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Abstract

Let G ¼ ðV ;EÞ be a k-regular graph with connectivity j and edge connectivity k. G is

maximum connected if j ¼ k, and G is maximum edge connected if k ¼ k. Moreover, G is

super-connected if it is a complete graph, or it is maximum connected and every mini-

mum vertex cut is fxjðv; xÞ 2 Eg for some vertex v 2 V ; and G is super-edge-connected

if it is maximum edge connected and every minimum edge disconnecting set is

fðv; xÞjðv; xÞ 2 Eg for some vertex v 2 V . In this paper, we present three schemes for

constructing graphs that are super-connected and super-edge-connected. Applying these

construction schemes, we can easily discuss the super-connected property and the super-

edge-connected property of hypercubes, twisted cubes, crossed cubes, m€oobius cubes,

split-stars, and recursive circulant graphs.
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1. Introduction

For the graph definitions and notations we follow [2]. G ¼ ðV ;EÞ is a simple

graph if V is a finite set and E is a subset of fða; bÞjða; bÞ is an
unordered pair of V g. We say that V is the vertex set and E is the edge set. The

neighborhood of v, NGðvÞ, is fxjðv; xÞ 2 Eg. The neighbor-edge of v, NEGðvÞ, is
fðv; xÞjðv; xÞ 2 Eg. The degree of a vertex v, denoted by degGðvÞ, is the number of

vertices in NGðvÞ. A graph G is k-regular if degGðvÞ ¼ k, for every vertex v 2 V .
A vertex cut of a graph G is a set S � V ðGÞ such that G	 S has more than

one connected component. It is known that only complete graphs do not have
vertex cuts. The connectivity of G, written jðGÞ, is defined as the minimum size

of a vertex cut if G is not a complete graph, and jðGÞ ¼ jV ðGÞj 	 1 if otherwise.

A graph G is k-connected if k6jðGÞ. Assume that G is a k-regular graph with

connectivity j. We say that G is maximum connected if j ¼ k; and G is super-

connected if it is a complete graph, or it is maximum connected and every

minimum vertex cut is NGðvÞ for some vertex v.

An edge disconnecting set is a set F � EðGÞ such that G	 F has more than

one connected component. A graph is k-edge-connected if every disconnecting
set has at least k edges. The edge connectivity of G, written kðGÞ, is the mini-

mum size of an edge disconnecting set. Assume that G is a k-regular graph with

edge connectivity k. A graph G is k-edge-connected if k6 kðGÞ. We say that G

is maximum edge connected if k ¼ k; and G is super-edge-connected if it

is maximum edge connected and every minimum edge disconnecting cut is

NEGðvÞ for some vertex v.

The architecture of an interconnection network is usually represented by a

graph. There are numerous mutually conflicting requirements in designing the
topology of interconnection networks. Network reliability is one of the major

factors in designing the topology of an interconnection network. It has been

shown that a network is more reliable if it is super-connected [3,4,9]. Some

important families of interconnection networks have been proven to be super-

connected [3,4,9]. In this paper, we present three schemes to construct super-

connected and super-edge-connected graphs. With these construction schemes,

we can easily discuss the super-connected property and the super-edge-con-

nected property of hypercubes, twisted cubes, crossed cubes, m€oobius cubes,
split-stars, and recursive circulant graphs.

2. The first constructing scheme

Assume that t is a positive integer. Let G1 and G2 be two graphs with t

vertices, and M be any arbitrary perfect matching between the vertices of G1

and G2; i.e., a set of t edges with one endpoint in G1, and the other endpoint

in G2. The graph GðG1;G2;MÞ is defined as a graph with the vertex set
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V ðGðG1;G2;MÞÞ ¼ V ðG1Þ [ V ðG2Þ, and edge set EðGðG1;G2;MÞÞ ¼ EðG1Þ [
EðG2Þ [M . We note that the cartesian product of a graph H and a complete
graph K2 can be viewed as a GðH ;H ;MÞ for some M.

Theorem 1. Assume that t is a positive integer. Let G1 and G2 be two k-regular
maximum connected graphs with t vertices, and M be any perfect matching be-
tween V ðG1Þ and V ðG2Þ. Then, GðG1;G2;MÞ is ðk þ 1Þ-regular super-connected
if and only if (1) t > k þ 1 or (2) t ¼ k þ 1 with k ¼ 0; 1; 2.

Proof. Since G1 and G2 are k-regular connected graphs, tP k þ 1. By definition,

GðG1;G2;MÞ is a ðk þ 1Þ-regular graph. To prove GðG1;G2;MÞ is super-con-

nected, we need to check if GðG1;G2;MÞ 	 F is connected for any

F � V ðGðG1;G2;MÞÞ such that jF j ¼ k þ 1 and F 6¼ NGðG1;G2;MÞðvÞ for any ver-

tex v 2 V ðGðG1;G2;MÞÞ.
Suppose that t ¼ k þ 1. Obviously, G1 and G2 are isomorphic to the complete

graph Kkþ1. Moreover, GðG1;G2;MÞ is isomorphic to the cartesian product of

Kkþ1 and K2. Without loss of generality, we assume that V ðG1Þ ¼ fa0; a1; . . . ; akg
and V ðG2Þ ¼ fb0; b1; . . . ; bkg, where bi is the vertex matched with ai underM for

every i. By brute force, we can check that GðG1;G2;MÞ is super-connected for

k ¼ 0; 1; 2. When k P 3, we set F ¼ fa0; a1g [ fbij26 i6 kg. It is easy to see that

jF j ¼ k þ 1, F 6¼ NGðG1;G2;MÞðvÞ, and F is a vertex cut of GðG1;G2;MÞ. So

GðG1;G2;MÞ is not super-connected.
Now, assume that t > k þ 1. Since K1 is the only connected 0-regular graph

and K2 is the only connected 1-regular graph, let kP 2. We set X1 ¼ F \ V ðG1Þ
and X2 ¼ F \ V ðG2Þ.

Case 1. jX1j < k and jX2j < k. Thus, both G1 	 X1 and G2 	 X2 are connected.

Since t ¼ jM j > k þ 1 and jF j ¼ k þ 1, there exists a 2 V ðG1Þ 	 F and

b 2 V ðG2Þ 	 F such that ða; bÞ 2 M . Thus, GðG1;G2;MÞ 	 F is connected.

Case 2. Either k6 jX1j6 k þ 1 or k6 jX2j6 k þ 1. We assume without loss of

generality that k6 jX1j6 k þ 1. Hence, jX2j6 1. Since kP 2, G2 	 X2 is con-
nected. Let C be any connected component of G1 	 X1. We will claim that there

exists a 2 C and b 2 V ðG2Þ 	 F such that ða; bÞ 2 M . With this claim, GðG1;
G2;MÞ 	 F is connected.

First, if C consists of only one vertex a, then NG1
ðaÞ � F . Let b be the vertex

in G2 with ða; bÞ 2 M . Since F 6¼ NGðG1;G2;MÞðaÞ, b 2 V ðG2Þ 	 F . Thus, the claim
holds. Now, if C contains at least two vertices a and a0. Let b, b0 be the matched

vertices of a, a0 in G2, respectively. Since at most one vertex of G2 is in F, we
may assume b 62 F . Thus, our claim holds.

Therefore, the theorem is proved. �
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A similar argument leads to the following theorem for super-edge-con-

nected, and the corollary.

Theorem 2. Assume that t is a positive integer. Let G1 and G2 be two k-regular
maximum-edge-connected graphs with t vertices, and M is any perfect matching
between V ðG1Þ and V ðG2Þ. Then, GðG1;G2;MÞ is ðk þ 1Þ-regular super-edge-
connected if and only if (1) t > k þ 1 or (2) t ¼ k þ 1 with k ¼ 0.

Corollary 1. Assume that t is a positive integer. Let G1 and G2 be two k-con-
nected and k0-edge connected graphs with t vertices, and M is any perfect
matching between V ðG1Þ and V ðG2Þ. Then, GðG1;G2;MÞ is ðk þ 1Þ-connected
and ðk0 þ 1Þ-edge connected.

Network topology is always represented by a graph where vertices represent

processors and edges represent links between processors. Among these topol-

ogies, the binary hypercube [7], Qn, is one of the most popular topology. The
hypercube Qn can be recursively defined as Q1 ¼ K2 and Qn is the cartesian

product of Qn	1 and K2. The super-connected property and the super-edge-

connected property of hypercubes are discussed in [4,9]. Here, we reprove this

result. Recursively applying Theorems 1 and 2, we can easily prove that Qn is

super-connected for every n and super-edge-connected if n 6¼ 2.

Twisted cubes [1], crossed cubes [6], and m€oobius cubes [5] are derived by

changing the connection of some hypercube links according to some specified

rules.
In [1], the twisted n-cube TQn is defined for odd values of n. The vertex set of

the twisted n-cube TQn is the set of all binary strings of length n. Let

u ¼ un	1un	2 . . . u1u0 be any vertex in TQn. For 06 i6 n	 1, let the ith parity

function be PiðuÞ ¼ ui � ui	1 � � � � � u0, where � is the exclusive-or operation.

We can recursively define TQn as follows: A twisted 1-cube, TQ1, is a complete

graph with two vertices 0 and 1. Suppose that nP 3. We can decompose the

vertices of TQn into four sets, TQ0;0
n	2, TQ

0;1
n	2, TQ

1;0
n	2 and TQ1;1

n	2 where TQi;j
n	2

consists of those vertices u with un	1 ¼ i and un	2 ¼ j. For each
ði; jÞ 2 fð0; 0Þ; ð0; 1Þ; ð1; 0Þ; ð1; 1Þg, the induced subgraph of TQi;j

n	2 in TQn is

isomorphic to TQn	2. The edges that connect these four subtwisted cubes can

be described as follows: Any vertex un	1un	2 � � � u1u0 with Pn	3ðuÞ ¼ 0 is con-

nected to �uun	1�uun	2 � � � u1u0 and �uun	1un	2 . . . u1u0; and to un	1�uun	2 . . . u1u0 and
�uun	1un	2 . . . u1u0 if Pn	3ðuÞ ¼ 1.

From the definition, both the subgraph induced by TQ0;0
n	2 [ TQ1;0

n	2 and the

subgraph induced by TQ0;1
n	2 [ TQ1;1

n	2 are isomorphic to TQn	2 � K2, where K2

is the complete graph with two vertices. Moreover, the edges joining
TQ0;0

n	2 [ TQ1;0
n	2 and TQ0;1

n	2 [ TQ1;1
n	2 form a perfect matching of TQn. Recursively

applying Theorems 1 and 2, we can easily prove that TQn is super-connected

and super-edge-connected for every odd n.
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Two two-digit binary strings x ¼ x1x0 and y ¼ y1y0 are pair related, denoted
by x � y, if and only if ðx; yÞ 2 fð00; 00Þ; ð10; 10Þ; ð01; 11Þ; ð11; 01Þg. An n-
dimension crossed cube CQn [6] is a graph CQn ¼ ðV ;EÞ that is recursively

constructed as follows: CQ1 is a complete graph with two vertices labeled by 0

and 1. CQn consists of two identical ðn	 1Þ-dimension crossed cubes, CQ0
n	1

and CQ1
n	1. The vertex u ¼ 0un	2 � � � u0 2 V ðCQ0

n	1Þ and vertex v ¼ 1vn	2 � � � v0 2
V ðCQ1

n	1Þ are adjacent in CQn if and only if (1) un	2 ¼ vn	2 if n is even; and (2)

for 06 i < bðn	 1Þ=2c, u2iþ1u2i � v2iþ1v2i.
From the definition, CQn can be viewed as GðCQn	1;CQn	1;MÞ for some

perfect matchingM. Recursively applying Theorems 1 and 2, we can easily prove
that CQn is super-connected for every n and super-edge-connected if n 6¼ 2.

The m€oobius cube [5], MQn ¼ ðV ;EÞ, of dimension n has 2n vertices. Each

vertex is labeled by a unique n-bit binary string as its address and has con-

nections to n other distinct vertices. The vertex with address X ¼ xn	1xn	2 � � � x0
connects to n other vertices Yi, 06 i6 n	 1, where the address of Yi satisfies (1)
Yi ¼ ðxn	1 � � � xiþ1�xxi � � � x0Þ if xiþ1 ¼ 0; or (2) Yi ¼ ðxn	1 � � � xiþ1xi � � � x0Þ if xiþ1 ¼ 1.

From the above definition, X connects to Yi by complementing the bit xi if
xiþ1 ¼ 0, or by complementing all bits of xi � � � x0 if xiþ1 ¼ 1. For the connection
between X and Yn	1, we can assume that the unspecified xn is either 0 or 1,

which gives slightly different topologies. If xn is 0, we call the network generated

the ‘‘0-m€oobius cube’’, denoted by 0-MQn; and if xn is 1, we call the network

generated the ‘‘1-m€oobius cube’’, denoted by 1-MQn.

According to the above definition, 0-MQnþ1 and 1-MQnþ1 can be recursively

constructed from a 0-MQn and a 1-MQn by adding a perfect matching. Re-

cursively applying Theorems 1 and 2, we can easily prove that every 0-MQn

or 1-MQn is super-connected for every n and super-edge-connected if n 6¼ 2.
Assume n is a positive integer. The alternating graph An [3] is an attrac-

tive interconnection graph topology. V ðAnÞ ¼ fpjp ¼ p1p2 � � � pn	2 with pi 2 f1;
2; . . . ; ng for 16 i6 n	 2 and pi 6¼ pj if i 6¼ jg and EðAnÞ ¼ fðp; qÞj there ex-

ists a unique i 2 hn	 2i such that pi 6¼ qig. In [3], split-star S2
n is proposed as an

attractive interconnection network. V ðS2
nÞ ¼ fpjp ¼ p0p1p2 � � � pn	2 with p0 2

f0; 1g; pi 2 f1; 2; . . . ; ng for 16 i6 n	 2, and pi 6¼ pj if i 6¼ j 6¼ 0g and

EðS2
nÞ ¼ fðp; qÞj there exists a unique i with 06 i6 n	 2 such that pi 6¼ qig.
It is pointed out in [3] that S2

n can be viewed as GðAn;An;MÞ. Moreover, it is
proved that An is super-connected unless n ¼ 4 and super-edge-connected for

any n. Applying Theorems 1 and 2, we can easily reprove the result in [3] that

S2
n is super-connected for any n and super-edge-connected unless n ¼ 3.

3. The second constructing scheme

Let r and t be positive integers with rP 3. Assume that G0;G1; . . . ;Gr	1 are

graphs with jV ðGiÞj ¼ t for 06 i6 r 	 1. We define H ¼ GðG0;G1; � � � ;Gr	1;MÞ
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with V ðHÞ ¼ V ðG0Þ [ V ðG1Þ [ . . . [ V ðGr	1Þ and EðHÞ ¼ M [
Sr	1

i¼0 EðGiÞ,
where M ¼

Sr	1

i¼0 Mi;iþ1 ðmod rÞ with Mi;iþ1 ðmod rÞ is any arbitrary perfect matching
between V ðGiÞ and V ðGiþ1 ðmod rÞÞ.

Theorem 3. Let r and t be positive integers with rP 3. Assume that
G0;G1; . . . ;Gr	1 are k-regular maximum connected graphs with jV ðGiÞj ¼ t for
06 i6 r 	 1 and M ¼

Sr	1

i¼0 Mi;iþ1 ðmod rÞ, where Mi;iþ1 ðmod rÞ is any arbitrary per-
fect matching between V ðGiÞ and V ðGiþ1 ðmod rÞÞ. Then, H ¼ GðG0;G1; . . . ;
Gr	1;MÞ is ðk þ 2Þ-regular super-connected if and only if (1) k P 1 or (2) k ¼ 0

and r ¼ 3; 4; 5.

Proof. Because G0;G1; . . . ;Gr	1 are k-regular connected graphs, tP k þ 1, by
definition, H is a ðk þ 2Þ-regular graph. To prove H is super-connected, we

need to check if H 	 F is connected for any vertex subset F of H such that

jF j ¼ k þ 2 and F 6¼ NHðvÞ for any vertex v 2 V ðHÞ. We set Xi ¼ F \ V ðGiÞ for
i ¼ 0; 1; . . . ; r 	 1.

Case 1. jXij < k for i ¼ 0; 1; � � � ; r 	 1. Then, Gi 	 Xi is connected for every i.
Suppose that jXi [ Xiþ1 ðmod rÞj6 k for 06 i6 r 	 1. By Theorem 1, there exist

xi 2 V ðGiÞ 	 F and xiþ1 ðmod rÞ 2 V ðGiþ1 ðmod rÞÞ 	 F such that ðxi; xiþ1 ðmod rÞÞ 2
Mi;iþ1 ðmod rÞ. Thus, H 	 F is connected.

Suppose that k þ 16 jXi [ Xiþ1 ðmod rÞj6 k þ 2 for some i. Without loss of

generality, we may assume that k þ 16 jX0 [ X1j6 k þ 2 and jX0jP jX1j. Since
jX1j < k, jX0jP 2. Thus, jXi [ Xiþ1 ðmod rÞj6 k for 16 i6 r 	 1. Suppose that

k6 1. Then, jXij ¼ 0 for every i. Since F ¼
Sr	1

i¼1 Xi, jF j ¼ 0. This is impossible.

Thus, k P 2. By Theorem 1, GðGi;Giþ1 ðmod rÞ;Mi;iþ1 ðmod rÞÞ 	 ðXi [ Xiþ1 ðmod rÞÞ is
connected for 16 i6 r 	 1. Hence, H 	 F is connected.

Case 2. jXijP k for some i. Without loss of generality, we assume that

k6 jX0j6 k þ 2; jX0jP jXij for 16 i6 r 	 1, and jX1jP jXr	1j.

Subcase 2.1. t > k þ 1. Thus, Gi is not a complete graph. Hence, k > 1. By

Theorem 1, GðGi;Giþ1 ðmod rÞ;Mi;iþ1 ðmod rÞÞ is ðk þ 1Þ-regular super-connected for

06 i6 r 	 1.

Suppose that jX0 [ X1j ¼ k. Then, jX0j ¼ k, jX1j ¼ jXr	1j ¼ 0, and

jXi [ Xiþ1j6 k for 06 i6 r 	 2. Then, GðGi;Giþ1;Mi;iþ1Þ 	 ðXi [ Xiþ1Þ is con-

nected for 06 i6 r 	 2. Hence, H 	 F is connected.

Suppose that jX0 [ X1j ¼ k þ 1. Then, GðG0;G1;M0;1Þ 	 ðX0 [ X1Þ is con-

nected unless X0 [ X1 ¼ NGðG0;G1;M0;1ÞðxÞ for some vertex x 2 V ðG0Þ [ V ðG1Þ.
Suppose that GðG0;G1;M0;1Þ 	 ðX0 [ X1Þ is connected. H 	 F is connected

because GðGi;Giþ1 ðmod rÞ;Mi;iþ1 ðmod rÞÞ 	 ðXi [ Xiþ1 ðmod rÞÞ is also connected for

16 i6 r 	 1.
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Suppose that X0 [ X1 ¼ NG;ðG0;G1;M0;1ÞðxÞ for some vertex x 2 V ðG0Þ [ V ðG1Þ.
Since jX0jP k; x 2 V ðG0Þ. Let x1 be the vertex in V ðG1Þ such that ðx; x1Þ 2 M0;1

and xr	1 be the vertex in V ðGr	1Þ such that ðxr	1; xÞ 2 Mr	1;0. Obviously, x1 is

the only vertex in X1. Since G1 is k-connected with k > 1, G1 	 fx1g is con-

nected. Let y be any vertex of V ðG0Þ with y 6¼ x, and y1 be the vertex in V ðG1Þ
such that ðy; y1Þ 2 M0;1. Hence, y1 62 F since y1 6¼ x1. Therefore, GðG0;
G1;M0;1Þ 	 ðX0 [ X1 [ fxgÞ is connected. Since F 6¼ NH ðxÞ; xr	1 62 F . Since

jXij6 1 for 16 i6 r 	 1, GðGi;Giþ1;Mi;iþ1Þ 	 ðXi [ Xiþ1Þ is connected for

16 i6 r 	 2 follows from Theorem 1. Thus, H 	 F is connected.

Suppose that jX0 [ X1j ¼ k þ 2. Then, jXij ¼ 0 for 26 i6 r 	 1. Let x0 be any
vertex of V ðG0Þ 	 F and xr	1 be the vertex such that ðxr	1; x0Þ 2 Mr	1;0. Obvi-

ously, xr	1 62 F . Similarly, let x1 be any vertex of V ðG1Þ 	 F and x2 be the vertex
such that ðx1; x2Þ 2 M1;2. Obviously, x2 62 F . Since jXij ¼ 0 for 26 i6 r 	 1,

either GðGi;Giþ1;Mi;iþ1Þ 	 ðXi [ Xiþ1Þ is connected for 26 i6 r 	 2 with r > 3

or G2 	 X2 is connected with r ¼ 3. Hence, H 	 F is connected.

Subcase 2.2. t ¼ k þ 1. Thus, every Gi is isomorphic to complete graph Kkþ1.

Since Kkþ1 contains k þ 1 vertices, k6 jX0j6 k þ 1.

Suppose that k ¼ 0. Then, H is isomorphic to the cycle Cr. It is easy to check

H is super-connected if and only if r ¼ 3; 4; 5. Thus, we consider kP 1.

Suppose that jX0j ¼ k þ 1. Thus, j
Sr	1

i¼1 Xij ¼ 1. By Corollary 1, GðGi;Giþ1;
Mi;iþ1Þ is ðk þ 1Þ-connected for 16 i6 r 	 2. Thus, GðGi;Giþ1;Mi;iþ1Þ	
ðXi [ Xiþ1Þ is connected for 16 i6 r 	 2. Hence, H 	 F is connected.

Suppose that jX0j ¼ k. Thus, there is only one vertex a0 in V ðG0Þ 	 F .
Assume that k ¼ 1. Then, jXij6 1 for 06 i6 r 	 1. Suppose that

jXi [ Xiþ1j6 1 for 06 i6 r 	 2. Thus, GðGi;Giþ1;Mi;iþ1Þ 	 ðXi [ Xiþ1Þ is con-

nected for 06 i6 r 	 2. So H 	 F is connected. Suppose jXi [ Xiþ1j ¼ 2 for

some i. We may without loss of generality assume that jX0 [ X1j ¼ 2. In this

case, we may label the vertices of V ðGiÞ as ai, a0i for 06 i6 r 	 2 with

ðai; aiþ1Þ 2 Mi;iþ1 and ða0i; a0iþ1Þ 2 Mi;iþ1.

Suppose that GðG0;G1;M0;1Þ 	 ðX0 [ X1Þ is disconnected. Without loss of

generality, we assume that a00 2 F and a1 2 F .
Suppose that r ¼ 3. Since F 6¼ NH ða01Þ, a02 62 F . Thus, GðG1;G2;M1;2Þ	

ðX1 [ X2Þ is connected. a2 2 F since jX2j ¼ 1. So a02 2 NH ða0Þ since F 6¼ NH ða0Þ.
Thus, GðG0;G2;M0;2Þ 	 ðX0 [ X2Þ is connected. Hence, H 	 F is connected.

Suppose that r > 3. Since F 6¼ NH ða0Þ and F 6¼ NH ða01Þ, a02 62 F and âar	1 62 F
where âar	1 is the vertex such that ða0; âar	1Þ 2 M0;r	1. Thus, GðG1;G2;
M1;2Þ 	 ðX1 [ X2Þ and GðG0;Gr	1;M0;r	1Þ 	 ðX0 [ Xr	1Þ are connected. Obvi-

ously, GðGi;Giþ1;Mi;iþ1Þ 	 ðXi [ Xiþ1Þ is connected for 26 i6 r 	 2. Therefore,

H 	 F is connected.
Suppose that GðG0;G1;M0;1Þ 	 ðX0 [ X1Þ is connected. We may without loss

of generality assume that a00 2 F and a01 2 F .
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Suppose r ¼ 3. Since F 6¼ NH ða02Þ, either (1) a02 2 F and a2 62 F ; or (2) a02 62 F ,
a2 2 F , and ða0; a02Þ 2 M0;2. In the first case, GðG1;G2;M1;2Þ 	 ðX1 [ X2Þ is
connected; and in the second case, GðG0;G2;M0;2Þ 	 ðX0 [ X2Þ is connected.

Hence, H 	 F is connected.

Suppose that r > 3. Since jF 	 ðX0 [ X1Þj ¼ 1, we may without loss of gen-

erality assume that jX2j ¼ 0. So GðG1;G2;M1;2Þ 	 X1 is connected. GðGi;Giþ1;
Mi;iþ1Þ 	 ðXi [ Xiþ1Þ is connected for 26 i6 r 	 2 because jXi [ Xiþ1j6 k. So

H 	 F is connected.

Now, we consider k > 1. Let a1 2 V ðG1Þ and ða0; a1Þ 2 M0;1.

Suppose that a1 62 F . Thus, GðG0;G1;M0;1Þ 	 ðX0 [ X1Þ is connected. For
i ¼ 1; 2; . . . ; r 	 2; GðGi;Giþ1;Mi;iþ1Þ 	 ðXi [ Xiþ1Þ is connected because

jXi [ Xiþ1j6 k. Therefore, H 	 F is connected.

Suppose that a1 2 F . Let ar	1 be a vertex in V ðGr	1Þ such that

ða0; ar	1Þ 2 M0;r	1. Since F 6¼ NHða0Þ; ar	1 62 F . Thus, GðG0;Gr	1;M0;r	1Þ	
ðX0 [ Xr	1Þ is connected. For i ¼ 1; 2; . . . ; r 	 2, GðGi;Giþ1;Mi;iþ1Þ 	 ðXi [ Xiþ1Þ
is connected because jXi [ Xiþ1j6 k. Therefore, H 	 F is connected.

The theorem is proved. �

With a similar argument as above, we have the following results.

Theorem 4. Let r and t be positive integers with rP 3. Assume that
G0;G1; . . . ;Gr	1 are k-regular maximum edge connected graphs with jV ðGiÞj ¼ t
for 06 i6 r 	 1 and M ¼

Sr	1

i¼0 Mi;iþ1 ðmod rÞ with Mi;iþ1 ðmod rÞ is any arbitrary
perfect matching between V ðGiÞ and V ðGiþ1 ðmod rÞÞ. Then, H ¼ GðG0;G1; . . . ;
Gr	1;MÞ is ðk þ 2Þ-regular super-edge-connected if and only if (1) kP 2, (2)

k ¼ 1 and r 6¼ 3, or (3) k ¼ 0 and r ¼ 3.

Corollary 2. Let r and t be positive integers with rP 3. Assume that
G0;G1; . . . ;Gr	1 are k-connected and k0-edge connected graphs with jV ðGiÞj ¼ t
for 06 i6 r 	 1 and M ¼ [r	1

i¼0Mi;iþ1 ðmod rÞ, where Mi;iþ1 ðmod rÞ is any arbitrary
perfect matching between V ðGiÞ and V ðGiþ1 ðmod rÞÞ. Then, H ¼ GðG0;
G1; . . . ;Gr	1;MÞ is (k þ 2)-connected and ðk0 þ 2Þ-edge-connected.

4. The third constructing scheme

Assume that t is an integer with tP 2. Let G1 and G2 be two graphs with t
vertices such that V ðG1Þ ¼ faij06 i < tg and V ðG2Þ ¼ fbij06 i < tg. Let C be

a set of edges given by C ¼ fðai; biÞj06 i < tg [ fðbi; aiþ1 ðmod tÞÞj06 i < tg.
The graph GðG1;G2;CÞ is defined to be the graph with the vertex set

V ðGðG1;G2;CÞÞ ¼ V ðG1Þ [ V ðG2Þ, and edge set EðGðG1;G2;CÞÞ ¼ EðG1Þ [
EðG2Þ [ C.
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Theorem 5. Assume that t is an integer with tP 2. Let G1 and G2 be two k-regular
maximum connected graphs with t vertices such that V ðG1Þ ¼ faij06 i < tg and
V ðG2Þ ¼ fbij06 i < tg. Let C be a set of edges given by C ¼ fðai; biÞj
06 i < tg [ fðbi; aiþ1 ðmod tÞÞj06 i < tg. Then, GðG1;G2;CÞ is ðk þ 2Þ-regular
super-connected if (1) t > k þ 1 with kP 3 or (2) t ¼ k þ 1 with k ¼ 1; 2; 3.

Proof. Since G1 and G2 are k-regular connected graph, tP k þ 1. By definition,

GðG1;G2;CÞ is ðk þ 2Þ-regular. To prove GðG1;G2;CÞ is super-connected, we

need to check if GðG1;G2;CÞ 	 F is connected for any F � V ðGðG1;G2;CÞÞ
such that jF j ¼ k þ 2 and F 6¼ NGðG1;G2;CÞðV Þ for any vertex v 2 V ðGðG1;G2;CÞÞ.

Suppose that t ¼ k þ 1. Obviously, G1 and G2 are isomorphic to the com-

plete graph Kkþ1. By brute force, we can check that GðG1;G2;CÞ is super-

connected for k ¼ 1; 2; 3. When kP 4, set F ¼ fa0; at	2; at	1g [ fbij06
i6 t 	 3g. It is easy to see that jF j ¼ k þ 2, F 6¼ NGðG1;G2;CÞðvÞ, and F is a vertex
cut of GðG1;G2;CÞ. Hence, GðG1;G2;CÞ is not super-connected.

Now, assume that t > k þ 1 with kP 3. We set X1 ¼ F \ V ðG1) and

X2 ¼ F \ V ðG2Þ.

Case 1. jX1j < k and jX2j < k. GðG1;G2;CÞ 	 F is connected with the same

argument in Theorem 1.

Case 2. Either k6 jX1j6 k þ 2 or k6 jX2j6 k þ 2. We assume without loss of

generality that k6 jX1j6 k þ 2; then jX2j6 2 and G2 	 X2 is connected. Let C be

any connected component of G1 	 X1. We will claim that there exists ai 2 C
such that at least one of ðai; bi	1 ðmod tÞÞ; ðai; biÞ is in C. With this claim,

GðG1;G2;CÞ 	 F is connected.

First, if C consists of only one vertex ai, then NG1
ðaiÞ � F . Since

F 6¼ NGðG1;G2;CÞðaiÞ, at most one of bi; bi	1 ðmod tÞ lies in F. Thus, the claim holds.

Now, if C contains at least two vertices ai and aj. Since jX2j6 2, we may assume
bi	1 ðmod tÞ 62 F . Thus, our claim holds.

The theorem is proved. �

A similar argument leads to the following results.

Theorem 6. Assume that t is an integer with tP 2. Let G1 and G2 be two
k-regular maximum edge connected graphs with t vertices such that V ðG1Þ ¼
faij06 i < tg and V ðG2Þ ¼ fbij06 i < tg. Let C be a set of edges given
by C ¼ fðai; biÞj06 i < tg [ fðbi; aiþ1 ðmod tÞÞj06 i < tg. Then, GðG1;G2;CÞ is
ðk þ 2Þ-regular super-edge-connected if (1) t > k þ 1 with k P 2 or (2) t ¼ k þ 1
with kP 1.
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Assume that c, d, r are integers with rP 0, d > 1, and 16 c < d. It is pro-
posed in [8] that the recursive circulant graph RCðc; d; rÞ as the circulant graph
Gðcdr; f1; d; . . . ; ddlogd cdre	1gÞ. For 06 i < d, let V r

i denote the set fjj06 j < cdr,

j ¼ iðmoddÞg. We use RCiðc; d; rÞ to denote the subgraph of RCðc; d; rÞ induced
by V r

i . For a positive integer N, let ZN be the additive group of residue classes

modulo N. We can recursively describe RCðc; d; rÞ as follows: Assume that

r ¼ 0. Then RCðc; d; 0Þ is the graph with V ðRCðc; d; 0ÞÞ ¼ f0g and

EðRCðc; d; 0ÞÞ ¼ ; if c ¼ 1, V ðRCðc; d; 0ÞÞ ¼ f0; 1g and EðRCðc; d; 0ÞÞ ¼
fð0; 1Þg if c ¼ 2, and V ðRCðc; d; 0ÞÞ ¼ Zc and EðRCðc; d; 0ÞÞ ¼ fði; iþ 1Þji 2 Zcg
if cP 3. Assume that rP 1. The induced subgraph RCiðc; d; rÞ is isomorphic to
RCðc; d; r 	 1Þ for 06 i < d: More precisely, let f r

i be the function from Zcdr	1

into V r
i defined by f r

i ðxÞ ¼ dxþ i. Then, f r
i induces an isomorphism from

RCðc; d; r 	 1Þ into RCiðc; d; rÞ. Let Hðc; d; rÞ denote the set of edges of

RCðc; d; rÞ not in [d	1
i¼0 ðEðRCiðc; d; rÞÞÞ: Then, Hðc; d; rÞ ¼ fði; iþ 1Þji 2 Zcdrg.

Suppose d P 3. Then, RCðc; d; rÞ can be expressed as GðH ;H ; . . . ;H ;MÞ,
with d H�s, where H is RCðc; d; r 	 1Þ for some M ¼ [d	1

i¼0 Mi;iþ1 ðmod dÞ. Suppose

d ¼ 2. Then, RCðc; d; rÞ can be expressed as GðH ;H ;CÞ, where H is

RCðc; d; r 	 1Þ. Recursively applying Theorems 3–6, we can easily prove that
RCðc; d; rÞ is super-connected unless (1) r ¼ 0 and cP 5 or (2) r ¼ 1, c ¼ 1, and

d P 5; and super-edge-connected unless (1) r ¼ 0 and cP 4, (2) r ¼ 1, c ¼ 1,

and d P 4, or (3) r ¼ 1, c ¼ 2, and d ¼ 3.

Corollary 3. Let t be an integer with tP 2. Assume that G1 and G2 are two k-
connected and k0-edge connected graphs with t vertices. Then, GðG1;G2;CÞ is
ðk þ 2Þ-connected and ðk0 þ 2Þ-edge connected.
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