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Abstract

Let G = (V,E) be a k-regular graph with connectivity x and edge connectivity 1. G is
maximum connected if k¥ = k, and G is maximum edge connected if A = k. Moreover, G is
super-connected if it is a complete graph, or it is maximum connected and every mini-
mum vertex cut is {x|(v,x) € E} for some vertex v € V; and G is super-edge-connected
if it is maximum edge connected and every minimum edge disconnecting set is
{(v,x)|(v,x) € E} for some vertex v € V. In this paper, we present three schemes for
constructing graphs that are super-connected and super-edge-connected. Applying these
construction schemes, we can easily discuss the super-connected property and the super-
edge-connected property of hypercubes, twisted cubes, crossed cubes, mobius cubes,
split-stars, and recursive circulant graphs.
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1. Introduction

For the graph definitions and notations we follow [2]. G = (V, E) is a simple
graph if V is a finite set and E is a subset of {(a,b)|(a,b) is an
unordered pair of V}. We say that V'is the vertex set and E is the edge set. The
neighborhood of v, N(v), is {x|(v,x) € E}. The neighbor-edge of v, NEg(v), is
{(v,x)|(v,x) € E}. The degree of a vertex v, denoted by deg(v), is the number of
vertices in Ng(v). A graph G is k-regular if deg;(v) = k, for every vertex v € V.

A vertex cut of a graph G is a set S C V(G) such that G — S has more than
one connected component. It is known that only complete graphs do not have
vertex cuts. The connectivity of G, written x(G), is defined as the minimum size
of a vertex cut if G is not a complete graph, and x(G) = |V(G)| — 1 if otherwise.
A graph G is k-connected if £ < k(G). Assume that G is a k-regular graph with
connectivity k. We say that G is maximum connected if k = k; and G is super-
connected if it is a complete graph, or it is maximum connected and every
minimum vertex cut is Ng(v) for some vertex v.

An edge disconnecting set is a set F C E(G) such that G — F has more than
one connected component. A graph is k-edge-connected if every disconnecting
set has at least k edges. The edge connectivity of G, written A(G), is the mini-
mum size of an edge disconnecting set. Assume that G is a k-regular graph with
edge connectivity 1. A graph G is k-edge-connected if £ < 2(G). We say that G
is maximum edge connected if 2=k, and G is super-edge-connected if it
is maximum edge connected and every minimum edge disconnecting cut is
NE;(v) for some vertex v.

The architecture of an interconnection network is usually represented by a
graph. There are numerous mutually conflicting requirements in designing the
topology of interconnection networks. Network reliability is one of the major
factors in designing the topology of an interconnection network. It has been
shown that a network is more reliable if it is super-connected [3,4,9]. Some
important families of interconnection networks have been proven to be super-
connected [3,4,9]. In this paper, we present three schemes to construct super-
connected and super-edge-connected graphs. With these construction schemes,
we can easily discuss the super-connected property and the super-edge-con-
nected property of hypercubes, twisted cubes, crossed cubes, mobius cubes,
split-stars, and recursive circulant graphs.

2. The first constructing scheme

Assume that ¢ is a positive integer. Let G; and G, be two graphs with ¢
vertices, and M be any arbitrary perfect matching between the vertices of G,
and G,; i.e., a set of ¢ edges with one endpoint in G;, and the other endpoint
in G,. The graph G(G,Gy; M) is defined as a graph with the vertex set
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V(G(Gy,Gy; M) = V(G) UV(G,), and edge set E(G(Gy,Gy;M)) = E(Gy)U
E(G,) UM. We note that the cartesian product of a graph H and a complete
graph K, can be viewed as a G(H,H; M) for some M.

Theorem 1. Assume that t is a positive integer. Let G| and G, be two k-regular
maximum connected graphs with t vertices, and M be any perfect matching be-
tween V(Gy) and V(G,). Then, G(Gy, Gy; M) is (k + 1)-regular super-connected
ifand only if 1)t >k+1or Q) t=k+ 1 withk=0,1,2.

Proof. Since G| and G, are k-regular connected graphs, ¢t > k + 1. By definition,
G(G1,Gy; M) is a (k + 1)-regular graph. To prove G(G, G,; M) is super-con-
nected, we need to check if G(Gy,Gy;M)—F is connected for any
F C V(G(G,Gy;M)) such that |F| =k + 1 and F # Ng(6,,6,.m)(v) for any ver-
tex v € V(G(G], Gz,M))

Suppose that = k£ + 1. Obviously, G| and G, are isomorphic to the complete
graph K. ;. Moreover, G(G, G»; M) is isomorphic to the cartesian product of
K1 and K,. Without loss of generality, we assume that V' (G,) = {ao, a1, ..., a}
and V(Gy) = {bo, by, ..., by}, where b; is the vertex matched with a; under M for
every i. By brute force, we can check that G(G,, Gy; M) is super-connected for
k=0,1,2. When k > 3, we set F = {ag,a; } U {b;|2 <i<k}.Itiseasy to see that
|F| =k+1, F# Ngec,m(v), and F is a vertex cut of G(Gi,Gy;M). So
G(Gy, Gy; M) is not super-connected.

Now, assume that ¢ > k + 1. Since K| is the only connected O-regular graph
and K, is the only connected 1-regular graph, let k > 2. We set X; = F N V(G))
and X2 =FnN V(Gz)

Case 1. [Xj| < k and |X5| < k. Thus, both G, — X; and G, — X, are connected.
Since t=|M|>k+1 and |F|=k+1, there exists a € V(G;) —F and
b € V(G,y) — F such that (a,b) € M. Thus, G(G,, G; M) — F is connected.

Case 2. Either k< |Xj|<k+ 1 or k< |Xa| <k + 1. We assume without loss of
generality that £ < |X;| <k + 1. Hence, |X3| < 1. Since k£ > 2, G, — X; is con-
nected. Let C be any connected component of G; — X;. We will claim that there
exists @ € C and b € V(G,) — F such that (a,b) € M. With this claim, G(Gj,
G,; M) — F is connected.

First, if C consists of only one vertex a, then Ng, (a) C F. Let b be the vertex
in G, with (a,b) € M. Since F # Ngg, 6,m)(a), b € V(G,) — F. Thus, the claim
holds. Now, if C contains at least two vertices @ and a’. Let b, b’ be the matched
vertices of a, a’ in G,, respectively. Since at most one vertex of G, is in F, we
may assume b ¢ F. Thus, our claim holds.

Therefore, the theorem is proved. [
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A similar argument leads to the following theorem for super-edge-con-
nected, and the corollary.

Theorem 2. Assume that t is a positive integer. Let G| and G, be two k-regular
maximum-edge-connected graphs with t vertices, and M is any perfect matching
between V(Gy) and V(Gy). Then, G(Gy,Gy; M) is (k + 1)-regular super-edge-
connected if and only if (1)t > k+1or Q) t=k+1 withk=0.

Corollary 1. Assume that t is a positive integer. Let G, and G, be two k-con-
nected and k'-edge connected graphs with t vertices, and M is any perfect
matching between V(G,) and V(G,). Then, G(Gy,Gy; M) is (k + 1)-connected
and (k' + 1)-edge connected.

Network topology is always represented by a graph where vertices represent
processors and edges represent links between processors. Among these topol-
ogies, the binary hypercube [7], O,, is one of the most popular topology. The
hypercube Q, can be recursively defined as O, = K, and Q, is the cartesian
product of O, ; and K,. The super-connected property and the super-edge-
connected property of hypercubes are discussed in [4,9]. Here, we reprove this
result. Recursively applying Theorems 1 and 2, we can easily prove that Q, is
super-connected for every n and super-edge-connected if n # 2.

Twisted cubes [1], crossed cubes [6], and mobius cubes [5] are derived by
changing the connection of some hypercube links according to some specified
rules.

In [1], the twisted n-cube TQ, is defined for odd values of n. The vertex set of
the twisted n-cube 70, is the set of all binary strings of length n. Let
U= U, \U,_>...u Uy be any vertex in 70,. For 0 <i<n — 1, let the ith parity
function be P(u) = u; D u;_| & - - - ® uy, where @ is the exclusive-or operation.
We can recursively define 70, as follows: A twisted 1-cube, 70, is a complete
graph with two vertices 0 and 1. Suppose that n > 3. We can decompose the
vertices of TQ, into four sets, 70", 70"',, 70", and 7Q!', where TQ?,
consists of those vertices u with wu, ;=i and u, ,=j. For each
(i,/) € {(0,0),(0,1),(1,0),(1,1)}, the induced subgraph of 7Q", in TQ, is
isomorphic to 7Q, ». The edges that connect these four subtwisted cubes can
be described as follows: Any vertex u, u, »---ujuy with P, 3(u) = 0 is con-
nected to #,_ju,_>---ujuy and u,_ju,_s ... ujuy;, and to u,_1i,_»...uuy and
Uy Up_) ... UUY if P,,_3(1/l) =1.

From the definition, both the subgraph induced by TQSf2 U TQif)z and the
subgraph induced by 7Q"', U TQ!', are isomorphic to 70, » x K,, where K,
is the complete graph with two vertices. Moreover, the edges joining
70°°, U T}, and TQ"', U TQ}', form a perfect matching of 7Q,. Recursively
applying Theorems 1 and 2, we can easily prove that 70, is super-connected
and super-edge-connected for every odd n.
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Two two-digit binary strings x = x;xo and y = y;)y are pair related, denoted
by x ~y, if and only if (x,y) € {(00,00),(10,10),(01,11),(11,01)}. An n-
dimension crossed cube CQ, [6] is a graph CQ, = (V,E) that is recursively
constructed as follows: CQ, is a complete graph with two vertices labeled by 0
and 1. CQ, consists of two identical (n — 1)-dimension crossed cubes, CQ°
and CQ! . The vertex u = Ou, > ---ug € V(CQ°_,) and vertex v = lv, - vy €
V(CQ! ) are adjacent in CQ, if and only if (1) u,_» = v,» if n is even; and (2)
for 0<i< L(l’l — 1)/2J, Ui 1 Ui ~ U2t 1D2;.

From the definition, CQ, can be viewed as G(CQ,_1,CQ,_i; M) for some
perfect matching M. Recursively applying Theorems 1 and 2, we can easily prove
that CQ, is super-connected for every n and super-edge-connected if n £ 2.

The mobius cube [5], MO, = (V,E), of dimension n has 2" vertices. Each
vertex is labeled by a unique n-bit binary string as its address and has con-
nections to n other distinct vertices. The vertex with address X = x,,_1x,_2 - - - X
connects to n other vertices Y;, 0 <i<n — 1, where the address of ¥; satisfies (1)
Y = (X1 - X Xi - - Xo) if X = 0501 (2) Vi = (1 - X1 X7 %0) if x4 = 1.

From the above definition, X connects to ¥; by complementing the bit x; if
x;ir1 = 0, or by complementing all bits of x; - - - x if x;;; = 1. For the connection
between X and Y, |, we can assume that the unspecified x, is either 0 or 1,
which gives slightly different topologies. If x, is 0, we call the network generated
the “0-mobius cube”, denoted by 0-MQ,; and if x, is 1, we call the network
generated the “1-mobius cube”, denoted by 1-MQ,.

According to the above definition, 0-MQ,,; and 1-MQ,.| can be recursively
constructed from a 0-MQ, and a 1-MQ, by adding a perfect matching. Re-
cursively applying Theorems 1 and 2, we can easily prove that every 0-MQ,
or 1-MQ, is super-connected for every n and super-edge-connected if n # 2.

Assume n is a positive integer. The alternating graph A, [3] is an attrac-
tive interconnection graph topology. V' (4,) = {plp = pip> - - - pn—> With p; € {1,
2,...,n}for 1< i<n—2and p; # p; if i # j} and E(4,) = {(p,q)| there ex-
ists a unique i € (n — 2) such that p; # ¢;}. In [3], split-star S? is proposed as an
attractive interconnection network. V(S?) = {p|p = popip> - - p.—> With py €
{0,1}, ppe{1,2,...,n} for 1<i<n—2, and p;#p; if i#,j#0} and
E(S?) = {(p,q)| there exists a unique i with 0 <i<n — 2 such that p; # ¢;}.

It is pointed out in [3] that S? can be viewed as G(4,,4,; M). Moreover, it is
proved that A4, is super-connected unless n = 4 and super-edge-connected for
any n. Applying Theorems 1 and 2, we can easily reprove the result in [3] that
S? is super-connected for any n and super-edge-connected unless n = 3.

3. The second constructing scheme

Let r and ¢ be positive integers with » > 3. Assume that Gy, Gy,...,G,_; are
graphs with |V(G,)| = tfor 0<i<r — 1. We define H = G(Gy, Gy, -+, G,_; M)
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with V(H) = V(GO)U V(G)U...UV(G,-y) and E(H)=.#U|_ 1E( G),
where /4 = Uffo M; i1 (modr) w1th M, i+1(modr) 18 any arbitrary perfect matching
between V' (G;) and V(Gii1 (modr))-

Theorem 3. Let r and t be positive integers with r > 3. Assume that
Go, Gy, ...,G,| are k-regular maximum connected graphs with |V(G;)| =t for
0<i<r—1and 4 =\J_ 'M,,H (modr)> Where My modr) is any arbltrary per-
fect matching between V(G;) and V(G,H (modr))- Then, H = G(G,,Gy,...,
G._1; M) is (k + 2)-regular super-connected if and only if 1) k=1 0r 2) k=0
and r = 3,4,5.

Proof. Because Gy, Gy,...,G,_, are k-regular connected graphs, ¢ =k + 1, by
definition, H is a (k + 2)-regular graph. To prove H is super-connected, we
need to check if H — F is connected for any vertex subset F of H such that
|F| =k +2and F # Ny(v) for any vertex v € V(H). We set X; = F N V(G;) for
i=01,...,r—1.

Case 1. |[X;| <kfori=0,1,---,7— 1. Then, G; — X; is connected for every i.

Suppose that |.X; U Xi: 1 mod )| <k for 0 <i<r— 1. By Theorem 1, there exist
x; € V(Gi) — F and X1 (modr) € V(Gis1(modr)) — F such that (x;,Xii1(modr) €
M, i1 (modr)- Thus, H — F is connected

Suppose that &+ 1 < |X; UXii1 moar)| <k +2 for some i. Without loss of
generality, we may assume that k + 1 <|Xo U X;| <k + 2 and |Xp| = |X;]. Since
|Xi| <k, |Xo| = 2. Thus, |X;UXiiimodrn| <k for 1<i<r—1. Suppose that
k< 1. Then, |X;| = 0 for every i. Since F = |J_| X;, |[F| = 0. This is impossible.
Thus, k > 2. By Theorem 1, G(G;, Giy (mod r); Mii+1 (mod r)) — (X U X (modr)) is
connected for 1 <i<r— 1. Hence, H-F is connected.

Case 2. |X;| >k for some i. Without loss of generality, we assume that
k<‘X0|<k+2 |X0‘ = |X| for 1<l<r— 1, and ‘Xl| = |X_1|.

Subcase 2.1. ¢ > k+ 1. Thus, G; is not a complete graph. Hence, £ > 1. By
Theorem 1, G(G;, Gis1 (modr); Miit1 (modr)) 18 (k + 1)-regular super-connected for
0<ig<r—-1.

Suppose that |[X,UX;|=4k. Then, |X|=4% |Xi|=|X,—1|]=0, and
|X; UXii| <k for 0<i<r—2. Then, G(G;, Giy1; Mi1) — (X; UXiy) is con-
nected for 0 <i<r»— 2. Hence, H — F is connected.

Suppose that |Xo UX | =k + 1. Then, G(Gy, Gi;My1) — (Xo UX;) is con-
nected unless Xo U X = Ng(G,.6,:m,) (X) for some vertex x € V(Go) UV (G)).

Suppose that G(Gy, Gi; Mp;) — (Xo UX;) is connected. H — F is connected
because G(Gi, Gt (modr); Miit1 (modr)) — (Xi UXisi(moar)) 1s also connected for
1<i<r—1.
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Suppose that Xo UX, = Ng 6,.6,:m,,)(x) for some vertex x € V' (Gy) UV (G)).
Since |Xo| = k,x € V(G)). Let x; be the vertex in V(G;) such that (x,x;) € My,
and x,_; be the vertex in V(G,_;) such that (x,_i,x) € M,_ . Obviously, x; is
the only vertex in X;. Since G is k-connected with k > 1, G; — {x;} is con-
nected. Let y be any vertex of V' (Gy) with y # x, and y; be the vertex in V' (G))
such that (y,y) € Mp;. Hence, y ¢ F since y # x;. Therefore, G(Gy,
Gi; M) — (XoUX, U{x}) is connected. Since F # Ny(x),x,_; ¢ F. Since
|X;]<1 for 1<i<r—1, G(G;,Giy1;M;;41) — (X; UX:y1) is connected for
1 <i<r -2 follows from Theorem 1. Thus, H — F is connected.

Suppose that | X, UX;| = k + 2. Then, |X;| = 0 for 2<i<r— 1. Let xy be any
vertex of V(Gy) — F and x,_; be the vertex such that (x,_;,xy) € M,_. Obvi-
ously, x,_; ¢ F. Similarly, let x; be any vertex of V(G;) — F and x, be the vertex
such that (x;,x,) € M;,. Obviously, x, ¢ F. Since |X;| =0 for 2<i<r—1,
either G(G;, G113 M;01) — (X; UX:yy) is connected for 2<i<r — 2 with r > 3
or G, — X, is connected with » = 3. Hence, H — F is connected.

Subcase 2.2. t = k + 1. Thus, every G; is isomorphic to complete graph K, ;.
Since K| contains k + 1 vertices, k < |Xp| <k + 1.

Suppose that £ = 0. Then, H is isomorphic to the cycle C.. It is easy to check
H is super-connected if and only if » = 3,4, 5. Thus, we consider k£ > 1.

Suppose that |Xy| = k£ + 1. Thus, |U::_11X,| = 1. By Corollary 1, G(G;, G, 1;
M) is (k+ 1)-connected for 1<i<r—2. Thus, G(G;, Gi1;Mi1)—
(X; UX;11) is connected for 1 <i<r— 2. Hence, H — F is connected.

Suppose that |Xy| = k. Thus, there is only one vertex aq in V(Gp) — F.

Assume that k=1. Then, [X;|<1 for 0<i<r—1. Suppose that
X UX; 1| <1 for 0<i<r—2. Thus, G(G;, Giy1;M;;11) — (X; UX;y) is con-
nected for 0<i<r—2. So H — F is connected. Suppose |X; UX;, | =2 for
some i. We may without loss of generality assume that |[X; UX;| = 2. In this
case, we may label the vertices of V(G;) as a;, a; for 0<i<r—2 with
(aiyair1) € M1 and (a},a;,) € Mijp1.

Suppose that G(Gy, G1;Mp1) — (Xo UX;) is disconnected. Without loss of
generality, we assume that ¢, € F and a; € F.

Suppose that r=3. Since F # Ny(d}), a) ¢ F. Thus, G(Gy,Gy; M 2)—
(X1 UX3) is connected. a, € F since | X;| = 1. So a), € Ny(ay) since F # Ny(ap).
Thus, G(Gy, G2; My2) — (Xo UX>) is connected. Hence, H — F is connected.

Suppose that » > 3. Since F # Ny(ag) and F # Ny(d}), a) ¢ F and 6, ¢ F
where a,., is the vertex such that (ap,a, 1) € My,_1. Thus, G(Gy,Gy;
Mi,) — (X1 UXy) and G(Gy,G,_1;My,—1) — (Xo UX,_) are connected. Obvi-
ously, G(G;, Gi11; M;i11) — (X U Xiy) is connected for 2 <i<r — 2. Therefore,
H — F is connected.

Suppose that G(Gy, Gi; Moy,;) — (Xo U X7) is connected. We may without loss
of generality assume that qj € F and a] € F.
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Suppose r = 3. Since F # Ny(a,), either (1) a; € F and a, ¢ F; or (2) d) ¢ F,
a, € F, and (Clo,a/z) S M()ﬂz. In the first case, G(Gl,Gz;MLz) — (X] UXz) is
connected; and in the second case, G(Gy, Go; My») — (Xo UX>) is connected.
Hence, H — F is connected.

Suppose that » > 3. Since |[F — (X, UX;)| = 1, we may without loss of gen-
erality assume that |[X;| = 0. So G(Gy, Gy; M) — X, is connected. G(G;, Giyy;
M) — (X; UX;y) is connected for 2<i<r—2 because |X;UX.|<k. So
H — F is connected.

Now, we consider £ > 1. Let a; € V(Gy) and (ap,a;) € Mp,;.

Suppose that a; ¢ F. Thus, G(Go, Gi;My,) — (Xo UX;) is connected. For
i=12...,r=2, G(G,Gi;M;;11) — (X;UX;,) 1is connected because
|X; U X, 1| <k. Therefore, H — F is connected.

Suppose that a; € F. Let a.; be a vertex in V(G,_;) such that
(ag,a,-1) € My,—;. Since F?'éNH(ao)»ar 1 € F. Thus, G(Go,G,—1;Mo,—1)—
(Xo UX,_,) is connected. Fori =1,2,.. -2, G(Gi, Giy1; M) — (X UXi41)
is connected because |X; U X, | < k. Therefore, H — F is connected.

The theorem is proved. [
With a similar argument as above, we have the following results.

Theorem 4. Let r and t be positive integers with r = 3. Assume that
G, Gy, ...,G,_| are k-regular maximum edge connected graphs with |V(G;)| =t
SJor 0<i<r—1 and M =J_ IM,,H modr) With M1 (mody) IS any arbitrary
perfect matching between V(G;) and V( i+1(modr)). Then, H= G(Gy,G, ...,
G._1; M) is (k+ 2)-regular super-edge-connected if and only if (1) k =2, (2)
k=1andr #3,0r (3) k=0 and r =3.

Corollary 2. Let r and t be positive integers with r > 3. Assume that
Gy, Gi,...,G,y are k-connected and k'-edge connected graphs with |V(G;)| =t
Jor 0<i<r—1 and M = VU OMUH modr)> Where M1 (modr) IS any arbitrary
perfect matching between V(G;) and V(Giii(modr). Then, H = G(Gy,
Gi,...,G,_1; M) is (k + 2)-connected and (k' + 2)-edge-connected.

4. The third constructing scheme

Assume that ¢ is an integer with 7 > 2. Let G| and G, be two graphs with ¢
vertices such that V' (Gy) = {a;|0<i < t} and V(G,) = {b:]0 <i < t}. Let € be
a set of edges given by % = {(a;,5;)|0<i <t} U{(b;,ai1(moa )]|0<i < t}.
The graph G(Gy,G,;%) is defined to be the graph with the vertex set
V(G(Gl, Gz; (6)) = V(Gl) @] V(Gz), and edge set E(G(Gl, GQ,(g)) = E(Gl) @]
E(G)U%.
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Theorem 5. Assume that t is an integer witht = 2. Let G| and G, be two k-regular
maximum connected graphs with t vertices such that V(G,) = {a;|0 <i < t} and
V(Gy) ={bi|0<i<t}. Let € be a set of edges given by € = {(a;b;)|
0<i <t} U{(bi,ait1(moa)|0<i < t}. Then, G(Gi,G»;%) is (k—+2)-regular
super-connected if (1)t > k+1withk =23 o0r Q)t=k+ 1 withk=1,23.

Proof. Since G| and G, are k-regular connected graph, ¢ > k + 1. By definition,
G(Gy,Gy; %) is (k+ 2)-regular. To prove G(Gy, G,; %) is super-connected, we
need to check if G(Gy,G,; %) — F is connected for any F C V(G(Gy, G2; %))
such that |[F| = k 4+ 2 and F # Ng(q, 6, (V) for any vertex v € V(G(G,, G»; 6)).

Suppose that ¢t = k + 1. Obviously, G; and G, are isomorphic to the com-
plete graph K;.,. By brute force, we can check that G(G,G,;%) is super-
connected for k=1,2,3. When k=>4, set F={ap,a,.2,a_1}U{b]0<
i<t—3}. Itiseasy to see that |F| =k + 2, F # Ng, 6,%)(v), and Fis a vertex
cut of G(Gy, Gy; %). Hence, G(Gy, G,; %) is not super-connected.

Now, assume that ¢>k+1 with £ >3. We set X, =FNV(G,) and
X, = FNV(Gy).

Case 1. |X|| <k and |X3| < k. G(Gy,Gy; %) — F is connected with the same
argument in Theorem 1.

Case 2. Either k< |Xj|<k+2 or k< |Xo| <k + 2. We assume without loss of
generality that k < |X;| <k + 2, then |X5| <2 and G, — X, is connected. Let C be
any connected component of G; — X;. We will claim that there exists a; € C
such that at least one of (a;,b; 1 (mods)), (@:,b;) is in €. With this claim,
G(Gy, G,;€) — F is connected.

First, if C consists of only one vertex a;, then Ng (a;) C F. Since
F # NgG, 6,:¢)(a;), at most one of b;, b;_i moay lies in F. Thus, the claim holds.
Now, if C contains at least two vertices ¢; and a;. Since |X>| < 2, we may assume
bi_1 (mods) € F. Thus, our claim holds.

The theorem is proved. O

A similar argument leads to the following results.

Theorem 6. Assume that t is an integer with t = 2. Let G, and G, be two
k-regular maximum edge connected graphs with t vertices such that V(G,) =
{aill0<i <t} and V(G,) ={b|0<i<t}. Let € be a set of edges given
by € ={(a;,0)|0<i <t} U{(bi; 01 (modn)|0<i < t}. Then, G(Gi,Gr;%) is
(k + 2)-regular super-edge-connected if (1) t > k+ 1 withk=22o0r 2)t=k+1
with k = 1.
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Assume that ¢, d, r are integers with » > 0, d > 1, and 1 <c¢ < d. It is pro-
posed in [8] that the recursive circulant graph RC(c,d, r) as the circulant graph
G(ed';{1,d,...,d"e1-1}) For 0<i < d, let /" denote the set {j|0<j < cd",
j =i(modd)}. We use RC;(c,d, r) to denote the subgraph of RC(c,d,r) induced
by V7. For a positive integer N, let Zy be the additive group of residue classes
modulo N. We can recursively describe RC(c,d,r) as follows: Assume that
r=0. Then RC(c,d,0) is the graph with V(RC(c,d,0)) ={0} and
E(RC(c,d,0))=0 if ¢c=1, V(RC(c,d,0)) ={0,1} and E(RC(c,d,0)) =
{(0,1)}ifc =2, and V(RC(c,d,0)) = Z. and E(RC(c,d,0)) = {(i,i + 1)|i € Z.}
if ¢ = 3. Assume that » > 1. The induced subgraph RC;(c,d, r) is isomorphic to
RC(c,d,r — 1) for 0<i < d. More precisely, let /7 be the function from Z_,
into V) defined by f/(x) =dx+i. Then, f/ induces an isomorphism from
RC(c,d,r — 1) into RCi(c,d,r). Let H(c,d,r) denote the set of edges of
RC(c,d,r) not in U} (E(RCi(c,d,r))). Then, H(c,d,r) = {(i,i+ 1)|i € Za}.

Suppose d = 3. Then, RC(c,d,r) can be expressed as G(H,H,...,H; /),
with d H’s, where H is RC(c,d,r — 1) for some .4 = U M; ;11 moda). SUppOSse
d =2. Then, RC(c,d,r) can be expressed as G(H,H;%), where H is
RC(c,d,r —1). Recursively applying Theorems 3-6, we can easily prove that
RC(c,d,r) is super-connected unless (1) r =0and ¢ > 5or 2) r=1,c =1, and
d = 5; and super-edge-connected unless (1) r=0and ¢ >4, Q) r=1,c=1,
andd >4,or(3)r=1,c=2,and d = 3.

Corollary 3. Let t be an integer with t = 2. Assume that Gy and G, are two k-
connected and k'-edge connected graphs with t vertices. Then, G(G,G,;€) is
(k + 2)-connected and (k' 4 2)-edge connected.
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