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Asymptotic Critical Transmission Radii for Greedy
Forward Routing in Wireless Ad Hoc Networks
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Abstract—In wireless ad hoc networks, greedy forward routing
is a localized geographic routing algorithm in which one node
discards a packet if none of its neighbors is closer to the
destination of the packet than itself, or otherwise forwards the
packet to the neighbor closest to the destination. If all nodes
have the same transmission radii, the critical transmission radius
for greedy forward routing is the smallest transmission radius
which ensures packets can be delivered by greedy forward
routing through any source-destination pair. In this paper, we
study asymptotic critical transmission radii of randomly deployed
wireless ad hoc networks. Assume network nodes are represented
by a Poisson point process of density n over a unit-area convex
compact region whose boundary curvature is bounded. We

show that the ratio of critical transmission radii to
√

ln n
πn

is

asymptotically almost surely equal to

√
1/
(

2
3
−

√
3

2π

)
≈ 1.6.

Index Terms—Wireless ad hoc networks, greedy forward
routing, critical transmission radii, random deployment.

I. INTRODUCTION

A wireless ad hoc network is a collection of wireless
devices distributed over a geographic region. Each ad

hoc device is equipped with an omnidirectional antenna. A
communication session is established either through a single-
hop radio transmission if the communication party is close
enough, or through relaying by intermediate devices otherwise.
The selection of intermediate relay nodes is determined by
routing algorithms. Greedy forward routing (abbreviated by
GFR) is one of the localized geographic routing algorithms
proposed in literature.

In GFR, one node discards a packet if none of its neigh-
bors is closer to the destination of the packet than itself,
or otherwise forwards the packet to the neighbor closest to
the destination. Therefore, each packet should contain the
location of its destination, and each node only needs to
maintain the locations of its one-hop neighbors. GFR can be
implemented in a localized and memoryless manner. There
are some variations of GFR. For example, in [1] and [2], the
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Fig. 1. u is a source node and v is the corresponding destination node.

shortest projected distance to the destination on the straight
line joining the current node and the destination node is
considered as the greedy metrics. In [1], packets are allowed
to be sent backward if there is no forwarding neighbor. In
[2], only nodes whose Voronoi cells intersect with the source-
destination line segment are eligible for being relay nodes.
Here the Voronoi cell of a node is the set of points in the
plane that are closer to the node than to any other node [3].

Due to existence of local minima where none of neighbors
is closer to the destination than the current node, a packet
may be discarded before arriving its destination. To ensure
that every packet can arrive its destination, all nodes should
have sufficiently large transmission radii to avoid being local
minima. For points x, y ∈ R

2 and a positive real number r,
let B (x, r) denote the open disk of radius r centered at x,
‖x‖ denote the Euclidean norm of x, and ‖x − y‖ denote
the Euclidean distance between x and y. Consider Fig. 1.
Let u be a source or relay node, v be the corresponding
destination node, and wi denote nodes other than u and v.
Nodes that can relay packets for u toward v must be in the
region B (u, ‖u − v‖)∩B (v, ‖u − v‖) based on the following
observations. If wi can relay packets for u toward v, it must
be closer to v than u, i.e. ‖v − wi‖ < ‖v − u‖ or equivalently
wi ∈ B (v, ‖u − v‖). w2, w3, w4 satisfy this rule and w1 does
not. On the other hand, if no one can relay packets for u,
packets should be directly transmitted from u to v. So, in
the worst case, u at most needs to set its transmission radius
to ‖u − v‖. This implies candidates of relay nodes must be
in B (u, ‖u − v‖). For example, in Fig. 1, w4 can’t be a
candidate of relay nodes. Thus, only w2 and w3 can relay
packets for u toward v. In addition, if the transmission radius is
set to min (‖w2 − u‖ , ‖w3 − u‖), u has at least one neighbor
to relay packets. The procedure of selecting the minimal
transmission radii to ensure either u can send packets directly
to v or there exists at least one node to relay packets for u
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toward v can be expressed as minwi∈B(v,‖u−v‖) ‖wi − u‖. For
a given point set V in the plane, let

ρ (V ) = max
(u,v)∈V 2

u�=v

(
min

w∈B(v,‖u−v‖)∩V
‖w − u‖

)
. (1)

It is the the maximum of minw∈B(v,‖u−v‖)∩V ‖w − u‖ over
all (u, v) pairs of nodes.

To eliminate local minima in the network, we choose
ρ (V ) as the transmission radius. According to the previous
discussion, any node u always can deliver packets toward
any other node. However, is ρ (V ) the optimal (smallest)
transmission radius for local-minimum-free? The answer is
positive. Consider the pair of nodes (u, v) that gives the value
ρ (V ). If the transmission radius is set less than ρ (V ), u
can’t directly send packets to v and there is no other node
that can relay packets for u toward v. So, u is a local
minimum w.r.t. v. So, ρ (V ) is the optimal one and called
the critical transmission radius for (local-minimum-free) GFR
that guarantees the deliverability of packets. In the rest of
this paper, the critical transmission radius for GFR is simply
written as the critical transmission radius and abbreviated as
CTR.

The analytic work of GFR can be dated back to 1984 by
Takagi and Kleinrock [1]. They studied the optimal trans-
mission radius to maximize the expected progress of packets
based on most forward and least backward routing strategy
in which every node delivers each packet to the neighbor (not
including itself) with the shortest projected distance to the des-
tination on the straight line joining the current node. However,
the deliverability of packets is not considered. Recently, Xing
et al. [2] (2004) show that in a fully covered homogeneous
wireless sensor network, if the transmission radius is larger
than 2 times of the sensing radius, the deliverability can
be guaranteed between any source-destination pair by greedy
forwarding schemes in which a packet is sent to the neighbor
either with the shortest Euclidean distance to the destination
[4] [5] or with the shortest projected distance to the destination
on the straight line joining the current node and the destination
node [1] and by bounded Voronoi greedy forwarding scheme
in which only those nodes whose Voronoi cells intersect
with the line segment between the source and destination are
eligible to relay the packet.

Another related and interesting problem in literature is
the longest edge of connected geometric graphs. Penrose [6]
(1997) [7] (1999) studied the longest edge of a minimal span-
ning tree which is corresponding to the critical transmission
radius for connectivity in random geometric graphs. Later, by
applying the percolation theory, Gupta and Kumar [8] had sim-
ilar results for wireless networks. Recently, Baccelli and Bor-
denave [9] (2007) introduced a structure called radial spanning
trees (RSTs) in which each node, excluding the root s at the
origin of the plane, has an edge to its closest neighbor among
nodes closer to the root s. The length of the longest edge
of RSTs can be given by max

u∈V,u�=s
min

w∈B(s,‖s−u‖)∩V
‖w − u‖.

If s is the only destination, then the value is the critical
transmission radius for local-minimum-free GFR.

In this paper, we study the deliverability by giving the
asymptotics of ρ (V ) where V is a Poisson point process.

Assume that the deployment region D is a convex compact
region whose boundary has bounded curvature. By scaling,
we assume D have unit area. Let Pn denote a Poisson point

process of density n over D. The ratio of ρ (Pn) to
√

ln n
πn is

asymptotically almost surely equal to

√
1/
(

2
3 −

√
3

2π

)
≈ 1.6.

The rest of this paper is organized as follows. In Section
II, we present our main results and show some possible
applications. In Section III, the proof of main results is
given, but most calculation details and related geometric and
probabilistic lemmas are left in the appendix. In Section
IV, simulation results were given to evidence our asymptotic
analysis. Our conclusions are in Section V.

II. MAIN RESULTS

Let D be a unit-area convex compact region with a bounded-
curvature boundary, and Pn denote a Poisson point process of
density n over D. Let β0 = 1/

(
2
3 −

√
3

2π

)
≈ 1.62. The main

result of this paper is the following theorem.
Theorem 1: For any ε > 0,

lim
n→∞

Pr

[
(1 − ε)

√
β0 lnn

nπ
≤ ρ (Pn) ≤ (1 + ε)

√
β0 ln n

nπ

]
= 1.

Since the converge is in probability, we remark Theorem 1

can’t be simplified to limn→∞ ρ (Pn) =
√

β0 lnn
nπ . Based on

Theorem 1, we have the following corollary.

Corollary 2: If the transmission radius is set to
√

β lnn
πn for

some constant β, we have
1) If β > β0, it is asymptotic almost sure that packets can

be delivered by GFR between any pair of nodes.1

2) If β < β0, it is asymptotic almost sure that packets can’t
be delivered by GFR between some pairs of nodes.

Possible Applications: In the rest of this section, we show
some possible applications of Theorem 1. Due to harsh de-
ployment environment coupled with a large amount of sensors
to be deployed, random deployment is unavoidable in many
applications of wireless ad hoc and sensor networks. At the
same time, owing to the constraint on the maximal transmis-
sion power, each wireless device can only communicate with
nearby nodes, and therefore connectivity of network topology
and deliverability of routing protocols are the most important
issue of randomly deployed networks. Our asymptotic research
results associated with simulation data can be a good reference
to the following problems and help us to improve energy
efficiency.

• Maximal transmission power: According to path loss
models of wireless communications, the maximal trans-
mission power is strongly related to the maximal trans-
mission radius and is a key parameter during the design
phase of wireless devices. The choosing of the maximal
transmission power can base on the maximal transmission

radius. Our results show that Θ
(√

ln n
n

)
is a good

reference for choosing the maximal transmission radius.2

1An event is said to be asymptotic almost sure (abbreviated by a.a.s.) if it
occurs with a probability converges to one as n → ∞.

2For two sequences fn and gn, we write fn = Θ (gn) if there exist
constants c1 > 0, c2 and n0 such that c1 |gn| ≤ |fn| ≤ c2 |gn| for all
n ≥ n0.
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u w v

Fig. 2. w is the intersection point of the segment uv and the circle B (u, rn).
The shaded area is B (u, rn)∩B (w, rn) which is contained in B (u, rn)∩
B (v, ‖u − v‖).

• The critical number of nodes: To deploy a WSN over a
region, if the transmission range of nodes is known, we
need to decide how many sensor nodes are enough such
that the network can be connected by routing algorithms.
By scaling the deployment region to unit-area and also
scaling the transmission radius by the same ratio, we can
have a critical number of nodes based on the theoretical
formula or simulation data.

• Light-weight routing algorithms: If geographic informa-
tion is available, greedy forward routing is easy to imple-
ment and requires few resources, but suffers from local
minimum problems. Therefore, some relatively complex
compensatory algorithms are needed to handle such ex-
ceptional situations. If the delivery rate can be predicted
and controlled above tolerable level or even more the
deliverability can be guaranteed, the pure greedy forward
routing is enough, and complex compensatory algorithms
are not necessary.

III. OUTLINE OF PROOF

This section is dedicated to the proof of Theorem 1.

A. Upper Bounds for the Critical Transmission Radius

For a given ε > 0, let β = (1 + ε)2 β0. The up-
per bound for ρ (Pn) given in Theorem 1, i.e. ρ (Pn) ≤
(1 + ε)

√
β0 ln n

nπ , can be proved by showing that if rn =√
β ln n

πn = (1 + ε)
√

β0 lnn
nπ , there a.a.s. don’t exist local

minima. For a pair of nodes (u, v), u is a local minimum w.r.t.
v if and only if ‖u − v‖ > rn and there are no other nodes
in B (u, rn) ∩ B (v, ‖u − v‖). Now, assume ‖u − v‖ > rn

and let w be the intersection point of the segment uv and the
circle ∂B (u, rn). See Fig. 2. For convenience, for any two
points x, y ∈ R2, the region B (x, ‖x − y‖)∩B (y, ‖x − y‖),
denoted by Lxy, is called the lune associated with x and
y, and the segment xy is called the waist of Lxy. Since
Luw ⊂ B (u, rn)∩B (v, ‖u − v‖), "there exist nodes in Luw"
implies "u is not a local minimum w.r.t. v". We shall show
that any lune whose waist is of length rn , e.g. like Luw, a.a.s.
covers some nodes. Thus, the network is local-minimum-free.
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Fig. 3. The graph of L (β).

We use # (S) to denote the cardinality of a countable set
S. For any finite point set V ⊂ D and any r > 0, define

S (V, r) = min
u,v∈D,‖u−v‖=r

# (V ∩ Luv) .

S (V, r), called the minimal scan statistics, is the minimal
number of nodes of V that can be covered by a lune whose
waist is fully contained in D and with length r. So, the event
S (Pn, rn) > 0 implies the event ρ (Pn) ≤ rn. An a.a.s. lower
bound for S (Pn, rn) will be given in Lemma 3 and implies
that if β > β0, S (Pn, rn) > 0 is a.a.s..

Let φ (μ) denote the function φ (μ) = 1 − μ + μ ln μ over
μ ∈ (0,∞). φ is strictly convex and has the unique minimum
zero at μ = 1. Let φ−1 : [0, 1) → (0, 1] be the inverse of the
restriction of φ to (0, 1]. We define a function L over (0,∞)
by

L (β) =
{

βφ−1 (1/β) if β > 1,
0 otherwise.

The graph of L (β) is illustrated in Fig. 3. We have the
following lemma.

Lemma 3: Suppose that nπr2
n = (β + o (1)) lnn for some

β > β0.3 Then for any constant β1 ∈ (β0, β), it is a.a.s. that

S (Pn, rn) >
1
2
L
(

β1

β0

)
ln n > 0.

A proof of Lemma 3 is given in the appendix and also can
be found in [10]. According to Lemma 3, we have ρ (Pn) ≤
rn = (1 + ε)

√
β0 ln n

πn is a.a.s..

B. Lower Bounds for the Critical Transmission Radius

The lower bound for ρ (Pn) given in Theorem 1, i.e.

(1 − ε)
√

β0 ln n
nπ ≤ ρ (Pn), will be proved in this subsec-

tion. For a given ε > 0, let β = (1 − ε)2 β0. The lower

bound can be proved by showing that if rn =
√

β ln n
πn =

(1 − ε)
√

β0 ln n
nπ , there a.a.s. exist local minima. The plane is

going to be tessellated into equal-size square cells. For each
cell, an event that implies existence of local minima within
the cell is introduced, and a lower bound for the probability
of the event is derived. Since these events are identical and

3For two sequences fn and gn, we write fn = o (gn) if limn→∞ fn
gn

= 0.
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independent among cells, we can estimate an low bound for
the probability of existence of local minima in the network,
and prove the lower bound is a.a.s. equal to 1.

Let β1 and β2 be two positive constants such that

max
(

1
4
β0, β

)
< β1 < β2 < β0, and

π2

c2

(
1 −

√
β1√
β2

)
< 1. (2)

Here c is the constant in Lemma 6 that is given in Appendix.
Let R1 (n) and R2 (n) be given by

nπ (R1 (n))2 = β1 ln n and nπ (R2 (n))2 = β2 ln n. (3)

Divide D by a

(
4
√

ln n
nπ

)
-tessellation.4 Let In denote the

number of cells fully contained in D, and we have

In = Θ
( n

ln n

)
. (4)

For each cell fully contained in D, we draw a disk with radius
1
2

√
ln n
nπ at the center of the cell. For 1 ≤ i ≤ In, let Ei be

the event that there exist two nodes X, Y ∈ Pn such that
their midpoint is in the i-th disk and their distance is between
R1 (n) and R2 (n), and there is no other node in the lune
LXY . For any two nodes u and v with ‖u − v‖ > rn, if there
is no other node in Luv , u and v are local minima w.r.t. each
other. So, Ei implies existence of local minima and

Pr [ρ (Pn) > rn] ≥ Pr [at least one Ei occurs] . (5)

Let oi denote the center of the i-th disk, and u, v be two points
such that their midpoint is on the disk and their distance is
between R1 (n) and R2 (n). (See Fig. 4.) Since the middle
point of u and v, called z, is in the disk, we have‖oi − z‖ ≤
1
2

√
ln n
nπ . For any point w ∈ Luv, the distance between w and

z, i.e. ‖w − z‖, is at most
√

3
2 ‖u − v‖ ≤

√
3

2

√
β0 ln n

nπ . For
any point w ∈ Luv, applying triangle inequality, we have

‖w − oi‖ ≤ ‖w − z‖ + ‖oi − z‖ <

√
3β0

2

√
ln n

nπ
+

1
2

√
ln n

nπ

≈ 1.885

√
ln n

nπ
< 2

√
ln n

nπ
.

Since the cell width is 4
√

lnn
nπ , u, v and Luv are contained

in the i-th cell. Therefore, E1, · · · , EIn are independent. In
addition, E1, · · · , EIn are identical. Then,

Pr [none of Ei occurs] = (1 − Pr [E1])
In ≤ e−In Pr(E1).

If In Pr (E1) → ∞, then Pr [ρ (Pn) > rn] → 1 follows, and
from Eq. (5), the lower bound for ρ (Pn) in Theorem 1 is
obtained. So, we only need to prove the following lemma.

Lemma 4: In Pr (E1) → ∞.
The proof of Lemma 4 is given in the appendix and also

can be found in [10].

4An ε-tessellation is a technique that divides the plane by vertical and
horizontal lines into a grid in which each grid cell has width ε.
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Fig. 4. The cell width is 4
√

lnn
nπ

, oi is the center of the cell, and R1 (n) <

‖u − v‖ < R2 (n). The disk is centered at oi and with radius 1
2

√
ln n
nπ

, and
z is the middle point of u and v. Luv is fully contained in the cell.
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Fig. 5. The cumulative distributed functions of normalized CTRs for n =
200, 400, and 800.

IV. SIMULATIONS

In the simulation, networks are composed of 200, 400, or
800 nodes distributed over a unit-area disk. Let n denote the
network size, i.e. the number of nodes in a network. For each
network size, 400 topologies are generated by uniform random
point processes. For each network topology, the actual critical
transmission radius, denoted by CTR, is computed according
to Eq. (1). To avoid ambiguity, the estimated (or theoretical)
critical transmission radius given by Theorem 1 is denoted by
ρn.

First, we would like to observe the trend of convergence
of CTRs. For n = 200, 400, and 800 respectively, the
average CTRs are 0.1808, 0.1332, and 0.1000, and the
theoretical radius ρn are 0.1469, 0.1104, and 0.0825. To have
a fair comparison over different network sizes, CTRs are
normalized by being divided by the corresponding ρn. The
CDFs of normalized CTRs are illustrated in Fig. 5. The



P.-J. WAN et al.: ASYMPTOTIC CRITICAL TRANSMISSION RADII FOR GREEDY FORWARD ROUTING IN WIRELESS AD HOC NETWORKS 1437

Ratios of Deliverable Source-Destination Pairs

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0.75 0.8 0.85 0.9 0.95 1 1.05

Transmission Radius Factor s

R
at

io

n=200

n=400

n=800

Fig. 6. Average percentage of deliverable source-destination pairs in
networks with n = 200, n = 400, and n = 800.

bold green dotted line marked by triangles is the CDF of
normalized CTRs for n = 200, the bold solid purple line
marked by squares is for n = 400, and the fine solid red
line marked by circles is for n = 800. For each network
size, the transition width is the difference between the largest
and smallest CTRs among 400 network topologies. The
normalized transition width for n = 200 (respectively, 400
and 800) is 0.9168 (respectively, 0.7591 and 0.6419) that is
the horizontal distance between the right most and left most
triangle (respectively, square and circle) markers in Fig. 5. The
decreasing of the normalized transition width agrees with the
trend of convergence.

Next, if transmission radii are set below CTRs, we would
like to investigate the impact on the deliverability of GFR.
Since CTRs usually are different from one topology to
another, to have a comparison basis, for each network topol-
ogy, the CTR is first computed according to Eq. (1), and
then transmission radii are set to s times of the CTR for
s = 0.8, 0.85, 0.9, 0.95, or 0.99. In other words, for each
network topology, according to its CTR, transmission radii
are set to 0.8 · CTR, 0.85 · CTR, 0.9 · CTR, 0.95 · CTR,
or 0.99 · CTR. The number of deliverable source-destination
pairs in each network is counted. For each transmission radius
factor s, the average ratio of deliverable source-destination
pairs are calculated over 400 network topologies. In Fig. 6,
the x-axis represents the transmission radius factor s, and the
y-axis is the average ratio of deliverable source-destination
pairs. We can see that transmission radii have larger impact
on deliverability in sparse networks than in dense ones.

Last, we investigate the delivery efficiency of GFR. The
effective progress ratio (EPR) of a routing path is defined as
the ratio of the Euclidean source-destination distance to the
total Euclidean path length. The ratio can be an indicator of
delivery efficiency. In the simulation, we calculated average
EPRs under various transmission radii and node densities.
Similarly, for each network topology, the CTR was first
calculated, and then transmission radii are set to s times of the
CTR. Here s are 0.8, 0.9, 1, 1.1, 1.2, and 1.3. In Fig 7, the x-
axis represents the transmission radius factor s, and the y-axis

Average Effective Progress Ratios
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0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
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E
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n=800

Fig. 7. Effective progress ratios (EPRs) under various transmission radii and
network sizes.

is the average EPR over all deliverable source-destination pairs
in 400 network topologies. We can see that the EPR mainly
depends on the transmission radius factor s but is insensitive to
the network size. If the EPR is a major concern, transmission
radii will be one of the primary parameters to tune the system.

V. CONCLUSIONS

Greedy forward routing is a localized and memoryless
geographic routing algorithm. However, it cannot guarantee
the deliverability of packets if transmission radii of nodes are
not large enough. If all nodes have the same transmission
radii, the smallest transmission radius that ensures the deliv-
erability of packets is referred to as the critical transmission
radius. In this paper, we provides tight a.a.s. bounds for the
critical transmission radius of randomly deployed wireless ad
hoc networks in which nodes are represented by a Poisson
point process. We also investigated a number of parameters
related to GFR by simulations, including the average of one-
hop progress, the expected number of hops between source-
destination pairs, and the effective hop progress. As a future
work, it is interesting to study the asymptotics of other
localized geographic routing protocols.

APPENDIX

In the appendix, we give the proof of Lemma 3 and 4. In
what follows, |A| is shorthand for 2-dimensional Lebesgue
measure (or area) of a measurable set A ⊂ R

2. All integrals
considered will be Lebesgue integrals. The diameter of a set
A ⊂ R

2 is denoted by diam (A). The topological boundary of
a set A ⊂ R

2 is denoted by ∂A. Po (λ) represents a Poisson
RV with mean λ. The symbols O, Θ, Ω, o,∼ always refer to
the limit n → ∞. To avoid trivialities, we tacitly assume n to
be sufficiently large if necessary. For simplicity of notation,
the dependence of sets and random variables on n will be
frequently suppressed.

A. Geometric Preliminaries

The lemmas given in this subsection are from [10], and we
will skip their proof. If ‖u − v‖ = 1/

√
π, a straightforward
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Fig. 8. The cells intersecting with the polygon form a polyquadrate.

calculation yields that |Luv| = 2
3 −

√
3

2π = 1
β0

. Let R0 denote
the minimum of the radius of curvature over ∂D. We have the
following lemma.

Lemma 5: For any u, v ∈ D, if ‖u − v‖ ≤ R0 then

|Luv ∩ D| ≥ |Luv| /2.

For two nearby lunes, we use the following lemma to
estimation their areas.

Lemma 6: Assume c = 0.039, R > 0, and a1, b1, a2, b2 ∈
R

2. Let z1 = 1
2 (a1 + b1), r1 = ‖a1 − b1‖, z2 = 1

2 (a2 + b2) ,
and r2 = ‖a2 − b2‖. If r1, r2 ∈ [1

2R, R
]
, ‖z1 − z2‖ ≤ √

3R,
a1, b1 /∈ La2b2 , and a2, b2 /∈ La1b1 , then

|La1b1 ∪ La2b2 | − |La1b1 | ≥ cR ‖z1 − z2‖ .

For any convex compact set C ⊂ R
2, we use C−r to denote

the set of points of C that are away from ∂C by at least r.
Lemma 7: Suppose that C ⊂ R

2 is a convex compact set
with diameter at most d. Then,

|C−r| ≥ |C| − πdr.

An ε-tessellation divides the plane by vertical and horizontal
lines into a grid in which each grid cell has width ε. Without
loss of generality, we assume the origin is a corner of cells. In
a tesselation, a polyquadrate is a collection of cells intersecting
with a convex compact set. For example, in Fig. 8, the
shaded cells form a polyquadrate induced by a polygon. The
horizontal span of a polyquadrate is the horizontal distance
measured in the number of cells from the left to the right.
The vertical span of a polyquadrate is defined similarly but in
the vertical direction. If the span of a convex compact set is s
and the width of each cell is l, the span of the corresponding
polyquadrate is at most �s/l� + 1.

Lemma 8: If S consists of m cells and τ is a positive
integer constant, the number of polyquadrates with span at
most τ and intersecting with S is Θ (m).

Now, we introduce a technique to obtain the Jacobian
determinant in the change of variables that will be implicitly
used in the proof of Lemma 4. Assume a tree topology is
fixed over x1, x2, · · · , xk ∈ R

2. Without loss of generality,
we may assume (xk−1, xk) is one of edges. Let zk−1 =
1
2 (xk−1 + xk), r = 1

2 ‖xk − xk−1‖, and θ be the slope of

xk−1xk. For 1 ≤ i ≤ k − 2, we use p (xi) to denote xi’s
parent in the tree rooted at xk, and let zi = 1

2 (xi + p (xi)).
Let I2 denote a 2×2 identity matrix and 0 denote a 2×2 zero
matrix. Then, the Jacobian determinant for changing variables
x1, · · · , xk−1, xk by z1, · · · , zk−1, (r, θ) is∣∣∣∣ ∂ (x1, · · · , xk−1, xk)

∂ (z1, · · · , zk−1, r, θ)

∣∣∣∣
=
∣∣∣∣∂ (x1 + p (x1) , · · · , xk−1 + p (xk−1) , xk)

∂ (z1, · · · , zk−1, r, θ)

∣∣∣∣
= 4k−1

∣∣∣∣∣∣
∂
(

x1+p(x1)
2 , · · · ,

xk−1+p(xk−1)
2 , xk

)
∂ (z1, · · · , zk−1, r, θ)

∣∣∣∣∣∣
= 4k−1

∣∣∣∣∂ (z1, · · · , zk−1, xk − zk−1)
∂ (z1, · · · , zk−1, r, θ)

∣∣∣∣

= 4k−1

∣∣∣∣∣∣∣∣∣∣∣

I2 · · · 0 0
...

. . .
...

...
0 · · · I2 0

0 · · · 0
cos θ −r sin θ
sin θ r cos θ

∣∣∣∣∣∣∣∣∣∣∣
= 4k−1r.

In the first equality, each non-root variable is added by
its parent variable. The equality stands since the Jacobian
determinant is equal to 1 as we add one variable to another.
We remark if the function to be integrated is independent of
the variable θ, then after changing variables, the integral over
θ is equal to 2π. Actually, this is the most case in this paper.

B. Preliminaries of Poisson RVs

We first present an estimation of the lower-tail distribution
of Poisson RVs.

Lemma 9: For any μ ∈ (0, 1),

lim
λ→∞

Pr (Po (λ) ≤ μλ) =
1√
2π

1√
μ (1 − μ)

1√
λ

e−λφ(μ).

Proof: In this proof, the symbol ∼ refers to the limit
λ → ∞. First, for any μ ∈ (0, 1), we show that the lower tail
distribution of a Poisson RV can be given by

Pr (Po (λ) ≤ μλ) ∼ 1
1 − μ

Pr(Po (λ) = μλ).

Since

Pr (Po (λ) = k − 1)
Pr (Po (λ) = k)

=
λk−1

(k−1)!e
−λ

λk

k! e
−λ

=
k

λ
,

we have

Pr (Po (λ) ≤ μλ) =
0∑

k=μλ

Pr (Po (λ) = k)

=
μλ∑

k=0

k!
(
μλ
k

)
λk

Pr (Po (λ) = μλ)

∼
μλ∑

k=0

(μλ)k

λk
Pr (Po (λ) = μλ) ∼ 1

1 − μ
Pr (Po (λ) = μλ) .
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By Sterling’s formula, we have

Pr (Po (λ) ≤ μλ) ∼ 1
1 − μ

λμλ

(μλ)!
e−λ

∼ 1
1 − μ

λμλ

√
2πμλ (μλ)μλ

e−μλ
e−λ

=
1

1 − μ

1√
2πμλμμλ

e−λ+μλ

=
1

1 − μ

1√
2πμλ

e−λ+μλ−μλ ln μ

=
1√
2π

1√
μ (1 − μ)

1√
λ

e−λ(1−μ+μ ln μ)

=
1√
2π

1√
μ (1 − μ)

1√
λ

e−λφ(μ).

Thus, the lemma is proved.
Assume Y is a Poisson RV with large mean. If Y generates

an output, the outcome should be close to the mean with high
probability. But as Y generates more outputs, the outcomes
are more diverse, and the minimum over the outcomes become
smaller. Corresponding to this simple observation, the follow-
ing lemma gives an quantitative result about the minimum
over a collection of Poisson RVs and it will be used in the
proof of Lemma 3.

Lemma 10: Assume that limn→∞ λn

ln n = β for some β >
1. Let Y1, Y2, · · · , YIn be In Poisson RVs with means at least
λn.

1) If In = o
(
n
√

ln n
)

, then for any 1 < β′ < β,

minIn

i=1 Yi > L (β′) ln n a.a.s..
2) If In = O

(√
n

ln n

)
, then for any 1 < β′ < β,

minIn

i=1 Yi > 1
2L (2β′) ln n a.a.s..5

Proof: We first assume that Y1, Y2, · · · , YIn all have
means λn. Let Y be a Poisson RV with mean λn. We claim
that for any μ > 0,

Pr
[

In

min
i=1

Yi ≤ μλn

]
≤ In Pr [Y ≤ μλn] .

To prove that this holds, let Xi be the indicator of the event
Yi ≤ μλn. Then Xi is a Bernoulli RV with probability
Pr [Y ≤ μλn]. Let X = X1 + · · ·+ XIn . Then, minIn

i=1 Yi ≤
μλn if and only if X ≥ 1. By Markov’s inequality,

Pr
[

In

min
i=1

Yi ≤ μλn

]
= Pr [X ≥ 1] ≤ E [X ] =

In∑
i=1

E [Xi]

= In Pr [Y ≤ μλn] .

Now, assume that In = o
(
n
√

ln n
)

. Since L (β′) <

L (β) = βφ−1 (1/β), we have L (β′) /β < φ−1 (1/β).
We choose a constant μ ∈ (L (β′) /β, φ−1 (1/β)

)
. Then,

μ ∈ (0, 1) , μβ > L (β′) and βφ (μ) > 1. Thus, for sufficiently
large n, μλn ≥ L (β′) ln n, which implies that

Pr
[

In

min
i=1

Yi ≤ L (β′) ln n

]
≤ Pr

[
In

min
i=1

Yi ≤ μλn

]
≤ In Pr [Y ≤ μλn] .

5For two sequences fn and gn, we write fn = O (gn) if there exist
constants c and n0 such that |fn| ≤ c |gn| for all n ≥ n0.

By Lemma 9,

Pr
[

In

min
i=1

Yi ≤ L (β′) ln n

]

� 1√
2πβ

1√
μ (1 − μ)

In

n
√

ln n
n1−(λn/ ln n)φ(μ).

Since
1 − (λn/ ln n)φ (μ) → 1 − βφ (μ) < 0,

we have

Pr
[

In

min
i=1

Yi ≤ L (β′) ln n

]
= o (1) .

Hence minIn

i=1 Yi > L (β′) ln n a.a.s..
Next, assume that In = O

(√
n

ln n

)
. Since L (2β′) <

L (2β), we have L (2β′) / (2β) < φ−1 (1/ (2β)). We choose
a constant μ ∈ (L (2β′) / (2β) , φ−1 (1/ (2β))

)
. Thus, μ ∈

(0, 1) , μβ > 1
2L (2β′) and βφ (μ) > 1/2. Thus, for suffi-

ciently large n, μλn ≥ 1
2L (2β′) ln n, which implies that

Pr
[

In

min
i=1

Yi ≤ 1
2
L (2β′) ln n

]
≤ Pr

[
In

min
i=1

Yi ≤ μλn

]
≤ In Pr [Y ≤ μλn] .

By Lemma 9,

Pr
[

In

min
i=1

Yi ≤ 1
2
L (2β′) ln n

]

� 1√
2πβ

1√
μ (1 − μ)

In√
n ln n

n1/2−(λn/ ln n)φ(μ).

Since

1/2 − (λn/ ln n)φ (μ) → 1/2 − βφ (μ) < 0,

we have

Pr
[

In

min
i=1

Yi ≤ 1
2
L (2β′) ln n

]
= o (1) .

Hence minIn

i=1 Yi > 1
2L (2β′) ln n a.a.s..

Finally, we consider that general case that Y1, Y2, · · · , YIn

have means λn,1, λn,2, · · · , λn,In respectively with λn,i ≥ λn

for each 1 ≤ i ≤ In. Let Y ′
1 , Y ′

2 , · · · , Y ′
In

be In Poisson
RVs with means λn. For each 1 ≤ i ≤ In, let Y ′′

i be a
Poisson RV with mean λn,i − λn which is independent with
Y ′

i . Then by the superposition property of Poisson RVs, Yi =
Y ′

i + Y ′′
i . Therefore, minIn

i=1 Yi ≥ minIn

i=1 Y ′
i > μλn. By the

above argument, the lemma also holds in this general case.
At the end of this subsection, we state the Palm theory [11]

on the Poisson process.
Theorem 11: Let n > 0. Suppose k ∈ N , and h (Y,X )

is a bounded measurable function defined on all pairs of the
form (Y,X ) with X ⊂ R

2 being a finite subset and Y being
a subset of X , satisfying h (Y,X ) = 0 except when Y has k
elements. Then

E

⎡
⎣ ∑
Y⊆Pn

h (Y,Pn)

⎤
⎦ =

nk

k!
E [h (Xk,Xk∪Pn)]

where the sum on the left-hand side is over all subsets Y of
the random Poisson point set Pn, and on the right hand side
the set Xk is a binomial process with k nodes, independent of
Pn.
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We need to estimate the number of subsets with some
specified topology, for example, two nodes are local minima
w.r.t. each other. But it is not so easy to estimate this among
Poisson point processes. The Palm theory allows us to place
a set of random points first and then estimate the expectation
over the Poisson point process. This technique will be used in
the proof of Lemma 4.

C. Proof of Lemma 3

To have the lower bound for minimal scan statistics, we ap-
ply the tessellation technique to discrete the scanning process.
The deployment region is tessellated into equal-size square
cells by properly choosing the cell size such that: (1) each
copy of the lune contains a polyquadrates with area at least
c ln n

n for some c > 1 (or 1
2c lnn

n if the copy crosses ∂D), and
(2) the number of polyquadrates is O

(
n

ln n

)
(or O

(√
n

lnn

)
if

the copy crosses ∂D). Then, the lemma follows Lemma 10.
The detail is given below.

Proof: For a given β1, choose a constant β2 ∈ (β1, β).

Let ε = 1
6
√

2β0

(
1 − β2

β

)
, d =

√
3rn, and consider an εd-

tessellation. (Note that ε is chosen such that each copy of the
lune contains a polyquadrate with area at least c ln n for some
c > 1.) Let In denote the number of polyquadrates in D with
span at most 1

ε and area at least β2
β0

πr2
n

β =
(

β2
β0

+ o (1)
)

ln n
n ,

and Yi be the number of nodes on the i-th polyquadrate. Then
Yi is a Poisson RV with rate at least

(
β2
β0

+ o (1)
)

ln n. Since

the number of cells in D is O
(

n
ln n

)
, by Lemma 8,

In = O

((
1
εd

)2
)

= O
( n

ln n

)
.

By Lemma 10, it is a.a.s. that

minIn

i=1 Yi

ln n
≥ L

(
β2

β0

)
> L

(
β1

β0

)
.

Now, let I ′n denote the number of polyquadrates in D \ D−d

with span at most 1
ε and area at least 1

2
β2
β0

πr2
n

β =
1
2

(
β2
β0

+ o (1)
)

ln n
n , and Y ′

i be the number of nodes on the

i-th polyquadrate. Then Y ′
i is a Poisson RV with rate at least

1
2

(
β2
β0

+ o (1)
)

ln n. Since the number of cells in D \ D−d is

O
(√

n
lnn

)
, by Lemma 8,

I ′n = O

(
1
εd

)
= O

(√
n

ln n

)
.

By Lemma 10, it is a.a.s. that

minI′
n

i=1 Y ′
i

ln n
≥ 1

2
L
(

β2

β0

)
>

1
2
L
(

β1

β0

)
.

Therefore, it is a.a.s. that

min
(
minIn

i=1 Yi, minI′
n

i=1 Y ′
i

)
ln n

>
1
2
L
(

β1

β0

)
.

Thus, the lemma follows if we can show that

S (Pn, rn) ≥ min

(
In

min
i=1

Yi,
I′

n

min
i=1

Y ′
i

)
.

To prove this inequality, it is sufficient to show that for any
lune L of two points in D which are separated by a distance of
rn, it either contains a polyquadrate in D with span at most
1
ε and area at least β2

β0

πr2
n

β , or contains a polyquadrate in

D \ D−d with span at most 1
ε and area at least 1

2
β2
β0

πr2
n

β . We
shall prove this in two cases.

Case 1: L is contained in D. Let P denote the polyquadrate
induced by L−√

2εd. Then, P ⊆ L ⊆ D, and the span of P is

at most
⌈

d−2
√

2εd
εd

⌉
+ 1 ≤ 1

ε . By Lemma 7 and using the fact

that |L| = πr2
n/β0 = πd2/ (3β0), we have

|P | ≥ ∣∣L−√
2εd

∣∣ ≥ |L| − πd
(√

2εd
)

= |L| − √
2επd2

= |L|
(
1 − 3

√
2β0ε

)
> |L|

(
1 − 6

√
2β0ε

)
=

β2

β
|L|

=
β2

β0

πr2
n

β
.

Case 2: L is not contained in D. Then L must be disjoint
with D−d. Let L′ = L∩D and let P ′ denote the polyquadrate
induced by L′

−√
2εd

. Then P ′ ⊆ L′ ⊆ D \ D−d and the the
span of P is also at most 1

ε . By Lemma 7 and Lemma 5, we
have

|P ′| ≥
∣∣∣L′

−√
2εd

∣∣∣ ≥ |L′| − πd
(√

2εd
)
≥ 1

2
|L| −

√
2πεd2

=
1
2
|L|
(
1 − 6

√
2β0ε

)
=

1
2

β2

β
|L| =

1
2

β2

β0

πr2
n

β
.

Thus, the lemma is proved.

D. Proof of Lemma 4

We introduce several relevant events and derive their prob-
abilities. For convenience, we use R1 and R2 as shorthand for
R1 (n) and R2 (n), respectively. Note that 1

2R2 ≤ R1 ≤ R2

and π2

c2

(
1 − R1

R2

)
< 1. Let A denote the disk with radius

1
2

√
ln n
nπ at the center of the first cell. Assume V is a point

set and T ⊂ V . Let h1 (T, V ) denote a function such
that h1 (T = {x1, x2} , V ) = 1 only if 1

2 (x1 + x2) ∈ A,
R1 ≤ ‖x1 − x2‖ ≤ R2, and there is no other node of V
in the lune area Lx1x2 ; otherwise, h1 (T, V ) = 0. Then, E1

is the event that there exist two nodes X, Y ∈ Pn such that
h1 ({X, Y } ,Pn) = 1. In addition, under Boolean addition,
for any {x1, x2, x3} ⊆ V , let

h2 ({x1, x2, x3} , V ) = h1 ({x1, x2} , V ) · h1 ({x1, x3} , V )

+ h1 ({x2, x1} , V ) · h1 ({x2, x3} , V )

+ h1 ({x3, x1} , V ) · h1 ({x3, x2} , V ) ;

for any {x1, x2, x3, x4} ⊆ V , let

h3 ({x1, x2, x3, x4} , V ) = h1 ({x1, x2} , V ) · h1 ({x3, x4} , V )

+ h1 ({x1, x3} , V ) · h1 ({x2, x4} , V )

+ h1 ({x1, x4} , V ) · h1 ({x2, x3} , V ) .

For the sake of clarity, in the remaining of this sub-
section, we use X1, X2, X3 and X4 to denote inde-
pendent random points with uniform distribution over D

and independent of Pn, and X ′
1, X ′

2, X ′
3 and X ′

4 to de-
note elements of Pn. Let F ′

1 ({X ′
1, X

′
2}) be the event that

h1 ({X ′
1, X

′
2} ,Pn) = 1; F ′

2 ({X ′
1, X

′
2, X

′
3}) be the event



P.-J. WAN et al.: ASYMPTOTIC CRITICAL TRANSMISSION RADII FOR GREEDY FORWARD ROUTING IN WIRELESS AD HOC NETWORKS 1441

that h2 ({X ′
1, X

′
2, X

′
3} ,Pn) = 1; and F ′

3 ({X ′
1, X

′
2, X

′
3, X

′
4})

be the event that h3 ({X ′
1, X

′
2, X

′
3, X

′
4} ,Pn) = 1. Applying

Boole’s inequalities which is a special case of the inclusion-
exclusion principle, we have

Pr [E1] ≥
∑

{X′
1,X′

2}⊆Pn

Pr
[
F ′

1

({
X ′

1, X
′
2

})]

−
∑

{X′
1,X′

2,X′
3}⊆Pn

Pr
[
F ′

2

({
X ′

1, X
′
2, X

′
3

})]

−
∑

{X′
1,X′

2,X′
3,X′

4}⊆Pn

Pr
[
F ′

3

({
X ′

1, X
′
2, X

′
3, X

′
4

})]
. (6)

Let F1 be the event that
h1 ({X1, X2} , {X1, X2} ∪ Pn) = 1, F2 be the event that
h2 ({X1, X2, X3} , {X1, X2, X3} ∪ Pn) = 1, and F3 be the
event that h3 ({X1, X2, X3, X4} , {X1, X2, X3, X4} ∪ Pn) =
1. According to the Palm theory (Theorem 11), we have∑

{X′
1,X′

2}⊆Pn

Pr [F ′
1 ({X ′

1, X
′
2})]

= E

⎡
⎢⎣ ∑
{X′

1,X′
2}⊆Pn

h1 ({X ′
1, X

′
2} ,Pn)

⎤
⎥⎦

=
n2

2!
E [h1 ({X1, X2} , {X1, X2} ∪ Pn)]

=
n2

2
Pr [F1] ; (7)

∑
{X′

1,X′
2,X′

3}⊆Pn

Pr [F ′
2 ({X ′

1, X
′
2, X

′
3})]

= E

⎡
⎢⎣ ∑
{X′

1,X′
2,X′

3}⊆Pn

h2 ({X ′
1, X

′
2, X

′
3} ,Pn)

⎤
⎥⎦

=
n3

3!
E [h2 ({X1, X2, X3} , {X1, X2, X3} ∪ Pn)]

= 3
n3

3!
Pr [F2] =

n3

2
Pr [F2] ; (8)

and ∑
{X′

1,X′
2,X′

3,X′
4}⊆Pn

Pr [F ′
3 ({X ′

1, X
′
2, X

′
3, X

′
4})]

= E

⎡
⎢⎣ ∑
{X′

1,X′
2,X′

3,X′
4}⊆Pn

h3 ({X ′
1, X

′
2, X

′
3, X

′
4} ,Pn)

⎤
⎥⎦

=
n4

4!
E [h3 ({X1, X2, X3, X4} , {X1, X2, X3, X4} ∪ Pn)]

= 3
n4

4!
Pr [F3] =

n4

8
Pr [F3] . (9)

From Eq. (6), (7), (8), and (9), we have

Pr [E1] ≥ n2

2
Pr [F1] − n3

2
Pr [F2] − n4

8
Pr [F3] . (10)

In the next, we derive the probabilities of F1, F2, and F3.
Let S1 (R1, R2) denote the set{

(x1, x2)
∣∣∣∣12 (x1 + x2) ∈ A, R1 ≤ ‖x1 − x2‖ ≤ R2

}
.

For simplicity, S1 is shorthand for S1 (R1, R2). We have

Pr [F1] =
∫ ∫

S1

Pr [F1 | X1 = x1, X2 = x2] dx1dx2

=
∫ ∫

S1

e−n|Lx1x2 |dx1dx2

=
∫ ∫

S1

e−n 1
β0

π‖x1−x2‖2

dx1dx2.

Let z = x1+x2
2 and r = 1

2 ‖x1 − x2‖. Then,

Pr [F1] =
∫

z∈A

∫ R2
2

r=
R1
2

e−
4

β0
nπr2

8πrdrdz

= 4
∫

z∈A

∫ R2
2

r=
R1
2

e
− 4

β0
nπr2

2πrdrdz

= 4
∫

z∈A

∫ R2
2

r=
R1
2

e−
4

β0
nπr2

d
(
πr2

)
dz

= −
⎛
⎝ β0

n
e−

4
β0

nπr2
∣∣∣∣

R2
2

r=
R1
2

⎞
⎠ |A|

=
β0

4n2

(
n− β1

β0 − n− β2
β0

)
ln n. (11)

Let S2 (R1, R2) denote the set⎧⎪⎪⎨
⎪⎪⎩(x1, x2, x3)

∣∣∣∣∣∣∣∣
x1+x2

2 , x1+x3
2 ∈ A;

R1 ≤ ‖x1 − x2‖ ≤ R2;
R1 ≤ ‖x1 − x3‖ ≤ R2; x1, x2 /∈ Lx1x3 ;

x1, x3 /∈ Lx1x2

⎫⎪⎪⎬
⎪⎪⎭ .

Again, for simplicity, S2 is shorthand for S2 (R1, R2). Apply-
ing Lemma 6, if (x1, x2, x3) ∈ S2, we have

Pr [F2 |X1 = x1, X2 = x2, X3 = x3 ] ≤ e−n|Lx1x2∪Lx1x3 |

≤ e
−n

(
1

β0
π‖x1−x2‖2+cR2‖ x1+x2

2 − x1+x3
2 ‖) .

Therefore,

Pr [F2]

=

∫ ∫ ∫
S2

Pr [F2 |X1 = x1, X2 = x2, X3 = x3 ] dx1dx2dx3

≤
∫ ∫ ∫

S2

e
−n

(
1

β0
π‖x1−x2‖2+cR2

∥∥∥ x1+x2
2 − x1+x3

2

∥∥∥)
dx1dx2dx3.

Let z1 = x1+x2
2 , r1 = 1

2 ‖x1 − x2‖, z2 = x1+x3
2 , and ρ =

‖z1 − z2‖. Then,

Pr [F2]

≤ 16
∫

z1∈A

∫ R2
2

r1=
R1
2

∫
z2∈A

e
−n

(
4

β0
πr2

1+cR2‖z1−z2‖
)
2πr1

· dr1dz1dz2

≤ 16
∫

z1∈A

∫ R2
2

r1=
R1
2

e−
4

β0
nπr2

12πr1dr1dz1

·
∫

z2∈A

e−cnR2‖z1−z2‖dz2

≤ 16
∫

z1∈A

∫ R2
2

r1=
R1
2

e−
4

β0
nπr2

1d
(
πr2

1

)
dz1
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·
∫ ∞

ρ=0

e−cnR2ρ2πρdρ

= −
⎛
⎝ 4β0

n
e−

4
β0

nπr2
∣∣∣∣

R2
2

r=
R1
2

⎞
⎠ |A| 2π

(cnR2)
2

=
2πβ0

c2 (nR2
2)n3

(
n
− β1

β0 − n
−β2

β0

)
ln n. (12)

Let S3 (R1, R2) denote the set⎧⎪⎪⎨
⎪⎪⎩(x1, x2, x3, x4)

∣∣∣∣∣∣∣∣

x1+x2
2 , x3+x4

2 ∈ A;
R1 ≤ ‖x1 − x2‖ ≤ R2;
R1 ≤ ‖x3 − x4‖ ≤ R2;

x1, x2 /∈ Lx3x4 ; x3, x4 /∈ Lx1x2

⎫⎪⎪⎬
⎪⎪⎭ .

Again, for simplicity, S3 is shorthand for S3 (R1, R2). Apply-
ing Lemma 6, if (x1, x2, x3, x4) ∈ S3, we have

Pr [F3 |X1 = x1, X2 = x2, X3 = x3, X4 = x4 ]

≤ e−n|Lx1x2∪Lx3x4 |

≤ e
−n

(
1

β0
π‖x1−x2‖2+cR2‖x1+x2

2 − x3+x4
2 ‖) .

Therefore,

Pr [F3]

=

∫ ∫ ∫ ∫
S3

Pr [F3 |X1 = x1, X2 = x2, X3 = x3, X4 = x4 ]

· dx1dx2dx3dx4

≤
∫ ∫ ∫ ∫

S3

e
−n

(
1

β0
π‖x1−x2‖2+cR2

∥∥∥ x1+x2
2 − x3+x4

2

∥∥∥)

· dx1dx2dx3dx4.

Let z1 = x1+x2
2 , r1 = 1

2 ‖x1 − x2‖, z2 = x3+x4
2 , r2 =

1
2 ‖x3 − x4‖, and ρ = ‖z1 − z2‖. Then,

Pr [F3]

≤
∫

z1∈A

∫ R2
2

r1=
R1
2

∫
z2∈A

∫ R2
2

r2=
R1
2

e
−n

(
4

β0
πr2

1+cR2‖z1−z2‖
)

· (8πr1dr1dz1) (8πr2dr2dz2)

≤
(

4

∫
z1∈A

∫ R2
2

r1=
R1
2

e
− 4

β0
nπr2

12πdr1dz1

)

·
(

8π
R2

2

(
R2

2
− R1

2

) ∫
z2∈A

e−cnR2‖z1−z2‖dz2

)

≤
(

4

∫
z1∈A

∫ R2
2

r1=
R1
2

e
− 4

β0
nπr2

1d
(
πr2

1

)
dz1

)

·
(

8π
R2

2

(
R2

2
− R1

2

) ∫ ∞

ρ=0

e−cnR2ρ2πρdρ

)

=

(
β0 ln n

4n2

(
n
− β1

β0 − n
− β2

β0

))(
4π2

(cnR2)
2 R2 (R2 − R1)

)

=
π2β0

c2n4

(
1 − R1

R2

)(
n
− β1

β0 − n
− β2

β0

)
ln n. (13)

Put Eq. (10), (11), (12) and (13) together. We have

Pr [E1]

≥
(

β0

8
− πβ0

c2 (nR2
2)

− π2β0

8c2

(
1 − R1

R2

))(
n
− β1

β0 − n
− β2

β0

)
ln n

∼ β0

8

(
1 − π2

c2

(
1 − R1

R2

))(
n
− β1

β0 − n
− β2

β0

)
ln n.

Recall that for a given β, β1 and β2 are constants, and so
are β1

β0
and β2

β0
. According to Eq.(3), R1

R2
also is a constant.

We write fn = Ω (gn) for two sequences fn and gn if there
exist constant c1 > 0 and n0 such that |fn| ≥ c1 |gn| for all
n ≥ n0. From Eq. (2), we have

Pr [E1] = Ω
((

n−β1
β0 − n− β2

β0

)
ln n

)
.

Since In = Ω
(

n
ln n

)
from Eq. (4), we have

In Pr [E1] = Ω
(
n1− β1

β0

)
→ ∞.

This complete the proof of Lemma 4.
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