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Abstract

The problem of access control in a hierarchy is present in many application areas. Since computing resources have grown tre-

mendously, access control is more frequently required in areas such as computer networks, database management systems, and

operating systems. Many schemes based on cryptography have been proposed to solve this problem. However, previous schemes

need large values associated with each security class. In this paper, we propose a new scheme to solve this problem achieving the

following two goals. One is that the number of keys is reduced without affecting the security of the system. The other goal is that

when a security class is added to the system, we need only update a few keys of the related security classes with simple operations.

� 2002 Elsevier Inc. All rights reserved.
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1. Introduction

Many social organizations are based on hierarchical

structures, for example, the military, government orga-

nizations, school systems, private corporations, com-

puter management systems (Lu and Sundareshan,

1992; Lu and Sundareshan, 1988; McCullough, 1987;

McHugh and Moore, 1986), operation systems (Friam,

1983; Mcilroy and Reeds, 1992), and database man-
agement systems (Denning, 1984; Denning et al., 1986).

In the Bell–LaPadula model (Bell and LaPadula, 1975),

a subject is allowed a read access to an object only if its

security class is greater than or equal to the corre-

sponding security class of the object. A subject is al-

lowed write access to an object only if its security class is

less than or equal to that of the object.

An example of a four-level hierarchical structure is
shown in Fig. 1, with top, second, third and bottom

levels. The top level (i.e., a general or a president) pos-

sesses the greatest authority. The bottom level (i.e.,

workers or employees) has the least authority. Now,
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assume that the user, in the security class 1000 (C1000) in
Fig. 1, encrypts a message with his/her own privacy key

(K1000). Because of the access control in a hierarchical

structure, only the user (in C1000) and his/her direct su-

periors (i.e., C7, C3, C1) holding the key, K1000, can de-

cipher this message. Obviously, each user must hold a

set of keys. Table 1 shows the keys held by each user in

the hierarchy shown in Fig. 1. In this case, we need a key

management scheme to manage those keys.
One way to solve this problem is to use a master key

instead of many subordinate keys. Many authors have

proposed methods of solving this problem based on the

concept of the master key. The first of these methods,

proposed by Akl and Taylor (1983), is based on cryp-

tography to control access to any information among a

group of users in a hierarchy. In such a hierarchy, the

users and their own information items are divided into a
number of disjointed sets of security classes, C1;C2; . . . ;
Cn. Assume that a binary relationship ‘‘6 ’’ partially

orders the set of security class, C ¼ fC1;C2; . . . ;Cng. In
the partially ordered set ðC; 6 Þ, Ci 6Cj means that the

users in Ci have a security clearance lower than or equal

to those in Cj. In other words, users in Cj can derive the

keys of users in Ci and access information held by users

in Ci, but the users in Ci cannot access the information
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Fig. 1. An example of a hierarchical structure.

Table 1

The keys held by each user

User Keys held Number of keys held

C1 K1;K2; . . . ;K1000 1000

C2 K2;K4;K5;K8; . . . ;K502 498

C3 K3;K6;K7;K502; . . . ;K1000 502
..
. ..

. ..
.

C8 K8 1
..
. ..

. ..
.

C1000 K1000 1
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held by the users in Cj. For the partially ordered set

(poset, for short) structure, Ci 6Cj, Ci is called a de-
scendant of Cj, and Cj is called an ancestor of Ci. If

there is no existing Ck such that Ci 6Ck 6Cj, Ci is called

an immediate descendant of Cj, and Cj is called an im-

mediate ancestor of Ci. If there is no existing Ci such

that Ci 6Cj, Cj is called a leaf security class.

In the Akl–Taylor scheme (Akl and Taylor, 1983),

each security class Ci was assigned a distinct prime to be

its public parameters, PBi. The secret key, Ki, for each
security class Ci is calculated with the public parameters

PBi by a central authority in the system. Information

items owned by Ci are encrypted by an available sym-

metric (one-key) cryptosystem (Schneier, 1996) with the

enciphering key Ki. This information can be retrieved

only by the security class Cj, where Ci 6Cj. Using the

public parameters, PBi and PBj, and the secret key Kj, Cj

can derive Ki to decipher information items owned by
Ci. The Akl–Taylor scheme employs an elegant solution

in a poset hierarchy for the access control problem.

However, a large amount of storage for the public pa-

rameters is required. Moreover, new security classes

cannot be added to or removed from the system once all

the security keys have been issued. In 1985, Mackinnon

et al. (1985) presented an improved algorithm for the

Akl–Taylor scheme, called the canonical assignment, to
reduce the value of public parameters. This scheme

markedly reduces the number of distinct primes. How-

ever, a large amount of storage is still required for the

PBi. In addition, it is difficult to find an optimal ca-
nonical algorithm which can make an optimal assign-

ment for an arbitrary poset hierarchy.

In 1988, Sandhu (1988) used one-way functions to

create a cryptographic implementation of a tree hierar-

chy for access control (The tree hierarchy is a special

case of a poset hierarchy). Each secret key Ki for security

class Ci is generated with its own identity (ID) and its

immediate ancestor�s secret key through a one-way
function. In the scheme, no extra public parameters are

needed for key derivation. However, there are two

drawbacks: one is that computational overhead is in-

curred in deriving keys. The other is that this proposal

can only implemented for a tree hierarchy, which limits

its applications. In 1990, Harn and Lin (1990) proposed

an approach similar to the Akl–Taylor scheme. But,

instead of using a top-down design approach as in the
Akl–Taylor scheme, Harn and Lin presented a bottom-

up key generating scheme. In the Harn–Lin scheme, the

size of storage space needed to store the public para-

meters for most security classes is much smaller than

that is needed for the MacKinnon et al. and Akl–Taylor

schemes. However, in the Harn–Lin scheme when there

are many security classes in the system, a large amount

of storage space is required to store the public para-
meters.

In 1992 and 1993, both Chang et al. (1992) and Liaw

et al. (1993) proposed other schemes based on Newton�s
interpolation method and a predefined one-way func-

tion. However, the computations needed for key gen-

eration and derivation in their schemes are time

consuming. Furthermore, their schemes are insecure

against cooperative attacks (Hwang et al., 1993; Hwang,
1999a; Hwang, 1999b). In 1993, Liaw and Lei proposed

an optimal heuristic algorithm for assigning crypto-

graphic keys in a tree structure (Liaw and Lei, 1993). The

Liaw–Lei scheme not only reduces the amount of storage

required for storing public parameters, but also is simple

and efficient in generating and deriving keys. However,

their algorithm can only be used in a tree structure

(Hwang, 1997). In 1998, Yeh, Chow and Newman pro-
posed a new cryptographic key assignment scheme (Yeh

et al., 1998). The Yeh–Chow–Newman scheme enforces
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access control policies in a user matrix model, which is

more flexible than that in a user hierarchy. The user

matrix model not only can model the access control

policies in the user hierarchy model, but also more

complicated policies with anti-symmetrical and transitive

exceptions. However, their scheme is insecure (Hwang,
2000a). In 2000, Hwang proposed a new access control

scheme for a totally ordered hierarchy that can be used in

asymmetric cryptosystem (Hwang, 2000b).

We propose the following four criteria for evaluating

the effectiveness and efficiency of a cryptography-based

poset hierarchy scheme.

1. The effort needed to revise keys when a user is added

or deleted.

2. The space needed to store public parameters.

3. The security of the system needed to achieve compu-
tational security and to withstand the cooperative at-

tacks.

4. The effort needed to compute key generation and der-

ivation.

The space needed to store public parameters and the

computation of key generation and derivation are re-

lated to the number of primes. Thus, we shall also

consider the number of primes to be used in the system.

The purpose of this paper is to propose a new method

for generating small public parameters in a poset hier-

archy for access control. In terms of the above criteria,
our method has a good overall performance. This paper

is organized as follows. In the next section, we present

the new scheme. In Section 3, our method is compared

with previous methods. Finally, Section 4 presents our

conclusions.
2. An effective scheme

In this section, we present a new cryptography-based

key assignment scheme for access control in a poset

hierarchy. Our scheme can simultaneously reduce the

public value and the number of primes.
2.1. Basic concept

The basic concept behind our scheme is to assign a set

of primes to each security class so that the following

three properties are satisfied.

1. Uniqueness: The public parameters of the set of

primes of each security class are unique. Assume that

the set of public parameters of CiðCjÞ is ziðzjÞ, where
ziðzjÞ is a set of primes for CiðCjÞ. Then zi 6¼ zj for any
i 6¼ j.

2. Containment: The set of public parameters of descen-

dant security classes is a subset of the public param-
eters of the ancestor security classes. That is, zi � zj if
Ci 6Cj, for any i and j. If there is no ancestor/descen-

dant relationship between security classes Ci and Cj,

then these classes have no existing containment prop-

erty. That is, zi 6� zj if CiiCj. For example, there is

no ancestor/descendant relationship between C4 and
C5 in Fig. 1. Therefore, z4 6� z5 or z5 6� z4.

3. Minimal size: The number of elements in the set of

public parameters is the smallest number such that

the above properties hold.

To satisfy the above properties, we propose a simple

approach that assigns a set of public parameters to each

security class. Our scheme is a bottom-up key generating

scheme. To implement our concept, the central author-

ity (CA) first chooses a prime in each security class as a

public parameter and products these primes (which we
refer to as composed primes) to public parameters of

leaf classes in the poset hierarchy. The public parameters

of all classes except leaf security classes are assigned by

taking the union of these composed primes from the

immediate descendant, from those of the bottom

through the root of the poset hierarchy level by level.

We shall discuss the above three properties in detail in

Section 2.4.

2.2. Key generation procedures

We also assume that there is a CA in the system

similar to that in Akl–Taylor�s and Harn–Lin�s scheme.

The CA then executes the following steps:

Step 1. CA chooses two large prime numbers p and q

and computes the parameter m ¼ p � q, where p

and q are kept secret and m is public.

Step 2. CA chooses another parameter, for example a
random number K0, between 2 and (m	 1) such

that K0 and m are relatively prime.

Step 3. CA selects a set of primes, ei, and calculates the

multiplicative inverse, di, for each prime. That is

di ¼ e	1
i mod/ðmÞ. The number of these primes

will be discussed in Section 2.4.

Step 4. CA assigns each leaf security class in the hierar-

chy a distinct composed prime set, zi, which is
not a subset of zl if CiiCl. Ci and Cl are leaf

security classes. This step satisfies the three

properties in Section 2.1. We shall also discuss

it in Section 2.4.

Step 5. CA assigns each non-leaf security classes Cj a

distinct prime ej. Next, CA generates a distinct

composed prime set xj by taking the union of

these composed prime sets zi of the immediate
descendant class and ej. For any two classes

Ci and Cj, if Ci is not an ancestor of Cj, xj is

not a subset of xi. This property will resist the

conspiracy attack.
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Step 6. CA calculates a set of public parameters PBi

and secret keys Ki for all leaf security classes

Ci in the hierarchy such that PBi ¼
Q

el and

Ki ¼ K
f ðCiÞ

Q
dlmod/ðmÞ

0 modm, for all l such that

el 2 zi, where f ð�Þ denotes a one-way function.
If PBiKimod/ðmÞ ¼ 1, discard ðPBi;KiÞ and re-

peat Step 3. Otherwise, the second type of com-

mon modulus attack will arise. We shall discuss

it in Section 2.8.

Step 7. CA calculates a set of public parameters PBj and

secret keys Kj for all non-leaf security classes

in the hierarchy such that PBj ¼
Q

eh and

Kj ¼ K
Q

dhmod/ðmÞ
0 mod m, for all h such that

eh 2 xj.

2.3. Key derivation procedures

Assume that there are Ci and Cj in the poset hierar-

chy such that Ci 6Cj, and keys Ki and Kj which are

generated by the key generation procedures for Ci and
Cj, respectively. Thus the user uj, where uj 2 Cj, can

derive the key Ki of Ci by the following formula:

Ki ¼
KðPBj=PBiÞf ðCiÞ

j modm if Ci is a leaf class;

KPBj=PBi
j modm ifCi is not a leaf class:

(

ð1Þ
Here, Cj need only use his/her secret key Kj together

with both public parameters of Ci and Cj to derive the

secret key of Ci. For this, Cj does not need to know

/ðmÞ.
Suppose Cj wants to derive the secret key Ki of a

descendant Ci which is a leaf class. In Step 6 of the Key
Generation Procedures in Section 2.2, we have seen that

PBi ¼
Q

el, PBj ¼
Q

eh, Ki ¼ K
f ðCiÞ

Q
dlmod/ðmÞ

0 modm,

and Kj ¼ K
Q

dhmod/ðmÞ
0 modm, for all l and h such that

el 2 zi and eh 2 xj. Now, we substitute PBi and PBj to

Eq. (1) and show that the key derivation in Eq. (1) is

correct, as follows.

KðPBj=PBiÞf ðCiÞ
j modm

¼ K
Q

dhmod/ðmÞ
0

� � Q
eh=
Q

elð Þf ðCiÞ

modm; ð2Þ

for all l and h such that el 2 zi and eh 2 xj;

¼ K
f ðCiÞ 1=

Q
elð Þ

0 modm; ð3Þ
for all l such that el 2 zi;

¼ K
f ðCiÞ

Q
dlmod/ðmÞ

0

� �
modm; ð4Þ

¼ Ki:

Since ðKð
Q

dhmod/ðmÞÞ�ð
Q

ehÞ
0 modmÞ in Eq. (2) is equal to

K0, we thus get Eq. (3). Since edmod/ðmÞ ¼ 1,
Kdmod/ðmÞ
0 modm is equal to K1=e

0 modm. Therefore, we get
Eq. (4) from Eq. (3).

2.4. The key assignment method

Two problems remain from Section 2.1. One is how
many primes are used in the system, and the other is

how many primes are in zi for each Ci. We will give

solutions to both these problems in this subsection.

We give a poset hierarchy with n security classes. The

term ‘‘leaf-group’’ denotes a security class whose im-

mediate descendants are the leaf security classes. For

example, there are four leaf-groups in Fig. 1: C4, C5, C6

and C7. Let LGi be the ith leaf-group; the number of
members of LGi be mil. Thus, the CA can select the

number of primes using the following formula:

y ¼
X

for all LGi

gi

 !
þ na þ nt; ð5Þ

where:

• gi is the number such that ðgik ÞPmil, where ðgik Þ indi-
cates gi chooses k. Here, k is the number of primes

that distinguish the leaf security classes for each

leaf-group,

• na denotes the number of leaf security classes that

have two or more immediate ancestors, and
• nt denotes the number of non-leaf security classes.

To minimize the space required for public parame-

ters, we need to minimize the number gi. For example,
assuming mil ¼ 400, then gi ¼ 11 is the minimal number

for the hierarchy, and k can be taken to be 5. Now, we

will show by means of the following theorem that Eq. (5)

satisfies the three properties in Section 2.1.

Theorem 2.1. The number of primes, y, in Eq. (5) satisfies
the three properties described in Section 2.1.

Proof. When the hierarchy is a totally ordered with t
ordered levels, t distinct primes are needed to satisfy

these properties described in Section 2.1. There are no

primes needed to be assigned for distinguishing leaf se-

curity classes in the leaf-group. One distinct prime for

each leaf security class is needed to satisfy the unique-

ness property. Thus t primes are needed. Obviously, y
satisfies the three properties in totally ordered hierarchy.

When the hierarchy is a partially ordered with r leaf-
groups, find the set of (gi; k), i ¼ 1; 2; . . . ; r, which sat-

isfies ðgik ÞPmil, so that gi distinct primes make the

composite primes which identify members of each leaf-

group. Therefore, the uniqueness property is satisfied.

By the bottom-to-top key assignment method, the con-

tainment property is satisfied. Finding the minimal

number of gi such that ðgik ÞPmil satisfies the minimal
property. �
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2.5. An example

For the poset hierarchy with one thousand security

classes Ci, (i ¼ 1; 2; . . . ; 1000), shown in Fig. 1, Table 2

shows the keys assigned to each security class using our

method.
Now, assume that user 4, u4, belonging to security

class C4, wishes to access the information of user 8, u8,
where u8 2 C8. Since C8 6C4, u4 can use his/her own

secret key K4 to derive K8, the key of u8, as follows:

Kf ðC8ÞPB4=PB8

4 modm

¼ ðKd4d8d9���d23mod/ðmÞ
0 Þf ðC8Þe4e8e9���e23e8e9e10modm

¼ ðKd4d8d9���d23mod/ðmÞ
0 Þf ðC8Þe4e11e12���e23modm

¼ Kf ðC8Þd8d9d10mod/ðmÞ
0 modm

¼ K8:

Only 42 primes are required for the above hierarchy.

However, Harn–Lin�s scheme and Akl–Taylor�s scheme

would require 1000 primes for the above hierarchy.
2.6. Dynamic ability

When adding a new security class to a system, we

assign a distinct public parameter to the class. If the new

class belongs to an existing leaf-group, there are two

cases must be considered. First, assume that the leaf-

group is not the group with the maximal number of leaf
security classes in the system such that more distinct

composed primes can be assigned to this new class. In

this case, CA only assigns a distinct composed prime to

the new class, but does nothing for all security classes.

Second, assume that the leaf-group is the group with the

maximal number of leaf security classes in the system
Table 2

The public parameters and secret keys for security classes using our

method in Fig. 1

Security

classes Ci

Public parameters

(PBi)

Secret keys (Ki)

C1 e1e2 � � � e42 Kd1d2 ���d42mod/ðmÞ
0 modm

C2 e2e4e5e8 � � � e25 Kd2d4d5d8 ���d25mod/ðmÞ
0 modm

C3 e3e6e7e25 � � � e42 Kd3d6d7d25 ���d42mod/ðmÞ
0 modm

C4 e4e8 � � � e23 Kd4d8 ���d23mod/ðmÞ
0 modm

C5 e5e24e25 Kd5d24d25mod/ðmÞ
0 modm

C6 e6e25e26 Kd6d25d26mod/ðmÞ
0 modm

C7 e7e27 � � � e42 Kd7d27 ���d42mod/ðmÞ
0 modm

C8 e8e9e10 Kf ðC8Þd8d9d10mod/ðmÞ
0 modm

..

. ..
. ..

.

C500 e21e22e23 Kf ðC500Þd21d22d23mod/ðmÞ
0 modm

C501 e24 Kf ðC501Þd24mod/ðmÞ
0 modm

C502 e25 Kf ðC502Þd25mod/ðmÞ
0 modm

C503 e26 Kf ðC503Þd26mod/ðmÞ
0 modm

C504 e27e28e29 Kf ðC504Þd27d28d29mod/ðmÞ
0 modm

..

. ..
. ..

.

C1000 e40e41e42 Kf ðC1000Þd40d41d42mod/ðmÞ
0 modm
such that more distinct composed primes can be as-

signed to this group. For example, if the system has 105

members, the maximal number of leaf-groups,

ðg; kÞ ¼ ð15; 2Þ to distinguish these leaf security classes.

In this case, when adding a new security class to the

system, CA assigns a distinct composed prime by adding
a prime to this new class. It then changes the public

parameters by multiplying the new prime and corre-

sponding secret keys for the ancestor node of that new

class. The number of security classes which need to be

updated by the public parameters and secret keys is l,
where l is the level of the hierarchy.

If the new security class does not belong to an existing

leaf-group, there are two cases must be considered.
First, assume that the new class is a leaf. CA assigns a

new composite prime to the new class and calculates

public parameters and secret keys for the new class and

all ancestor classes of the new class. Second, assume that

the new class is not a leaf. CA assigns a new prime to the

new class and calculates public parameters and secret

keys for the new class and all ancestor classes of the new

class.
When deleting an existing security class from the

system, the CA just drops the entity of the security class.

CA does nothing for all security classes.

2.7. Required storage and computational complexity

From the key assignment method and key generating

procedure, the maximal number of primes to be facto-
rial-multiplied for public parameters is equal to y. As-

sume that there are n security classes in the hierarchy,

then the amount of space needed to store public pa-

rameters requires OðynÞ primes.

It is easy to see that the computational complexity of

our scheme depends on the number of primes to be

multiplied. Thus, our scheme takes OðyÞ to generate

keys for each security class. For the key derivation
procedure, only one division, one exponent and one

module are required.

2.8. Security analysis

The security in our scheme is based on the difficulty

of factoring a product of two large primes. As long as all

the system privacy keys fdig, prime numbers p and q, are
kept secret, then breaking our scheme would be as dif-

ficult as breaking the RSA scheme (Chang and Hwang,

1996; Hwang et al., 2000; Changchien and Hwang, in

press; Rivest et al., 1978). Thus any user outside of the

system cannot discover the key of a user in the system.

Any user ui in the system cannot discover the system

privacy keys di, so that user ui cannot use his/her own

key to calculate other secret keys. As to cooperative
attacks, a conspiracy between child keys cannot discover

their ancestors� keys. Because of the secret keys of the
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class Ci cannot be discovered by the conspiracy of others

fKjjCjjCig.
In addition, in order to show that our scheme is se-

cure against common modulus attacks, we briefly in-

troduce two types of common modulus attack

(DeLaurentis, 1984; Schneier, 1996). The first type
of common modulus attack uses the same modulus

m and two different public keys e1 and e2 to encrypt

the same plaintext M to give C1 ¼ Me1modm and

C2 ¼ Me2modm. If e1 and e2 are relatively prime, then

there exists s and t such that se1 þ te2 ¼ 1 holds (Diffie

and Hellman, 1976). In this case, the plaintext M can

been obtained by the following computation (Schneier,

1996):

Cs
1ðCt

2Þmodm

¼ ðMe1ÞsðMe2Þtmodm

¼ ðM ðe1sþe2tÞÞmodm

¼ M :

The second type of common modulus is that a sub-

scriber can use his/her own public e2 and private keys d2
to generate the private key d1 of another user (DeLau-

rentis, 1984). First, the subscriber finds the greatest
common divisor a of e1 and e2d2 	 1 by the Euclidean

algorithm. Next, they let b ¼ ðe2d2 	 1Þ=a. Since a is a

divisor of e1, and e1 is relatively prime to /ðmÞ, a must

also be relatively prime to /ðmÞ. However, ab ¼ e2d2 	 1

is a multiple of /ðmÞ. In other words, b must be a

multiple of /ðmÞ. Since b is relatively prime to e1, there
exist s and t, such that sbþ te1 ¼ 1 holds. Because b is a

multiple of /ðmÞ, therefore te1mod/ðmÞ ¼ 1. Here, t is
equal to d1. Therefore, the subscriber can obtain the

private key d1 of another user.

Since each security class use his/her own secret key

(Ki) to encrypt plaintext but not use public parameter ei,
our scheme is secure against the first type of common

modulus attacks. The public parameters are only used to

derive the secret key of immediate descendant class.

In addition, each security class only knows his/her
secret key Ki although he/she does not known the pri-

vate key di in our scheme. The private key di is only

known by CA. Therefore, a subscriber cannot use public

e2 and private keys d2 to generate the private key d1 of

another security class. In addition, eiKimod/ðmÞ is not
equal to 1 in our scheme. Our scheme can withstand the

second type of common modulus attacks.

2.9. Discussion

In Section 2.4 there are many sets of (g; k)�s to satisfy

ðgik ÞPmil. Although we can find the minimal gi, the

storage space for derived keys may not be minimized.

For example, we assume that the maximal numbers of

members of a leaf-group is 400, the set of ðgi; kÞ :
fð11; 5Þð12; 4Þð15; 3Þð29; 2Þð400; 1Þg, satisfies ðgik ÞPmil.
We can pick up any subset, i.e. ðgi; kÞ ¼ ð11; 5Þ, to model

the structure. When ðgi; kÞ ¼ ð11; 5Þ, the number of

primes involved is minimal, but we must select k ¼ 5

distinct primes as a composed prime set. This requires

more storage space. Although ðgi; kÞ ¼ ð15; 3Þ is not

minimal, but k ¼ 3 requires less storage space, based on
the fact that the hierarchy structure is a pyramid.

However, the problem of determining the minimal

storage space in a poset hierarchy is still an unresolved

issue.
3. Comparisons

In this section, we compare our method with other

cryptography-based hierarchy schemes in the literature,

using the four criteria in Section 1. Previous methods are

briefly reviewed below.

Akl and Taylor (1983) assigned to each security class

Ci an associated distinct prime ei and calculated the

public parameter PBi as follows:

PBi ¼
Y

CjiCi

ej: ð6Þ

Thus, the secret keys for all security classes could be

computed as follows:

Kj ¼ KPBj

0 modm; ð7Þ
where m is the product of p and q, which are two ran-

dom large primes, and K0 is a random secret key, where

26K0 6m	 1, gcdðK0;mÞ ¼ 1. A descendant�s key can

be derived from an ancestor�s key by the formula

Kj ¼ KPBj=PBi
i modm; iff Cj 6Ci: ð8Þ

The scheme of Mackinnon et al. (1985) is the same as

the original Akl–Taylor scheme, except that the former
uses chain decomposition to determine the primes to be

used. Each public parameter PBi of a descendant in the

chain is the power exponential of PBj owned by the

ancestor node.

Harn and Lin (1990) presented a cryptography-based

hierarchy scheme, based on the difficulty in factoring a

product of two large primes. Instead of using a top-

down design approach, as in the Akl–Taylor scheme, the
Harn–Lin scheme used a bottom-up key generation

procedure.

An example is given to illustrate the above methods.

Example 3.1. Given the poset structure with one thou-

sand security classes shown in Fig. 1, we find the prime

to be used, using the above methods as shown in Tables

3 and 4.

Each method introduced above has its own way of

dealing with the four criteria we use to evaluate a poset
hierarchy, as summarized in Tables 5–7. Table 5 shows



Table 3

Public parameters for each security class using Akl–Taylor method in

Fig. 1

Security classes Public parameters (PBi) Number of primes

C1 1 1

C2 e1e3e6e7e502 � � � e1000 503

C3 e1e2e4e5e8 � � � e502 499

C4 e1e2e3e5e6e7e501 � � � e1000 506
..
. ..

. ..
.

C7 e1e2e3e4e5e6e8 � � � e503 502

C8 e1 � � � e7e9 � � � e1000 999
..
. ..

. ..
.

C1000 e1 � � � e999 999

Table 4

Public parameters for each security class using Harn–Lin method in

Fig. 1

Security classes Public parameters (PBi) Number of primes

C1 e1e2 � � � e1000 1000

C2 e2e4e5e8 � � � e502 498

C3 e3e6e7e502 � � � e1000 502

C4 e4e8 � � � e500 494
..
. ..

. ..
.

C7 e7e504 � � � e1000 498

C8 e8 1
..
. ..

. ..
.

C1000 e1000 1

Table 6

The computational complexity

Schemes Append

ability

Remove

ability

Key gen-

eration

Key der-

ivation

Akl and Taylor OðnÞ OðnÞ OðnÞ Oð1Þ
MacKinnon et al. OðnÞ OðnÞ OðnÞ Oð1Þ
Harn and Lin OðlÞ Oð1Þ OðnÞ Oð1Þ
Proposed method Oð1Þ Oð1Þ OðyÞ Oð1Þ

Table 7

The space complexity

Schemes Number of

primes

Maximum public

parameter

Storage

spaces

Akl and Taylor n
Qn

i¼1 pi Oðn3 log nÞ
MacKinnon et al. c

Qn
i¼1 pi Oðn3 log cÞ

Harn and Lin n
Qn

i¼1 pi Oðn3 log nÞ
Proposed method y

Qy
i¼1 pi Oðn3 log yÞ
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the structure and access type used. The structure of the

tree hierarchy is a special case of the poset hierarchy.

The tree hierarchy is thus less flexible in application.

Direct access means that any security class can directly

access any lower security class. Indirect access means

that the security class can only access any immediate

descendant class. When an individual wants to access

other security classes, he/she must derive the secret key
of each immediate descendant class level by level. Ob-

viously, the complexity of the indirect access takes

considerable time. In Table 5, we compare our scheme

with other schemes that have the same structure and

access type, i.e. same poset hierarchy structure and same

direct access.

Table 6 shows four aspects of the computational

complexity: append ability, remove ability, key genera-
tion, and key derivation. The computation of append
Table 5

Implementation

Schemes Structure Access type

Akl and Taylor Poset hierarchy Direct

MacKinnon et al. Poset hierarchy Direct

Sandhu Tree hierarchy Indirect

Harn and Lin Poset hierarchy Direct

Chang et al. Poset hierarchy Indirect

Proposed method Poset hierarchy Direct
ability is required to analyze the number of security

classes needed to update keys when a new security class

is added to partially ordered hierarchies. The compu-

tation of remove ability is required to analyze the

number of security classes need to update keys when

removing an existed security class from a partially or-

dered hierarchy. For append ability, the computational

complexity is OðlÞ which must be re-computed in Harn–
Lin�s scheme where l is the levels of hierarchy. For re-

move ability, the computational complexity is Oð1Þ for
both Harn–Lin and our proposed scheme. For key

generation, the computational complexity is only OðyÞ
for our proposed scheme, where OðyÞ 
 OðnÞ. In terms

of key derivation column, the computational complexity

of all schemes is Oð1Þ.
Table 7 shows three aspects of storage space: number

of primes, maximum public parameter, and storage

spaces. Both Akl–Taylor�s and Harn–Lin�s scheme need

n primes, the same as number of security classes in hi-

erarchy. MacKinnon et al.�s scheme needs c primes, the

same as number of chains. However, our proposed

scheme needs only y, as shown in Eq. (5), where

y6 c 
 n. We prove y6 c by the following theorem.

Theorem 3.1. Let y have the same definition as in the Eq.
(5), and let c be the number of chains in a totally ordered
hierarchy (that is, for any two security classes Ci and Cj in
the chain, where Ci 6¼ Cj, either Ci 6Cj or Cj 6Ci,). Then
y6 c.

Proof. First, since the chain is in a totally ordered hi-

erarchy and there are no relationships among leaf se-
curity classes in any poset hierarchy, the number of

chains is larger than the number of leaf security classes.

Next, gi is always less than mil to satisfy ðgik ÞPmil. Here,

mil is the number of leaves in the leaf-group LGi. From

the above two points, the theorem holds. �
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In the maximum public parameter column, there are

only y primes to be multiplied in our scheme. In the

storage spaces column, our scheme requires Oðn3 log yÞ
bits. However, Akl–Taylor�s and Harn–Lin�s schemes

require Oðn3 log nÞ bits; while MacKinnon et al.�s
scheme requires Oðn3 log cÞ bits, where Oðn3 log nÞ >
Oðn3 log cÞ > Oðn3 log yÞ.
4. Conclusions

In terms of the four criteria introduced earlier, our

key assignment for the poset hierarchy scheme is a

considerably better approach to access control than the
other comparable schemes discussed above. The pri-

mary merit of our scheme is its simplicity, in terms of

both the underlying idea and the algorithm for assigning

public parameters. The advantages of our scheme in

application include the following:

1. There are relatively few primes in the system, so we

avoid using large prime numbers as public parame-

ters and reduce the size of public parameter values.

2. The security is equivalent to that provided by the

RSA cryptosystem.
3. When a security class wishes to access a permitted re-

source owned by other security classes, our scheme

can easily derive the secret key of the security class

to the other resource.

4. When a new security class is added, only the key val-

ues of the new security class need to be computed.

5. To remove a security class from the system, the

scheme removes the key values of that security class
only.

Since the fact that the hierarchy structure is a pyra-

mid, our scheme is efficient than other schemes. Our
proposed scheme can also be used to combine several

poset hierarchy systems into a larger poset hierarchy

system, called a group poset hierarchy system. The keys

of the existing security classes need only to be multiplied

by the group identification number. However, other

methods in the literature require that the keys of the

existing security classes in the poset hierarchy be re-

computed using a large number as the maximal number
of the lower poset hierarchy.
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