots, A_{k}\right)$ satisfies the system of inequalities (3.5). Since $t<\frac{1}{2}\left(1-\cos \frac{\pi}{2 l}\right)$ for $1 \leqslant l \leqslant k$, Lemma 3(a) and (3.9) imply that $f_{l}(t)>0$ for all $l=1,2, \ldots, k$.

For every $1 \leqslant i \leqslant k-1$, we have, by (3.5),

$$
A_{k-i}-A_{k-i+1} \geqslant 4 t\left(A_{1}+\cdots+A_{k-i}\right) .
$$

For $1 \leqslant j \leqslant k$, we claim that

$$
\begin{equation*}
f_{j}(t) A_{k-j+1} \geqslant g_{j}(t)\left(A_{1}+\cdots+A_{k-j}\right) . \tag{3.10}
\end{equation*}
$$

Clearly (3.10) holds for $j=1$. Assume it also holds for some i with $1 \leqslant i \leqslant k-1$. Since $f_{i}(t)>0$, we get

$$
\begin{aligned}
f_{i}(t) A_{k-i} & =f_{i}(t)\left(A_{k-i}-A_{k-i+1}\right)+f_{i}(t) A_{k-i+1} \geqslant\left(4 t f_{i}(t)+g_{i}(t)\right)\left(A_{1}+\cdots+A_{k-i}\right) \\
& =g_{i+1}(t)\left(A_{1}+\cdots+A_{k-i-1}\right)+\left(4 t f_{i}(t)+g_{i}(t)\right) A_{k-i} .
\end{aligned}
$$

The above inequality implies that (3.10) also holds for $j=i+1$. Hence (3.10) is true for $1 \leqslant j \leqslant k$. Plugging $j=k$ into (3.10) gives $f_{k}(t) A_{1} \geqslant 0$. Since $f_{k}(t)>0$, we observe that $A_{1} \geqslant 0$. This completes the proof of (a).
(b) The proof of (b) follows word by word that of (a) while replacing $f_{1}(t)$ by $1-4 t$.

Proof of Theorem 3. By Theorems 1 and 2, it suffices to show that if $\alpha<\frac{\lambda}{2}$, then there is no positive non-constant function f satisfying the non-linear equation (1.5) and such that $\alpha=\frac{\mathscr{E}(f, f)}{\mathscr{L}(f)}$. We argue by contradiction. Suppose that $\alpha<\frac{\lambda}{2}=\frac{1}{2}\left(1-\cos \frac{2 \pi}{n}\right)$ and there exists a positive non-constant unit function f satisfying the non-linear equation (1.5) and such that $\alpha=\frac{\mathscr{E}(f, f)}{\mathscr{L}(f)}$. By Remark 1, we can assume further that $f=\left(x_{1}, x_{3}, \ldots, x_{n-1}, x_{n}, \ldots, x_{4}, x_{2}\right)$, where $0<x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{n}$ and $x_{1}<x_{n}$. Moreover the function f satisfies the equations:

$$
2 x_{i}-\left(x_{i}^{(1)}+x_{i}^{(2)}\right)=2 \alpha x_{i} \log n x_{i}^{2}, \quad 1 \leqslant i \leqslant n
$$

where $x_{i}^{(1)}$ and $x_{i}^{(2)}$ are the two nearest neighbors of x_{i}.
Recall that σ is the shift operator and $\sigma^{j}=\sigma\left(\sigma^{j-1}\right)$ for $j \geqslant 2$. Write $n=4 k$ or $n=4 k+2$. For $j=1, \ldots, k$, we have

$$
\sigma^{j}(f)=\left(x_{2 j}, \ldots, x_{2}, x_{1}, \ldots, x_{n-2 j-1}, x_{n-2 j+1}, \ldots, x_{n-1}, x_{n}, \ldots, x_{2 j+2}\right)
$$

and

$$
\sigma^{-j}(f)=\left(x_{2 j+1}, \ldots, x_{n-1}, x_{n}, \ldots, x_{n-2 j+2}, x_{n-2 j}, \ldots, x_{2}, x_{1}, \ldots, x_{2 j-1}\right)
$$

By Lemmas 1 and 2(a), we get

$$
\begin{aligned}
& \left(x_{2 j}^{2}-x_{2 j+2}^{2}+x_{n-2 j-1}^{2}-x_{n-2 j+1}^{2}\right) \\
& \quad \geqslant \\
& \quad 2 \alpha\left[\left(x_{2}^{2}+x_{4}^{2}+\cdots+x_{2 j}^{2}+x_{1}^{2}+x_{3}^{2}+\cdots+x_{n-2 j-1}^{2}\right)\right. \\
& \left.\quad-\left(x_{n-2 j+1}^{2}+x_{n-2 j+3}^{2}+\cdots+x_{n-1}^{2}+x_{2 j+2}^{2}+x_{2 j+4}^{2}+\cdots+x_{n}^{2}\right)\right]
\end{aligned}
$$

Similarly Lemmas 1 and 2(b) imply that

$$
\begin{aligned}
& \left(x_{2 j-1}^{2}-x_{2 j+1}^{2}+x_{n-2 j}^{2}-x_{n-2 j+2}^{2}\right) \\
& \quad \geqslant 2 \alpha\left[\left(x_{1}^{2}+x_{3}^{2}+\cdots+x_{2 j-1}^{2}+x_{2}^{2}+x_{4}^{2}+\cdots+x_{n-2 j}^{2}\right)\right. \\
& \left.\quad-\left(x_{2 j+1}^{2}+x_{2 j+3}^{2}+\cdots+x_{n-1}^{2}+x_{n-2 j+2}^{2}+x_{n-2 j+4}^{2}+\cdots+x_{n}^{2}\right)\right]
\end{aligned}
$$

Note that $n-2 j-1 \geqslant 2 j+1$ and $n-2 j \geqslant 2 j+2$ for $1 \leqslant j \leqslant k$. Summing up the above two inequalities gives

$$
\begin{aligned}
& \left(x_{2 j-1}^{2}+x_{2 j}^{2}-x_{2 j+1}^{2}-x_{2 j+2}^{2}\right)+\left(x_{n-2 j-1}^{2}+x_{n-2 j}^{2}-x_{n-2 j+1}^{2}-x_{n-2 j+2}^{2}\right) \\
& \quad \geqslant 4 \alpha\left[\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{2 j}^{2}\right)-\left(x_{n-2 j+1}^{2}+x_{n-2 j+2}^{2}+\cdots+x_{n}^{2}\right)\right] .
\end{aligned}
$$

Let $A_{i}=x_{2 i-1}^{2}+x_{2 i}^{2}-x_{n-2 i+1}^{2}-x_{n-2 i+2}^{2}$ for $1 \leqslant i \leqslant k$. If $n=4 k$, then we have

$$
\left\{\begin{array}{l}
A_{j}-A_{j+1} \geqslant 4 \alpha\left(A_{1}+A_{2}+\cdots+A_{j}\right), \quad j=1, \ldots, k-1, \\
A_{k} \geqslant 2 \alpha\left(A_{1}+A_{2}+\cdots+A_{k}\right) .
\end{array}\right.
$$

If $n=4 k+2$, then we observe that

$$
\left\{\begin{array}{l}
A_{j}-A_{j+1} \geqslant 4 \alpha\left(A_{1}+A_{2}+\cdots+A_{j}\right), \quad j=1, \ldots, k-1, \\
A_{k} \geqslant 4 \alpha\left(A_{1}+A_{2}+\cdots+A_{k}\right) .
\end{array}\right.
$$

Note that $\alpha<\frac{1}{2}\left(1-\cos \frac{2 \pi}{n}\right)$ and $A_{1}=x_{1}^{2}+x_{2}^{2}-x_{n-1}^{2}-x_{n}^{2} \leqslant x_{1}^{2}-x_{n}^{2}<0$. By Lemma 4, we get a contradiction. This completes the proof.

Acknowledgments

We thank Tzog-Yow Lee and Shuenn-Jyi Sheu for useful discussions. We also thank Professor Laurent Saloff-Coste for providing useful information and an anonymous referee for pointing out important references and comments. Partially supported by National Science Council Grant NSC 90-2115-M-009-015.

References

[1] D. Aldous, J.A. Fill, Reversible Markov chains and random walks on graphs, 2003, in preparation.
[2] P. Diaconis, L. Saloff-Coste, Logarithmic Sobolev inequalities for finite Markov chains, Ann. Appl. Probab. 6 (1996) 695-750.
[3] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975) 1061-1083.
[4] L. Gross, Logarithmic Sobolev inequalities and contractivity properties of semigroups, Lecture Notes in Mathematics, Vol. 1563, Springer, Berlin, 1993, pp. 54-88.
[5] C.E. Mueller, F. Weissler, Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere, J. Funct. Anal. 48 (1982) 252-283.
[6] O.S. Rothaus, Logarithmic Sobolev inequalities and the spectrum of Sturm-Liouville operators, J. Funct. Anal. 39 (1980) 42-56.
[7] O.S. Rothaus, Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators, J. Funct. Anal. 42 (1981) 110-120.
[8] L. Saloff-Coste, Lectures on finite Markov chains, Ecole d'Eté de Probabilités de Saint Flour XXVI1996, Lecture Notes in Mathematics, Vol. 1665, Springer, Berlin, 1997, pp. 301-413.

[^0]: *Corresponding author.
 E-mail address: sheu@math.nctu.edu.tw (Y.-C. Sheu).

